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Abstract

Since the previous hydraulic safety factor for gas containment in gas storage caverns did not consider the spatial hydraulic

conductivity variation, which directly affects the variation of hydraulic head and gradient, it is insufficient to fulfill the hydraulic

safety from gas leakage. Therefore, based on the stochastic simulation considering the heterogeneity of hydraulic conductivity,

a method for determining the hydraulic safety factor for gas containment in underground storage cavern is suggested. Instead of

a single hydraulic gradient value obtained by using deterministic modeling, a possible range of a hydraulic gradient under a

given probability was examined by means of stochastic simulation. The term ‘stochastic safety factor’ is newly defined as a

head value at the water curtains, which is needed to make the critical hydraulic gradient of the cavern larger than a proposed

critical gradient. By using this stochastic safety factor, the shortage of hydraulic gradient can be replenished and the risk of gas

leakage due to heterogeneity of hydraulic conductivity can be reduced.

q 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Underground storage of pressurized gases in

unlined rock caverns has advantages over above-

ground storage in terms of safety, environment and

economy, and could be commercially attractive

(Homer et al., 1989). In unlined rock caverns, gas is

kept from leaking by ensuring that the groundwater

pressure in the surrounding rock exceeds the gas

pressure in the storage caverns (Gustafson et al.,

1991). High gas pressure can be achieved by locating

the caverns at a sufficient depth or by installing so-

called “water curtains” surrounding the caverns.

Water curtains are arrays of the drilled holes, which

are installed parallel over the cavern roofs as well as

around sidewalls of caverns, if necessary. With a

water curtain, the groundwater pressure around the

caverns should be strong enough to prevent any gas
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leakage. When such water curtain is used, the key

question then becomes ‘How large of pressure

difference between groundwater and gas in the cavern

should be maintained? (Liang and Lindblom, 1994a).

This question may be reformulated into the specific

questions related to a site, such as the minimum depth

of caverns below groundwater table, the minimum

pressure of the water curtain, and the critical hydraulic

gradient above the caverns. Åberg (1977), GEO-

STOCK (1984), Goodall et al. (1988), Liang and

Lindblom (1994a), and others discussed gas contain-

ment criteria for rock caverns. These criteria were

decided based on the deterministic flow analysis.

Therefore, the heterogeneity of hydraulic conductivity

has to be considered by means of stochastic analysis

to update the existing gas containment criteria.

The stochastic simulation technique has several

important advantages. This approach is conceptually

straightforward because it involves simply using a

simulated random field for the parameters in a

deterministic flow simulator. The random parameter

field is generated using a simulation technique and

then the flow simulator is used to solve for the head

field. This process is repeated many times, and the

resulting head data are analyzed statistically to

determine the means, variances and covariances.

A large body of work exists which describes

techniques for treating quantitatively the problems

of flow and transport in heterogeneous media under

conditions of data scarcity (Dagan, 1989; Gelhar,

1993). Examples for generators are the method

used by Freeze (1975) in his work on flow in

heterogeneous porous media, the nearest neighbor-

hood method (Smith and Freeze, 1979; Smith and

Schwartz, 1980; King and Smith, 1988), the

Turning Bands Methods (Matheron, 1973; Journel,

1975; Journel and Huijbregts, 1978; Mantoglou and

Wilson, 1982; Mantoglou, 1987; Tompson et al.,

1987) and Fast Fourier Transform based method

developed by Gutjahr (1989). A method not limited

to Gaussian fields was presented by Gòmez-Her-

nàndez and Srivastava (1990). Griffiths et al. (1994)

investigated the influence of soil variability on the

expected value of ‘output’ quantities such as the

flow rate and the exit gradient in seepage problem.

Sanchez-Vila et al. (2000) performed the validation

study for recent analytical formula based on

extension of Thiem’s equation (Sanchez-Vila et al.,

1999) by numerical simulations for many hetero-

geneous transmissivity fields, including uncorrelated

case and multigaussian fields. The numerically

based techniques mentioned above have the advan-

tages in terms of their ability to incorporate

complicated boundary conditions and the influence

of boundary conditions for specific site conditions

(Gelhar, 1993).

This study links the hydraulics of gas storage in

rocks to stochastic subsurface hydrology by intro-

ducing a new safety factor for gas containment,

which is computed by an uncertain quantity

generated from the spatial variability of hydraulic

conductivity. A stochastic simulation method com-

bined with finite element deterministic simulator is

used to analyze the uncertainty of hydraulic heads

around underground high pressurized gas storage

caverns. At first, deterministic modeling analyzes

the flow pattern to check if the hydraulic gradient

fulfills the gas tightness condition. And then, the

stochastic simulation computes the uncertainty of

hydraulic heads and gradients due to the spatial

variability of hydraulic conductivity. The various

probability distribution functions are applied to

hydraulic conductivity data to obtain the proper

distribution of hydraulic conductivity at the study

sites considered. The code HYDRO_GEN, a

spatially distributed random field generator for

correlated properties, outlined in Bellin and Rubin

(1996) is used for stochastic simulation. The

resultant uncertainty of hydraulic gradient is used

to obtain a critical hydraulic gradient from which

stochastic safety factor can be determined.

2. Hydraulic margin for gas containment

During the past decades, several gas containment

criteria based on groundwater gradient or pressure

were proposed. Åberg (1977) proposed that a vertical

hydraulic gradient greater than 1.0 around a cavern

should be maintained through the rock fractures

surrounding a storage cavern during gas containment

operations. This gas containment criterion is com-

monly used. Geostock (1984) carried out a series of

tests with differently-shaped cavities by use of Hele–

Shaw model. The results of these tests revealed

that the pressure difference between the required
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groundwater depth above the cavities and the

maximum tolerable pressure depends on the shape

of the cavities and their environments. This relation

was defined as follows

H . Pmax þ P þ S ð1Þ

where

H: height from the ceilings of a cavern to

groundwater level (m)

Pmax: maximum tolerable gas pressure expressed

as a head in the cavern (m)

P: shape factor (m)

S: safety factor (m)

Goodall et al. (1988) recommended that a practical

design of cavern be based on the simple criterion that

no gas must leak as long as the water pressure

increases along all possible gas leakage paths away

from the caverns. This is a generalization of Åberg’s

recommendation that the vertical hydraulic gradient

be greater than one. On the basis of Goodall et al.’s

study, Liang and Lindblom (1994b) suggested the

‘critical gas pressure’ defined as the maximum

tolerable gas pressure for a given storage system at

no gas leakage conditions.

However, these hydraulic margins are computed

by using deterministic models, which do not consider

the spatial variability of hydraulic conductivity.

Therefore, we propose the new hydraulic safety

margin obtained by use of stochastic simulation.

This procedure of stochastic simulation can be

described as follows:

† The hydraulic conductivity data surrounding rock

caverns are collected.

† The appropriate probability distribution for the

collected hydraulic conductivity data based on

parameter estimation and goodness of fit tests is

determined.

† The uncertainties for the head and hydraulic

gradient are computed by using a stochastic

simulation procedure with N times.

† The probability density function (PDF) is devel-

oped by using N outputs at the interested point of

the gradient graph. In this PDF, we can set a

particular value of security (e.g. 95% or 99%) and

find the critical gradient value.

† The stochastic safety factor, which is needed to

increase the critical hydraulic gradient up to

a proposed critical hydraulic gradient (e.g. 1.0 for

Åberg’s condition), is defined.

3. Evaluation of gas containment by deterministic

model

Rock masses are characterized by faults, joints and

bedding planes. The description of groundwater flow

in rock masses is complicated by these discontinuities,

so it would be difficult to consider all factors in

groundwater modeling. Fortunately, the host rocks for

gas storage are usually hard, and massive with few

fractures, so a simplified groundwater model can be

used to numerically analyze the groundwater flow. A

gas tightness design and hydraulic modeling are

performed by continuum approach in many cases

(Goodall et al., 1988; Liang and Lindblom, 1994a;

Kawatani and Saito, 2000; GEOSTOCK, 2001).

Although, the influence of individual fissures on

groundwater flow in fractured rock masses might not

be negligible, the analysis results presented in this

study are based on following assumptions:

1. The groundwater flow obeys Darcy’s law.

2. The medium is continuous, heterogeneous and

anisotropic.

3. The groundwater flow is steady, that is, ground-

water conditions are constant.

4. Groundwater is incompressible.

5. Rock around storage caverns are saturated with

rock water.

The study site is a propane storage cavern in

Korea. The maximum gas pressure is 8.6 bar. The

ceilings of caverns are located at elevation 2115 m

and the water curtains are located at elevation

290 m. The head of the water curtains is artificially

maintained at elevation 5.0 m, and represents the

total hydraulic pressure above the cavern of 120 m

in head. Since the gas pressure is equivalent to 86 m

in head, the hydraulic head difference between

cavern and water curtain is 34 m, which is the

hydraulic safety factor determined at the design

stage. The deterministic flow modeling is performed

to check the hydraulic gradient around the caverns
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using this safety factor. The representative vertical

cross section for modeling is shown in Fig. 1.

According to Goodall’s criterion, at the critical gas

pressure, the groundwater pressure in the vicinity of

the cavern is equal to the gas pressure at some point on

the boundary of cavern, i.e. ›p=›n ¼ 0; where p is the

groundwater pressure and n is the unit normal vector

at this point (see point A in Fig. 2). Hydraulic head

gradient ›H=›n at point A determines the movement

of the gas–water interface (De Marsily, 1986).

›H

›n
¼

›

›n

p

rwg
2 n sin a

� �
¼

1

rwg

›p

›n
2 sin a

¼ 2sin a ð2Þ

where rw is the water density and g is the acceleration

of gravity.

When point A is above the cavern bottom, ›H=›n is

negative, and the groundwater flows towards the

inside of the cavern. To prevent gas leakage, the

cavern bottom is usually saturated with water (called

water bed). When the water is maintained, gas–water

interface does not move outward (Liang and Lind-

blom, 1994b).

The governing differential equation for flow

analysis is the Laplace equation in two dimensions.

The analyses of groundwater flow are based on a two-

dimensional finite element model developed by

Chung et al. (1997). This program was designed for

the simulation of groundwater flow caused by the

water curtain around an underground storage cavern.

The symmetric global conductance matrix is solved

by the Choleski decomposition method (Cook, 1981).

The modeling area is 100 m wide and 100 m deep. In

the modeling of groundwater flow, four-node linear

rectangular elements and a linear basis function are

used. The mesh size is 5 m £ 5 m, thus a total of 441

nodes and 400 elements are used for the analysis of

gas tightness. The mean value of hydraulic conduc-

tivity is 1.6 £ 1027 m s21, which is computed by

using the data from A10 and A12 boreholes.

Although, the shape of the cavern is horseshoe, the

shape could be simplified to a rectangle whose height

is 20 m and the width is 10 m for spatial variability

simulation.

Two types of boundary condition were used.

Constant head boundaries at the water curtains and

the caverns are assigned because these are maintained

by artificial recharge and long term gas storage

schedule, respectively (Korea Petroleum Develop-

ment Cooperation, 1991). No flow boundary con-

ditions are assigned both sides of modeling area.

Fig. 3(a) and (b) show the contours of the

computed hydraulic head and the computed hydraulic

gradient by deterministic modeling, respectively. The

hydraulic gradients are computed at the center of each

element by using the computed hydraulic heads at

corresponding nodes. Distinct and reasonable flow

patterns as shown in Fig. 3(a) and (b) show that mesh

size is appropriate for simulation.

As shown in Fig. 3(b), in most cells surrounding

the upper part of the caverns (in dotted area), the

Åberg’s gas tightness condition was satisfied because

Fig. 1. The representative vertical cross section for flow analysis.

Fig. 2. Hydraulic gradient at the periphery of a cavern.
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Fig. 3. The computed results by deterministic modeling. (a) The computed heads and (b) the computed hydraulic gradients.
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the hydraulic gradients were greater than 1. However,

among the cells surrounding the upper part of the

cavern B, there is a cell ðx ¼ 27:5; z ¼ 2122:5Þ

whose mean hydraulic gradient is less than 1, which

implies that the Åberg’s condition is not satisfied.

4. Evaluation of gas containment by stochastic

simulation

4.1. Probability distribution of hydraulic conductivity

in the modeling area

In this study, a porous medium is set up to

represent a stochastic set of macroscopic elements.

Within each soil type or geologic unit, the properties

of these elements are assumed to come in unknown

frequency distributions. Thus, an appropriate PDF for

the media property has to be determined. Various

probability distributions such as the two- and three-

parameter gamma (three-parameter means scale,

shape and location parameter, respectively), General

Extreme Value (GEV), Gumbel, two- and three-

parameter lognormal, log–Pearson type III are

applied to determine the appropriate probability

distribution model for the real field hydraulic

conductivity data. Several methods such as the

methods of moment, probability weighted moments

(PWM), l-moments and maximum likelihood can

estimate model parameters. In this study, the par-

ameters of the selected models are estimated based on

the method of PWM which gives the stable parameter

estimates for a small sample size. The general form of

the PWM is given by (Greenwood et al., 1979;

Hosking, 1986)

Mp;r;s ¼ E½XpFrðxÞ{1 2 FðxÞ}s� ð3Þ

where

p; r; s: non-negative integers

E: expectation

FðxÞ: cumulative distribution function

In general, the following two types of the

population PWMs are used to estimate the parameters

depending on the probability models:

M1;r;0 ¼ E½XFrðxÞ� ; Br ð4Þ

M1;0;s ¼ E½X{1 2 FðxÞ}S� ; B0
s ð5Þ

And the corresponding sample PWMs are given by

B̂r ¼
1

N

XN
j¼1

xj

ðj 2 1Þðj 2 2Þ· · ·ðj 2 rÞ

ðN 2 1ÞðN 2 2Þ· · ·ðN 2 rÞ
;

r $ 1

ð6Þ

B̂0
s ¼

1

N

XN
j¼1

xj

ðN 2 jÞ!ðN 2 s 2 1Þ!

ðN 2 j 2 sÞ!ðN 2 1Þ!
; s $ 0 ð7Þ

where

N: sample size

xj: ordered statistic ðx1 # x2 # · · · # xNÞ:

Note that if r ¼ s ¼ 0; then B̂0 ¼ B̂0
s ¼ �X; in which

�X is the sample mean.

To determine the appropriate probability distri-

bution for the hydraulic conductivity data, the data of

A10 and A12 holes in the corresponding vertical plain

were used. These hydraulic conductivity data were

measured by a hydraulic pressure test along the depth

in these holes before the construction of the cavern.

These data sets are listed in Table 1 and displayed in

Fig. 4. These data were obtained from the Lugeon test

by using the double packer system. Injection interval

was 3 m, and a constant pressure provided the injected

water during a fixed period. Hydraulic conductivity

was measured from the correlation curve of injected

water pressure and flow quantity of injected water

(Korea Petroleum Development Cooperation, 1985).

The PWM parameter estimates for each prob-

ability model are displayed in Table 2. Among the

probability models, the three-parameter lognormal

(lognormal-3) and log–Pearson type III models show

the NG result, which indicates that the estimated

parameters for these two models do not meet the

validity conditions for each distribution type. Also,

the goodness- of- fit tests for five probability models

are performed using the x2-test, Kolmogorov–

Smirnov test and Cramer von Mises test. The results

of the goodness- of- fit tests are shown in Table 3.

The three-parameter gamma (gamma-3) distribution

is rejected based on three goodness- of- fit tests,

while others are accepted at 5% significance level.
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Table 1

Hydraulic conductivity data from the storage cavern (adapted from Korea Petroleum Development Cooperation (1985))

Hole No. Depth (el., m) K ( £ 1027 m s21) Hole No. Depth (el., m) K ( £ 1027 m s21)

A10 271 , 2 74 2.595 A12 275 , 2 78 1.830

274 , 2 77 2.664 279 , 2 82 0.498

277 , 2 80 3.139 283 , 2 86 1.036

282 , 2 85 2.020 287 , 2 90 1.235

287 , 2 90 2.651 291 , 2 94 1.356

292 , 2 95 2.273 295 , 2 98 1.333

298 , 2 101 1.894 2101 , 2 104 1.201

2103 , 2 106 2.273 2104 , 2 107 1.263

2106 , 2 109 1.894 2108 , 2 111 1.544

2111 , 2 114 2.146 2111 , 2 114 2.092

2116 , 2 119 2.273 2115 , 2 118 1.449

2119 , 2 122 2.020 2118 , 2 121 2.183

2124 , 2 127 1.998 2123 , 2 126 1.731

2127 , 2 130 2.188 2127 , 2 130 0.429

2130 , 2 133 2.399 2135 , 2 138 1.115

2133 , 2 136 2.399 2140 , 2 143 1.709

2136 , 2 139 1.832 2146 , 2 149 0.857

2140 , 2 143 1.768 2152 , 2 155 0.943

2143 , 2 146 1.427 2156 , 2 159 0.772

2148 , 2 151 1.768 2159 , 2 162 1.544

2155 , 2 158 1.768 2162 , 2 165 1.614

2163 , 2 166 2.378 2165 , 2 168 1.499

2172 , 2 175 0.858

Fig. 4. Vertical distribution of hydraulic conductivity data. (a) A10 Hole and (b) A12 Hole.
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4.2. Stochastic simulation considering spatial

variability of hydraulic conductivity

In this study, among the 4 models in Table 3, the

two-parameter lognormal distribution is selected as an

appropriate model for the stochastic simulation

because this model is accepted by goodness- of- fit

tests and this model is generally assumed as

appropriate for the hydraulic conductivity data, as

shown in many studies (McMillan, 1966; Freeze,

1975; Woodbury and Sudicky, 1991; Massmann and

Hagley, 1995). In other words, the logarithm of

hydraulic conductivity values follows a normal

distribution. Usually, we generate a lognormal field

by generating a Nðm;sÞ field and then taking

the exponential of it. Thus, a lognormal field

YðxÞ ¼ ln KðxÞ is believed to simulate realistic

hydraulic conductivity values.

The usual method of treating uncertainties in

hydraulic conductivity values is by fitting a covariance

function(usuallyexponential)andfindingtheestimated

variance andmeanvalues fromthesmallnumberofdata

available and then generating several realizations of the

field using a random field generator. Each of these fields

is then used in a Monte Carlo simulation to compute the

groundwater head and gradient.

In this study, the computer code HYDRO_GEN,

a spatially distributed random field generator for

correlated properties outlined in Bellin and Rubin

(1996), is used for generating two-dimensional

space random functions with an assigned covariance

structure. The code is based on heteroscedasticity of

the interpolation coefficients of the multinormal

space random function. The generated fields can be

made conditional to field measurements. When local

data are not available, HYDRO_GEN will generate

unconditional realizations, honoring the prescribed

spatial statistics. In most situations, field data are

quite scarce and expensive to obtain, hence, the

ability to use the data for model inference and for

conditioning is important. In this study, among

various covariance functions, exponential covariance

function ðCY Þ is selected.

CY ðx; zÞ ¼ s2
Y exp 2

x

lx

� �2

þ
y

ly

 !2" #1=2
8<
:

9=
; ð8Þ

where lx; ly are the directional ln KðxÞ correlation

length scales and s 2
Y is the variance of ln KðxÞ:

The mean and standard deviation of the log-

transformed hydraulic conductivity data in Table 1

(A10 and A12 holes) are given as mY ¼ 24:79

ðY ¼ ln ðKÞ; K in cm s21) and sY ¼ 0:19:

The properties of a sedimentary unit, a formation,

or a larger scale of a set of formations, can be

characterized by the covariance between two points

separated by Dx (Appelo and Postma, 1993):

cov½ln KxþDx; ln Kx�

¼
1

n

Xn

x¼1

ðln KxþDx 2 ln KÞðln Kx 2 ln KÞ ð9Þ

where ln K is the mean of a log-transformed set of

permeability measurements. With the covariance

Table 2

The estimated parameters for each probability distribution

Distribution Location

parameter

Scale

parameter

Shape

parameter

Result

Gamma-2 0.000 0.429 0.227 OK

Gamma-3 267.851 0.005 46.540 OK

GEV 1.535 0.635 0.355 OK

Gumbel 1.441 0.502 – OK

Lognormal-2 0.000 0.562 0.350 OK

Lognormal-3 25.952 2.042 0.080 NG

Log–Pearson type III 1.089 20.306 2.000 NG

Table 3

The results of goodness of fit tests

Distribution Test Computed

value

Tabulated

value

Result

Gamma-2 x2 0.89 7.81 OK

K–S 0.09 0.18 OK

CVM 0.09 0.46 OK

Gamma-3 x2 74.08 5.99 NG

K–S 0.58 0.18 NG

CVM 2.09 0.46 NG

GEV x2 1.27 5.99 OK

K–S 0.06 0.18 OK

CVM 0.01 0.46 OK

Gumbel x2 3.93 7.81 OK

K–S 0.11 0.18 OK

CVM 0.15 0.46 OK

Lognormal-2 x2 5.27 7.81 OK

K–S 0.10 0.18 OK

CVM 0.09 0.46 OK
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known, an estimated autocorrelation function Gc can

be found if the distribution is lognormal

Gc ¼
cov

s 2
ln K

ð10Þ

where s 2
ln K is the variance of the permeability

distribution. The correlation length can be obtained

from spatially distributed data and be independently

stated for vertical and horizontal permeabilities, and

also for porosities or any other parameter, which

influences flow. Anisotropy is therefore easily intro-

duced. Fig. 5 shows the autocorrelation estimates

calculated from Eq. (10) for boreholes A10 and A12

in Table 1. Fluctuations of estimated autocorrelation

functions around zero are found.

Although, vertical correlation length ðlvÞ could be

found from the estimated covariance function by

using e21 correlation distance, it is not easy to

determine the value because of fluctuation and abrupt

decrease. Therefore, more general information for

estimating correlation length is introduced. Fig. 6

shows data up to an overall scale of 1 km and

emphasizes the significant anisotropy of the spatial

correlation structure in many sedimetary materials by

using the data from previous study (Gelhar, 1993).

The horizontal and vertical correlation scales deter-

mined at a given site are connected by lines.

Since overall scale of measument is about 70 m in

this study, correlation lengths for a similar overall

scale could be referred from in Fig. 6. Refering to the

results ðsY ¼ 0:4; lh ¼ 8; lv ¼ 3Þ from Goggin et al.

(1988) where the vertical scale is 60 m, we can

estimate that the value of the vertical correlation scale

ðlvÞ is 5 m, and that of the horizontal correlation scale

ðlhÞ is 15 m. In general, if the covariance function

corresponds to a first-order autoregressive process

equivalent to the negative exponential covariance

function, then the variance of the mean is:

var½ �X� ¼
s 2

N

1 þ a

1 2 a
; a ¼ e2ðDx=lÞ ð11Þ

This result shows that, because the process X is

autocorrelated, the variance of the mean is larger than

that for independent samples. Accordingly, the

estimated variance can be approximately two times

larger than the independent sample variance when

a ¼ e21: Then, the estimated standard deviation sY

would be 0.27. Using these properties, HYDRO_GEN

generates the 1000 randomly heterogeneous hydraulic

conductivity fields. The smoothed log conductivity

field is shown in Fig. 7.

To estimate the effect of spatial variability

statistically, the Monte Carlo method is used. The

hydraulic conductivity values, Ki can be generated by

using the following equation

Ki ¼ 10Yi ; i ¼ 1;…; p ð12Þ

where p ¼ number of finite elements.

Then the FEM model is used to solve the head

values on a set of nodal points within the flow domain.

By repeating the analysis 1000 times, the frequency

Fig. 5. Estimated autocorrelation function of two data sets.

Fig. 6. Correlation scale with overall scale less than 1 km (After

Gelhar, 1993).
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distributions of hydraulic head and gradient at the

nodal points in the finite element grid can be analyzed

to estimate the statistical properties representing the

uncertainty of the hydraulic head and gradient.

4.3. Uncertainty in hydraulic head and gradient

The groundwater flow equation was solved for

each realization and the effects of heterogeneity were

investigated. The results are shown in Fig. 8. The

standard deviations of hydraulic head ðsfÞ for the

correlated case ranged from 0 m to 3.1 m, and these

values are three times larger than those of the

uncorrelated case which ranged from 0 to 0.9 m.

The larger standard deviation of hydraulic head was

due to the joint probability densities in correlation

structure which is not considered in uncorrelated case.

A complete statistical description of the hydraulic

conductivity continuum requires a joint probability

density function of K at various locations (Gelhar

et al., 1977).

The uncertainty in the predicted hydraulic heads is

large between caverns and water curtains, where the

mean hydraulic gradients are relatively large. How-

ever, this large uncertain region is located some

distance away from the known constant head

boundaries, such as cavern boundaries and water

curtains, in which the uncertainty goes to zero (Chung

et al., 2000). The water curtains have the constant

head boundaries in which hydraulic heads are

maintained as elevation 5.0 m by artificial manage-

ment, and the caverns also have the known boundaries

in which the gas pressure has been maintained

constant for a long time. Especially, sf is higher in

Fig. 7. Smoothed log hydraulic conductivity contours (Y ¼ ln K(x), K in cm/s).
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Fig. 8. The distribution of standard deviation of hydraulic head ðsfÞ. (a) correlated case ðlx ¼ 15 m; lz ¼ 5 mÞ and (b) uncorrelated case.

Fig. 9. The distribution of standard deviation of hydraulic gradient ðsgÞ: (a) correlated case ðlx ¼ 15 m; lz ¼ 5 mÞ and (b) uncorrelated case.
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the upper region of the caverns than in any other

region.

A second integrated measure of the uncertainty in

the model prediction is defined by the hydraulic

gradient variability. The standard deviations of

hydraulic gradient ðsgÞ are plotted in Fig. 10. The

correlation of hydraulic conductivity has a significant

effect on the uncertainty of the hydraulic gradient.

When hydraulic conductivities are correlated, the

standard deviations of the hydraulic gradient, ranged

from 0 to 0.48 (Fig. 9(a)). These values are two times

greater than the standard deviations of the uncorre-

lated case, which ranged from 0 to 0.21 as shown in

Fig. 9(b).

As mentioned in Section 4.2, the Åberg’s gas

tightness can be maintained by steady mean hydraulic

gradient ðI0Þ which is greater than 1 in the periphery of

a cavern. However, due to the heterogeneity of ln K;

uncertainty in hydraulic gradient could affect the gas

tightness of some cells in the upper part of cavern.

To find the critical value of the hydraulic

gradient, PDFs using 1000 outputs at two interested

cells were developed as shown in Fig. 10. In these

PDFs, we could set a particular value for the

security, i.e. 95% or 99% and find the critical

gradient value. According to these PDFs, the

possible ranges of hydraulic gradients at two cells

in the upper part of cavern B are examined with a

given probability as shown in Table 4.

With a given probability of 95%, critical hydraulic

gradient can be obtained as 0.644 at cell No. 2 as

shown in Table 4. When the proposed critical

Fig. 10. The probability distribution functions of hydraulic gradient. (a) Cell No. 1 ðx ¼ 27:5 m; z ¼ 2122:5 mÞ; (b) Cell No. 2 ðx ¼ 27:5 m;

z ¼ 2117:5 mÞ:

Table 4

Critical ranges of hydraulic gradient with given probabilities

Cell No. Location Critical range of hydraulic gradient with given probabilities

95% 99%

1 x ¼ 27:5 m, z ¼ 2122:5 m 0:662 , I , 1:338 0:493 , I , 1:507

2 x ¼ 27:5 m, z ¼ 2117:5 m 0:644 , I , 1:576 0:411 , I , 1:809
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hydraulic gradient (e.g. 1.0 for Åberg’s criteria) is

greater than this critical hydraulic gradient, gas

tightness could not be satisfied at that point. There-

fore, the hydraulic gradient should be increased as

much as for the proposed value (e.g. 0.356 for Åberg’s

condition) to prevent gas leakage. With a 99%

security, the critical hydraulic gradient was 0.411 at

cell No. 2. As the probability of security increases, the

critical hydraulic gradient decreases in relation to the

standard deviation of the hydraulic gradient ðsgÞ:

4.4. Stochastic hydraulic safety factor

The results of Section 4.3 show that the uncertainty

of the hydraulic head and gradient due to the

heterogeneity of hydraulic conductivity directly

affects gas tightness. With a given probability,

the critical hydraulic gradient can be defined as

follows

IC ¼ min½mx 2 asx� ð13Þ

where

a : coefficient representing a given probability

mx : mean hydraulic gradient of the upper part of a

cavern for each Monte Carlo realizations

sx : uncertainty of mx due to the hydraulic

conductivity variation.

To fulfill the gas tightness condition under a given

probability, IC should be increased to a proposed

critical hydraulic gradient. A proposed critical

hydraulic gradient can be determined as an appro-

priate value for a specific cavern condition. Several

parameters, such as the possibility of raising the water

curtain head and seepage water etc., should be taken

into account for a realistic operation of a gas storage

cavern.

Hence, the head values at the water curtains should

be increased up to a certain degree when the boundary

condition of a cavern remains unchanged. Here, we

define this value as the stochastic safety factor ðSSÞ for

preventing gas leakage and added this value to the

existing hydraulic margin.

H . Pmax þ P þ S þ SS ð14Þ

where SS is a stochastic hydraulic safety factor (m)

under a given probability.

To obtain this value, we must find the relationship

between hydraulic head at the water curtains and

critical hydraulic gradient at a specific point. Because

the relationship between critical hydraulic gradient

and hydraulic head is linear, a linear regression

equation can be obtained by plotting the variation of

the critical hydraulic gradient according to the

variation of the hydraulic head at the water curtains.

For example, at the point where the critical hydraulic

gradient with 95% security occurs, the linear relation

between head at the water curtains and critical

hydraulic gradient could be obtained as shown in

Fig. 11. This result was computed by increasing head

values at the water curtains from 5 to 20.0 m. The

linear equation is given by

Y ¼ 0:0085X 2 0:603 ðat Cell No: 2Þ ð15Þ

where

X : head increment at the water curtains (m)

Y : critical hydraulic gradient with a 95% security.

If this stochastic safety factor at the water curtains

is applied, hydraulic gradients in all cells surrounding

upper part of cavern could be greater than the proposed

value. For example, by using Eq. (14), stochastic

Fig. 11. Linear relationship between head at the water curtain and

hydraulic gradient.
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safety factor with a 95% security could be determined

as 16.6 m which increases the critical hydraulic

gradient from 0.644 to 0.744 at the cell No. 2.

Accordingly, the risk of gas leakage can be reduced as

much.

5. Conclusions

The existing hydraulic safety factor for gas

containment around gas storage caverns has been

computed by using traditional deterministic flow

modeling in which spatial hydraulic conductivity

variation was not considered. However, it is found

that this safety factor is insufficient in meeting

hydraulic safety from gas leakage, because the spatial

hydraulic conductivity variation directly affects the

variation of hydraulic head and gradient. Therefore,

this study suggests the method of determining

hydraulic safety factor for gas containment of under-

ground storage cavern by stochastic simulation,

considering the heterogeneity of hydraulic conduc-

tivity. The possible effects of hydraulic conditions

were investigated by examining the effects of

heterogeneity.

The results of this study can be summarized as

follows:

1. In evaluating the hydraulic safety of an under-

ground LPG storage cavern, both the flow system

operating within the flow domain and the nature of

the spatial heterogeneities in hydraulic conduc-

tivity must be considered.

2. The critical ranges of hydraulic gradient with given

probabilities of security could be computed by

using stochastic simulation.

3. This study suggests the new term ‘stochastic

safety factor’ which can be defined as the

increment of the head value at the water curtains.

This factor should be added to a degree which

makes the critical hydraulic gradient of the upper

part of the cavern larger than the proposed

hydraulic gradient value.

4. By using this stochastic safety factor, the shortage

of hydraulic gradient can be replenished and the

risk of gas leakage due to heterogeneity of

hydraulic conductivity can be reduced.
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Gustafson, G., Lindblom, U., Söder, C.-O., 1991. Hydrogeological

and hydromechanical aspects of gas storage, Proceedings of

I.-M. Chung et al. / Journal of Hydrology 284 (2003) 77–9190



the Seventh International Congress on Rock Mechanical,

Aachen, Germany, vol. 1., pp. 99–103.

Gutjahr, A.L., 1989. Fast Fourier transforms for random field

generation. Technical Report 4-R58-2690R, New Mexico

Technology.

Hosking, J.R.M., 1986. The theory of probability weighted

moments, Research Report RC12210, IBM T.J. Watson

Research Center, Yorktown Heights, New York, 161 pp.

Homer, J.B., Horvat, E., Unsworth, J.F., 1989. Laboratory

experiments for unlined cryogenic cavern storage, In: Proceed-

ings of the International Conference on Storage of Gases in

Rock Caverns, Trondheim, Norway, pp. 213–219.

Journel, A.G., 1975. Geostatisitcs for conditional simulation of core

bodies. Econ. Geol. 69, 673–687.

Journel, A.G., Huijbregts, C.J., 1978. Mining Geostatistics,

Academic Press, New York.

Kawatani, T., Saito, M., 2000. Two phase flow simulation of water

sealing of compressed air storage under cyclic pressure change

in an unlined rock cavern. In: Calibration and Reliability in

Groundwater Modelling, Proceedings of the ModelCARE 99
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