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Abstract

Transport of a conservative solute takes place by advection and by pore-scale dispersion in a formation of spatially variable

logconductivity YðxÞ ¼ ln KðxÞ: The latter is modeled as a normal stationary random space function, characterized by a few

statistical parameters, like the mean kYl; the variance s2
Y ; the horizontal and vertical integral scales Ih and Iv: The local solute

concentration Cðx; tÞ; a random function of space and time, is characterized by its statistical moments, like, e.g. the mean kCl
and the standard deviation sC: A simplified analysis for determining the concentration uncertainty is proposed. The proposed

methodology, valid for nonreactive solutes, is based on a few simplifications, the most important being: (i) large transverse

dimensions of the injected plume compared to the logconductivity correlation lengths, (ii) mild heterogeneity of the hydraulic

properties, which allows for the use of the first-order analysis, (iii) highly anisotropic formations, and (iv) mean uniform flow.

The concentration uncertainty is represented through the coefficient of variation CVC ¼ sC=kCl at the plume center, where the

expected concentration is maximum. Results for CVC are illustrated as function of time and on two dimensionless parameters:

V ¼ I2
v =ðIhadT Þ and L ¼ L1=

ffiffiffiffiffiffiffi
A11Ih

p
; where L1 is the longitudinal dimension of the initial plume, A11 is the longitudinal macro

dispersivity, and adT is the local transverse dispersivity. Summary graphs lead to a quick and simple estimate of the time-

dependent concentration uncertainty, as well as its peak and its setting time (i.e. the time needed to reach the peak coefficient of

variation). The methodology and its results can be used to assess the concentration uncertainty at the plume center. The problem

is quite important when dealing with contaminant prediction and risk analysis.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Spatial variability of hydraulic conductivity affects

the fate of contaminants in groundwater by a few

mechanisms, the main ones being spreading and

dilution. Spreading is caused by the variation in

groundwater velocity due to permeability changes,

leading to shearing of the plume. In contrast, dilution

is controlled by pore-scale dispersion (hereinafter

denoted as PSD) that determine a solute transfer from

fast moving fingers to neighboring stream tubes and

conversely. Because of the anisotropy of the hetero-

geneous structure of most sedimentary aquifers,

manifesting in vertical scales much smaller than the

horizontal ones, the major mixing effect is in the

vertical direction and is associated with transverse

PSD. The interplay between large-scale advection and

PSD depends on the Peclet numbers, the most

significant being the transverse one PeT ¼ UIv=DdT ;

where U is the mean velocity, Iv is the vertical
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correlation scale of the logpermeability field, DdT ¼

adT U is the coefficient of transverse PSD and adT is

the transverse dispersivity. In the typical field

applications, PeT ¼ Iv=adT ¼ Oð102Þ (e.g. Dagan,

1989).

It is common to account for the seemingly erratic

variations of permeability and for uncertainty, by

modeling the permeability and the dependent fields

(piezometric head H, velocity V and concentration C)

as random space functions of the coordinate x: These

variables are characterized statistically by their

moments, such as: the mean, the variance, the two-

point covariance. Thus, at lowest order the local

concentration is characterized by kCl; the ensemble

mean, and s2
C; the variance. While kCl is slightly

affected by PSD, the latter has a major effect upon sC;

which is a measure of the concentration uncertainty

(see, e.g. Fiori and Dagan, 2000).

From the applications perspective, the evaluation

of sC; supplementing that of kCl; is quite important.

First, the magnitude of the coefficient of variation

sC=kCl is indicative of the uncertainty of prediction of

the concentration on one hand, and of the irregular

distribution of the measured local concentration

distribution in a field test (Fiori and Dagan, 1999).

Furthermore, if models are to be used for prediction

and for risk analysis, when regulations are formulated

in terms of maximal admissible local concentrations

rather than space or time averages over wells, the

statistical moments of concentration are a prerequisite

step toward the determination of the probability

density function (hereinafter denoted as PDF) of C;

through the latter, an assessment of the probability of

exceedance of a given concentration can be made at

any point in space and time (see Fiori and Dagan,

1999).

Two types of approaches to determine s2
C were

followed recently: the Eulerian one (e.g. Kapoor and

Gelhar, 1994; Andricevic, 1998; Kapoor and Kitani-

dis, 1998) and the Lagrangean one (Fiori and Dagan,

1999, 2000; Pannone and Kitanidis, 1999). In

particular, Fiori and Dagan (1999) found a good

agreement between their approximate Lagrangean

model and Fitts’ (1996) analysis of field data,

provided that the calibrated value of the pore-scale

transverse dispersivity was adT < 0:5 mm for the

Cape Cod and Borden aquifers. However,

the calculations needed to obtain s2
C require

the evaluation of several quadratures, making the

procedure quite complicated for field applications.

The main aim of this study is to develop a

simplified analysis for sC valid for anisotropic

formations and large initial plumes. The plan of the

paper is as follows: the Lagrangean model of Fiori and

Dagan (2000), which is the basis of the calculation for

the concentration moments, is briefly recapitulated in

Section 2. In Section 3 the approximate formulation

is introduced and discussed, and the results are

illustrated in Section 4. For the scope of illustration,

the methodology is applied in Section 5 to the analysis

of the concentration statistics for the Cape Cod field

experiment.

2. Mathematical framework

We consider an aquifer of stationary lognormal

distribution of the hydraulic conductivity K, i.e. with

Y ¼ ln K characterized by the constant mean kYl and

by the two-point covariance CY ðx; yÞ ¼

s2
YrY ðr1=Ih; r2=Ih; r3=IvÞ: Here x and y are coordinate

vectors of two points, the vector r ¼ y 2 x is the lag,

x1 and x2 are Cartesian horizontal coordinates, with x1

parallel to the mean flow direction, and x3 is vertical.

We assume the heterogeneous structure to be of

axisymmetric anisotropy (e.g. Gelhar and Axness,

1983), being completely characterized by kYl; the

variance s2
Y ; the horizontal ðIhÞ and vertical ðIvÞ

integral scales; the anisotropy ratio is defined as e ¼

Iv=Ih: Flow is caused by a mean uniform head gradient

7kHl ¼ 2J; resulting in a random velocity field Vð

xÞ ¼ U þ uðxÞ; where U ¼ kVl is constant and the

stationary fluctuation u has a two-point covariance

uijðrÞ ði; j ¼ 1; 2; 3Þ:

A conservative solute of constant concentration C0

is injected in the formation within a volume v0 at

t ¼ 0: Transport takes place due to advection by V

and PSD of constant coefficients Dd11 ¼ adLU;

Dd22 ¼ adTU and Dd33 ¼ adT U; where adL; adT are

the longitudinal and transverse pore-scale dispersiv-

ities, respectively.

The aim here is to compute the concentration

variance s2
C; as function of x and t. This objective is

attained in the Lagrangian framework by regarding

the plume as a collection of elementary particles

defined at the pore-scale, of mass nC0 da; where n is
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the constant porosity and a is the initial coordinate

within v0; that move along trajectories Xtðt; aÞ ¼ Xðt;

aÞ þ XdðtÞ: The random advective component of the

trajectory X satisfies the differential equation dX=

dt ¼ VðXtÞ; whereas the displacement Xd associated

with PSD is of normal distribution, of variance Xdij ¼

2Ddijt and independent of V: The concentration field

associated to this representation can be written in

mathematical form as

CðxÞ ¼ C0

ð
v0

dðx 2 XtÞda ð1Þ

Stated in words, the concentration is equal to the

initial one C0 along the particles trajectories Xt ¼

X þ Xd:

To obtain the statistical moments of C we observe

that its randomness stems from two velocity fields: the

Darcian V; that is the independent one, and the

diffusive one wd; that is modeled as a Wiener process.

Following Fiori and Dagan (2000), the moments of C

are computed by averaging Eq. (1) over the variable

Xt: Thus, the following expression for the mean

concentration is obtained

kCðx; tÞl ¼ C0

ð
v0

f1ðx; t; aÞda ð2Þ

where f1ðXt; t; aÞ is the PDF of Xtðt; aÞ: In a similar

manner, the concentration variance is obtained as

follows

s2
Cðx; tÞ ¼ kC2l2 kCl2

¼ C2
0

ð
v0

ð
v0

f2ðx; x; t; a;bÞda db 2 kCl2 ð3Þ

where f2ðXt;Yt; t; a;bÞ is the joint PDF of Xt ¼ Xtðt;

aÞ; Yt ¼ Xtðt; bÞ (we use the notation Yt ¼ Y þ Yd

for the trajectory of a particle originating at b).

In the following the assumptions of Fiori and

Dagan (2000) are adopted in order to evaluate s2
C : (i)

the formation is mildly heterogeneous, and a first-

order approximation in s2
Y is adopted; as a conse-

quence, f1 and f2 are approximately Gaussian and

completely defined by the first two moments of the

trajectories, and the components X and Xd are

uncorrelated; numerical studies have shown that the

first-order approximation gives reasonable

estimates of the spatial moments up to s2
Y < 1 (e.g.

Bellin et al., 1992); although it derives rigorously

from the first-order approximation, it should be noted

that a recent study demonstrates that the Gaussian

assumption is not uniformly valid (Tartakovsky and

Guadagnini, 2002); (ii) the initial solute body is a box

(parallelepiped) of dimensions L1; L2; L3: Despite

these simplifications, which mostly derive from the

application of the first-order theory, the calculation of

s2
C is still a formidable task for real applications,

requiring a large number of quadratures for both the

trajectory moments evaluation and the integrals in

Eq. (3). In Section 3, a simplifying procedure for

large plumes in highly anisotropic formations is

developed.

3. An asymptotic analysis

The following additional conditions are assumed in

the sequel:

(i) the transverse size of the initial plume is large

compared to the hydraulic conductivity corre-

lation lengths, i.e. L2=Ih q 1 and L3=Iv q 1: The

latter condition is usually met in practice,

because in natural formations the logconductiv-

ity vertical correlation length is usually small,

being Iv ¼ Oð1021 mÞ (Dagan, 1989). In con-

trast, in natural formations the horizontal corre-

lation length is usually larger than the vertical

(Ih ¼ Oð100 mÞÞ; and the application of the

above condition for the transverse dimension

may require relatively large values of L2; the

assumption concerning L2 will be further dis-

cussed at the end of Section 4;

(ii) the porous formation is highly anisotropic, i.e.

e ¼ Iv=Ih p 1 (say, roughly e o 0:2). This is a

typical situation for sedimentary aquifers, which

are often characterized by thin lenses with

horizontal bedding (Dagan, 1989);

(iii) the advective displacements X2; X3 are neglected

because they are much smaller than the longi-

tudinal advective displacement X1; that is one of

the principal quantities that determine the

concentration variance (Fiori and Dagan, 2000);

(iv) the pore-scale displacements Xd1; Xd2 are

neglected, the most important component being

the vertical one Xd3 (see Section 1, and Fiori and

Dagan, 2000);
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(v) the variance of the longitudinal trajectory

X11ðtÞ ¼ k½X1ðt; aÞ2 kX1ðt; aÞl�2l is evaluated

through the ‘Fickian’ approximation, i.e. X11 ¼

2A11Ut; with A11 the longitudinal macrodisper-

sion coefficient (see, e.g. Gelhar and Axness,

1983). The trajectories autocorrelation function

r11 ¼ Z11=X11; with Z11ðt; a 2 bÞ ¼ kðX1 2

kX1lÞðY1 2 kY1lÞl the longitudinal trajectory

two-particles covariance, is calculated through

the first-order approximation in the logconduc-

tivity variance s2
Y : Furthermore, the dependence

of the two-particles covariance Z11 on the

horizontal lag a1 2 b1 is weak and is therefore

neglected. The latter assumptions are also

employed and discussed in the comparison with

field experiments of Fiori and Dagan (1999).

Thus, the components that determine the con-

centration statistics are essentially: (i) longitudinal,

large-scale advection, and (ii) vertical PSD. These

two mechanisms are indeed those controlling the

concentration variance (Fiori and Dagan, 2000), as

shown by the large-time, asymptotic value for the

concentration coefficient of variation CVC ¼ sC=kCl
at the plume center of mass, valid for any

configuration of the initial plume, obtained by

Fiori and Dagan (2000, Eq. 25). In fact, the

asymptotic CVC depends on the longitudinal large-

scale advection and on the vertical PSD solely, all

the other components (e.g. transverse spreading)

being absent. Hence, the large-time limit for CVC

of the present simplified model is the same as the

one obtained by the complete formulation of Fiori

and Dagan (2000). Since the same does not happen

with the variance s2
C; the coefficient of variation

appears to be a more robust quantity for assessing

concentration statistics. Hence, CVC is chosen as

the representative quantity for assessing concen-

tration uncertainty.

With the above simplifications, the concentration

mean and variance can be obtained through Eqs. (2)

and (3). Details of the procedure to obtain the

concentration moments are reproduced in Appendix

A. In particular, expressions (A3) and (A7)–(A9) of

in Appendix A give, respectively, the mean and the

variance of concentration as function of dimension-

less time t0 ¼ tU=Ih; dimensionless location j1 ¼

ðx1 2 UtÞ=
ffiffiffiffiffiffiffi
A11Ih

p
; and two dimensionless parameters:

V ¼ I2
v =ðIhadT Þ ¼ ePeT and L ¼ L1=

ffiffiffiffiffiffiffi
A11Ih

p
: The

solution for kCl is fully analytical, while sC require

two quadratures.

4. Discussion of results

Here we wish to illustrate results for CVC ¼

sC=kCl at the plume center x1 ¼ Ut (or j1 ¼ 0),

where the expected concentration is maximum. We

chose to represent uncertainty through CVC for

the reasons illustrated in Section 3. In Fig. 1 the

concentration coefficient of variation CVC at the

plume center of mass ðj1 ¼ 0Þ is represented as

function of the dimensionless time t0 ¼ tU=Ih for a

few values of the parameter L ¼ L1=
ffiffiffiffiffiffiffi
IhA11

p
and

four values of the parameter V ¼ I2
v =ðIhadT Þ: Since

the permeability anisotropy ratio in natural aquifers

is generally very small, being e , 0:1; with the

conductivity vertical integral scale Iv ¼ Oð1021 mÞ;

and the transverse dispersivity is adT ¼ Oð1024 mÞ

(see, e.g. Dagan, 1989), the parameter V may have

a large range of variability, say V ¼ 100 –103:

Hence, the following values for V have been

selected for representing results : 1, 10, 100, 1000.

The variability of L can also be large since it

depends on the particular value of the longitudinal

size of the initial plume L1:

In accordance with the results for the concen-

tration coefficient of variation obtained in the past

(e.g. Kapoor and Gelhar, 1994; Andricevic, 1998;

Pannone and Kitanidis, 1999; Fiori and Dagan,

2000), the figures show that CVC grows initially

with time to reach a maximum value, after which

the coefficient of variation decays with time and

tends to zero for tU=Ih !1; proportional to ln t=t:

The behavior reflects the competition of two

mechanisms in determining CVC : large-scale

advection generates uncertainty, which is however

‘destroyed’ by dilution, that is in turn controlled by

PSD. The two mechanisms are controlled by the

parameters V and L; which therefore determine the

value of the peak of CVC; the same parameters

control the ‘setting time’, i.e. the time needed to

reach the peak coefficient of variation. Thus, for

a fixed V; the peak CVC is inverse proportional

to L ¼ L1=
ffiffiffiffiffiffiffi
A11Ih

p
: In fact, an increase of the

macrodispersivity A11 leads to an increase of
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Fig. 1. The concentration coefficient of variation at the plume center of mass CVC ¼ sC=kCl as a function of dimensionless time tU=Ih for a few

values of the parameter L ¼ L1=
ffiffiffiffiffiffiffi
A11Ih

p
; and for V ¼ I2

v =ðIhadT Þ ¼ 1 (a), 10 (b), 100 (c), 1000 (d).
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Fig. 1 (continued )
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the concentration uncertainty because of the effects

of macro-scale advection. For the same reason, the

setting time is small because of the fast advection.

The plume size L1 has an opposite effect: if the

plume is large, the maximum concentration at the

plume center stays high, close to the initial value,

and the concentration uncertainty in the surround-

ing of the plume center is low. Conversely, the

setting time will be large, because it takes more

time for PSD to influence the center of the plume

and play an active role in reducing uncertainty.

The parameter V ¼ I2
v =ðIhadT Þ ¼ ePeT controls

the effect of PSD, by the means of the transverse

dispersivity adT : The concentration coefficient of

variation at the plume center grows with V; as the

latter is proportional to the transverse Peclet

number. This result is in accordance with the

behavior illustrated in Fiori and Dagan (2000). The

anisotropy ratio e ¼ Iv=Ih is also important, because

it is proportional to the characteristic vertical size

of heterogeneity. A small value of Iv makes PSD

more effective in diluting the solute and reducing

the uncertainty. A similar effect is observed in Fiori

(1996) for the concentration spatial moments. A

factor similar to V was also employed by Naff

(1990) for the calculation of the concentration

spatial moments. The dependence of the peak

concentration coefficient of variation setting time

tp on V is weaker, and a decrease of tp with V is

generally observed.

To further emphasize results, we represent in

Fig. 2 a contour plot for the maximum CVC at the

plume center of mass, as a function of both

parameters V and L: The behavior of the

coefficient of variation reflects the one previously

explained. An approximate analytical expression for

the concentration coefficient of variation at the

plume center as function of the dimensionless

Fig. 2. Contour plot of the peak of the concentration coefficient of variation at the plume center of mass CVC ¼ sC=kCl as function of the

dimensionless variables V ¼ I2
v =ðIhadT Þ and L ¼ L1=

ffiffiffiffiffiffiffi
A11Ih

p
:
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variables is given by the following regression

formula

CVC ø 0:43516420:165986 lnLþ0:0148895 ln2 L

þ0:0877264 lnVþ0:00791227 ln2 V

20:0235874 lnL lnV ðR2 ¼ 0:999Þ ð4Þ

which is valid when the parameters L; V lie in the

range of Fig. 2. The setting time tp is represented

in Fig. 3 as function of V and L:

We discuss now a few issues on the applica-

bility of the proposed methodology. As stated in

Section 3, one the major limitations of the analysis

seems to be the one concerning the transverse size

of the plume, which has to be large compared to

the logconductivity correlation length; such con-

ditions may not be met in some cases. The

approximation takes advantage of the smallness of

the transverse and vertical macro dispersivities, A22

and A33; compared to the initial size of the plume.

The validity of the solution for the usual Peclet

numbers encountered in reality can be roughly

assessed through the bounds Li=
ffiffiffiffiffiffiffiffi
2AiiUt

p
q 1 ði ¼

2; 3Þ; in particular, a value of 5 can be assumed as

lower limit of the dimensionless quantity

Li=
ffiffiffiffiffiffiffiffi
2AiiUt

p
: However, at large-time the dilution

process is ruled by local diffusion, and the

approximate solution is bound to be valid when

Li=
ffiffiffiffiffiffiffiffiffi
2adTUt

p
p 1 ði ¼ 2; 3Þ: The two conditions

above approximately determine the range of

validity of the simplified methodology. The pro-

cedure is illustrated in Section 5. If the initial size

of the plume obeys the condition Li=
ffiffiffiffiffiffiffiffi
2AiiUt

p
p 1

ði ¼ 1; 2; 3Þ; i.e. when the plume is very small

compared to the characteristic scale of advection,

the approximate solution of Fiori and Dagan

(2000) based on point-like injection scan be used,

i.e. CV2
C ¼ ðð1 2 r2

11Þ
21 2 1Þ; with r11 the longi-

tudinal trajectory autocorrelation function (see

Appendix A).

5. Application example

For the scope of illustration, the concentration

uncertainty at the plume center for the Cape Cod

experiment (Garabedian et al., 1991) is analyzed.

The values for the parameters are taken from

Fig. 3. Contour plot of the dimensionless setting time tpU=Ih as function of the dimensionless variables V ¼ I2
v =ðIhadT Þ and L ¼ L1=

ffiffiffiffiffiffiffi
A11Ih

p
:
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Garabedian et al. (1991), i.e. C0 ¼ 640 mg=l; L1 < 4

m; Ih ¼ 2:9 m; Iv ¼ 0:19 m; A11 ¼ 0:96 m,

U ¼ 0:41 m/day. The pore-scale transverse dispersiv-

ity was inferred by Fiori and Dagan (1999) as

adT ¼ 0:0005 m. The formation anisotropy ratio e ¼

Iv=Ih ¼ 0:06 is small enough for methodology to be

employed.

The parameters V and L are calculated by using

the above values, obtaining: L ¼ L1=
ffiffiffiffiffiffiffi
A11Ih

p
¼ 2:4

and V ¼ I2
v =ðIhadT Þ ¼ 24:9: Inserting the parameter

values in Fig. 2 (or Eq. (4)) and Fig. 3, we obtain the

concentration coefficient of variation at the plume

center and its setting time tp; as follows: CVC ¼ 0:61

and tpU=Ih ¼ 3:7; that is tp ¼ 26 days. The values are

very close to those obtained by the complete

formulation of Fiori and Dagan (1999) (CVC ¼ 0:68

and tp ¼ 25 days), which, however, predicts a

secondary peak at later time that is caused by

transverse spreading; the latter was not captured by

the present analysis.

The accuracy of results can be explained by

examining the relevance of the transverse component

of transport. The latter can be analyzed through the

quantity L2=
ffiffiffiffiffiffiffiffiffi
2A22Ut

p
; along the lines outlined at the

end of Section 4. With L2 < 4 m and A22 ¼ 0:018 m

(Garabedian et al., 1991), it is L2=
ffiffiffiffiffiffiffiffiffi
2A22Ut

p
. 5 when

t , 42 days; hence, the transverse component can be

neglected below that time limit, and the approximate

solution gives valid results at tp ¼ 26 days. Con-

versely, the PSD related factor L2=
ffiffiffiffiffiffiffiffiffi
2adTUt

p
is much

smaller than unity when approximately t ¼ Oð105Þ

days. Consequently, from t approximately equal to 42

days to the latter time limit, the accuracy of the

simplified solution should deteriorate. Similar con-

siderations can be drawn for the vertical components

L3 and A33:

The concentration standard deviation can be

further obtained from CVC: With sp
C; kClp; CVp

C the

exact quantities, and sC; kCl; CVC the approximated

ones, we write: sp
C ¼ CVp

C·kClp < CVC·kClp: In

words, standing the robustness of the estimate of

CVC (as explained in Section 3), it is suggested to

multiply the latter by the ‘exact’ expression for the

mean concentration, Eq. (A2) (i.e. the one that also

considers the transverse and vertical spreading),

instead of the simplified one, Eq. (A3). The following

additional data are needed for the calculation of kCl
by Eq. (A2) (see Garabedian et al., 1991): L2 < 4 m,

L3 < 1:2 m, A22 ¼ 0:018 m, A33 ¼ 0:0015 m,

adL ¼ 0:005 m (the latter was estimated in Fiori and

Dagan, 1999). After substitution in Eq. (A2), for x1 ¼

Ut; x2 ¼ x3 ¼ 0 (i.e. the quantity is calculated at the

plume center) and t ¼ tp ¼ 26 days, we obtain:

kCl ¼ 214 mg/l. The value obtained by the simplified

formula (A3) is very close, i.e. kCl ¼ 218 mg/l. The

concentration standard deviation is equal to:

sC ¼ CVC·kCl ¼ 218·0:61 ¼ 131 mg/l.

Assuming a distribution for C, an assessment of

the probability of exceedance of a given concen-

tration can be made by using the estimate values for

kCl and sC: For example, adopting the lognormal

distribution (e.g. Fiori and Dagan, 2000), the

concentration at the plume center relative to 90%

cumulative probability (10% exceedance prob-

ability) is equal to: C90% ¼ 376 mg/l. It is pointed

out that the assessment of the concentration

uncertainty can be made at any time by using

Fig. 1, or at any time and space by direct integration

of the expressions (A3) and (A7)–(A9).

6. Summary and conclusions

A simplified analysis for determining the

concentration uncertainty in aquifer transport has

been proposed. The aim is to provide for a useful

tool in assessing the concentration variance. An

assessment, though approximate, of the concen-

tration variance is of fundamental importance when

mathematical models are used for contaminant

prediction and for risk analysis, in particular

when regulations are formulated in terms of

maximal admissible local concentrations. The

proposed methodology, valid for nonreactive

solutes, is based on a few simplifications, the

most important being: (i) large transverse dimen-

sions of the injected plume compared to the

logconductivity correlation lengths; as a rule of

thumb, the following limit may be applied:

Li=
ffiffiffiffiffiffiffiffi
2AiiUt

p
p 5 ði ¼ 2; 3Þ; (ii) mild heterogeneity

of the hydraulic properties (say, s2
Y , 1), which

allows for the use of the first-order analysis; (iii)

highly anisotropic formations (roughly,

e ¼ Iv=Ih , 0:2).

The concentration coefficient of variation CVC;

which is a robust measure of uncertainty, is

A. Fiori / Journal of Hydrology 284 (2003) 1–12 9



obtained as a function of the following parameters:

dimensionless time t0 ¼ tU=Ih; dimensionless location

j1 ¼ ðx1 2 UtÞ=
ffiffiffiffiffiffiffi
A11Ih

p
; and two dimensionless par-

ameters V ¼ I2
v =ðIhadT Þ and L ¼ L1=

ffiffiffiffiffiffiffi
A11Ih

p
: The

solution for the mean concentration kCl is fully

analytical, while CVC require two quadratures.

In accordance with the results for the concentration

coefficient of variation obtained in the past (e.g.

Kapoor and Gelhar, 1994; Pannone and Kitanidis,

1999; Fiori and Dagan, 2000), results show that CVC

grows initially with time to reach a maximum value,

after which the coefficient of variation decays with

time and tends to zero for t !1: The behavior

reflects the competition of two mechanisms: large-

scale advection generates uncertainty, which is

however destroyed by dilution, that is in turn

controlled by PSD. The interplay between the two

mechanisms is controlled by the parameters V and L:

Thus, for a fixed V; the peak CVC is inversely

proportional to L ¼ L1=
ffiffiffiffiffiffiffi
A11Ih

p
: The parameter V ¼

I2
v =ðIhadT Þ controls the effect of PSD.

The concentration coefficient of variation can be

obtained by integration of expressions (A7)–(A9),

together with Eq. (A3). In alternative, Fig. 1

representing CVC as function of time can be

used. The parameters required are the following:

(i) longitudinal dimension of the initial plume L1;

(ii) transverse pore-scale dispersivity adT ; (iii)

logconductivity longitudinal and vertical integral

scales Ih; Iv; (iv) mean flow velocity U, and (v)

longitudinal macro dispersivity A11: The latter can

be estimated by the means of the first-order

analysis, as follows: A11 ¼ s2
Y Ih; with s2

Y the

logconductivity variance (see, e.g. Dagan, 1982;

Gelhar and Axness, 1983).

A simpler assessment of the concentration uncer-

tainty can be done through the peak CVC and the

setting time tp; obtained by Figs. 2 and 3, and

approximating the rising part of the curve CVCðtÞ by a

simple linear interpolation. If the concentration

standard deviation sC ¼ CVCkCl is needed, it is

suggested to multiply the concentration coefficient of

variation obtained by the simplified formulation by

the ‘complete’ expression for the mean concentration

kCl; instead of the simplified one, as suggested in

Section 5. In conclusion, the proposed methodology

may serve as a simple tool to assess concentration

uncertainty in transport through heterogeneous porous

formations.
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Appendix A

The mean concentration kCl for the complete

formulation, i.e. without the simplifications intro-

duced in the present work, is obtained by integration

of Eq. (2). We assume a Gaussian shape for the

trajectory PDF f1 (see Section 2), i.e.

f1ðXt; t; aÞ ¼ ð8p3Xt11Xt22Xt33Þ
21=2

	 exp 2
ðXt1 2 Ut 2 a1Þ

2

2Xt11

"

2
ðXt2 2 a2Þ

2

2Xt22

2
ðXt3 2 a3Þ

2

2Xt33

#
ðA1Þ

with Xtii ¼ Xii þ 2Ddiit ði ¼ 1; 2; 3Þ the second order

moment of the i-component of trajectory (Dagan,

1989). Insertion of the Gaussian f1 (A1) into Eq. (2)

and further integration over a1; a2; a3; leads to the

following expression for the mean concentration kCl
(Fiori and Dagan, 2000)

kCðx; tÞl

¼
C0

8
erf

x1 2UtþL1=2ffiffiffiffiffiffiffi
2Xt11

p

� �
2 erf

x1 2Ut2L1=2ffiffiffiffiffiffiffi
2Xt11

p

� �� �

	 erf
x2 þL2=2ffiffiffiffiffiffiffi

2Xt22

p

� �
2 erf

x2 2L2=2ffiffiffiffiffiffiffi
2Xt22

p

� �� �

	 erf
x3 þL3=2ffiffiffiffiffiffiffi

2Xt33

p

� ��
2 erf

x3 2L3=2ffiffiffiffiffiffiffi
2Xt33

p

� ��
ðA2Þ

The approximate mean concentration is derived from

Eq. (A2) by introducing the following limits: L2 !1;

L3 !1; Dd11 !0; X11 ¼ 2A11Ut; with A11 the longi-

tudinal macrodispersion coefficient (Dagan, 1982;
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Gelhar and Axness, 1983). The result is the following

kCl¼
C0

2
erf

Lþ2j1

4
ffiffi
t0

p

� �
2 erf

2Lþ2j1

4
ffiffi
t0

p

� �� �
ðA3Þ

where the following variables have been introduced:

t0 ¼ tU=Ih is the dimensionless time; j1 ¼ ðx1 2

UtÞ=
ffiffiffiffiffiffiffi
A11Ih

p
is the dimensionless longitudinal coordi-

nate of the point where the mean concentration is

evaluated; L¼ L1=
ffiffiffiffiffiffiffi
A11Ih

p
: The latter is a relevant

parameter that characterizes the shearing of the plume

relative to its initial size. Viewing the plume as a

collection of sheets of solute, each sheet slides and

separates from the surrounding ones because of

convection, and L is roughly inverse proportional to

the area of the sheet that is in contact with the

uncontaminated fluid. In that area, PSD is more

effective in diluting the plume, hence in reducing the

concentration uncertainty.

The concentration variance is obtained by Eq. (3)

following the simplifications outlined in Section 3.

According to the first-order analysis, the joint PDF

f2ðXt;YtÞ that appears in Eq. (3) is multivariate

normal, and it can be split in the product of three

bivariate normal distributions, one for each com-

ponent of the total trajectories Xt; Yt: Thus the

trajectory joint PDF is written as

f2ðXt;YtÞ ¼ f2ðX1t;Y1tÞf2ðX2t; Y2tÞf2ðX3t; Y3tÞ ðA4Þ

where the generic component f2ðXit;YitÞ is a

bivariate normal PDF that has the following

expression

f2ðXti;YtiÞ ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffi
X2

tii 2 Z2
ii

q
	 exp 2

ðXti 2 kXtilÞ2 þ ðYti 2 kYtilÞ2

2Xtii

"

þ
ðXti 2 kXtilÞðYti 2 kYtilÞ

Ztii

�
ðA5Þ

where Ziiðt; a 2 bÞ is the two-particles trajectory

second order moment, which is a measure of the

degree of correlation of the trajectories Xti and Yti of

two distinct solute particles that originated at x ¼ a

and x ¼ b (Fiori and Dagan, 2000).

According to the model assumptions, discussed in

Section 3, the following simplifications are introduced

in Eq. (A5): X22 ¼ X33 ¼ Z22 ¼ Z33 ¼ Dd11 ¼

Dd22 ¼ 0; leading to the simplified joint PDFs

f2ðXt1;Yt1Þ¼
1

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
X2

11 2Z2
11

q

	exp 2
ðXt1 2Ut2a1Þ

2 þðYt1 2Ut2b1Þ
2

2X11

"

þ
ðXt1 2Ut2a1ÞðYt1 2Ut2b1Þ

Z11

�

f2ðXt2;Yt2Þ¼ dðXt2 2a2ÞdðYt2 2b2Þ

f2ðXt3;Yt3Þ¼
1

4pDd33t
exp 2

ðXt3 2a3Þ
2 þðYt3 2b3Þ

2

4Dd33t

" #

ðA6Þ

where the following substitutions have been made:

kXt1l¼Utþa1; kYt1l¼Utþb1; kXt2l¼ a2; kYt2l¼ b2;

kXt3l¼ a3; kYt3l¼ b3:

Substitution of Eqs. (A4) and (A6) in (3) and

further integration, leads to the following relation

s2
Cðj1;tÞ¼ kC2l2 kCl2

¼4C2
0 lim

L0
3
!1

ðL0
3

0

ðL

0
F1ðr

0
1ÞF3ðr

0
3Þdr01 dr032 kCl2

ðA7Þ

where

F1ðr
0
1Þ¼

1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pt0ð12r11Þ

p exp 2
r01

2

8t0ð12r11Þ

" #

	 erf
L2r01þ2j1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t0ð1þr11Þ

p
" #(

2erf
2Lþr01þ2j1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2t0ð1þr11Þ

p
" #)

ðA8Þ

F3ðr
0
3Þ¼

1

4
ffiffiffiffiffiffiffiffiffi
2pt0=V

p exp 2
r03

2V

8t0

" #

	 erf
L0

32r03þ2j3

2
ffiffiffiffiffiffiffi
2t0=V

p

� ��

2erf
2L0

3þr03þ2j3

2
ffiffiffiffiffiffiffi
2t0=V

p

� ��
ðA9Þ

where r01 ¼ r1=
ffiffiffiffiffiffiffi
A11Ih

p
; r03 ¼ r3=Iv; r11 ¼Z11ðt;r

0
3Þ=X11ðtÞ

is the trajectory autocorrelation function, L0
3 ¼L3=Iv
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the dimensionless transverse size of the initial plume,

and V¼ I2
v =ðIhadT Þ¼ePeT : The latter is an important

parameter, proportional to the transverse Peclet

number, that determines the ratio between large-

scale advection (which tends to increase uncertainty)

and PSD (which contributes to a reduction of

uncertainty); both mechanisms are controlled by the

particular aquifer setting through the permeability

correlation scales Ih; Iv: Thus, V and L are the two

fundamental parameters for determining the concen-

tration variance.

The autocorrelation function of longitudinal tra-

jectories r11 ¼ Z11=X11; that appears in Eqs. (A8) and

(A9), is needed for the calculation of the concen-

tration variance. Assuming an exponential correlation

for the logconductivity field (Gelhar and Axness,

1983), the trajectory moments X11 and Z11 can be

obtained by first-order expressions (14) and (15) of

Fiori and Dagan (2000). Introducing in the

expressions the model approximations, as done before

for the concentration moments, we obtain after

manipulation the following expressions for the

longitudinal trajectory variance

X11ðt
0;VÞ

s2
Y I2

h

¼
16V

p2

ð1

0

ð1

0

ðp=2

0

1

ð1þr2Þ2ðr2F2
3 þV2u2Þ2

	{V3u22Vr2F2
3 þV2r2u2F3t0 þr4F3

3 t0

2Vexp½2r2F3t0=V�·½ðV2u22r2F2
3Þ

cosðrut0Þþ2VruF3 sinðrut0Þ�} drdu dc

ðA10Þ

with F3 ¼ sin2 cð12u2Þ:

In a similar fashion, the two-particles covariance

Z11 is given by

Z11ðt
0;r03;VÞ

s2
Y I2

h

¼
8

p2

ð1

0

ð1

0

ðp=2

0

cos½rr03
ffiffiffiffi
F3

p
�

ðu2þr2F2
3 =V

2Þð1þr2Þ2

	 1þexp 2
2r2F3t0

V

" #(

22exp 2
r2F3t0

V

" #
cosðrut0Þ

)
drdudc

ðA11Þ

Since the moments depend linearly on the

logconductivity variance s2
Y at first-order,

the autocorrelation function r11 ¼Z11=X11 does not

depend on that parameter. Both X11 and Z11 are solved

by numerical quadratures (see Fiori and Dagan, 2000).
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