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Spatial Connectivity: From Variograms
to Multiple-Point Measures1

Sunderrajan Krishnan2 and A. G. Journel2

Anisotropy and curvilinearity are common characteristics of geological structures. Traditional mea-
sures of connectivity such as the variogram are rectilinear in that they do not take into account the
curvilinearity of these structures. Recent developments in geostatistics have demonstrated and simu-
lated the effect of curvilinearity and multiple-point (mp) connectivity on the output of transfer functions
such as flow simulators. A set of curvilinear channels and set of elliptical lenses may share the same var-
iogram and rectilinear connectivity but would yield different flow responses because of their different
curvilinearity. A measure of curvilinearity generalizing the variogram measure is therefore proposed.
The proposed measure is directional with a tolerance cone and depends on distance with a tolerance,
as with an experimental variogram.
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INTRODUCTION

Geological patterns typically involve simultaneously many locations over possible
long distances, they are typically anisotropic and are not rectilinear. Examples are
folded surfaces, river channels, and even fault planes that are actually never exactly
planar. Modeling of such curvilinear patterns requires measuring the connectivity
in the space of the indicators of such structures; the traditional tool offered by
geostatistics is the 2-point statistics covariance/variogram which relates any two
points in space, for example establishing the probability that any two locations
u, u + h, distant of vectorh be in the same facies. Although already difficult to
infer, such variogram statistics is largely insufficient to characterize the shape and
spatial continuity of the structure under study, and it should come at no surprise
that a model based on only variogram(s) cannot reproduce accurately the structure.
Yet continuity of that structure in space may be critical for the application at hand,
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Figure 1. Comparison of EW rectilinear connectivity measures. (a) Channel structure, (b) Lens struc-
ture, (c) indicator semivariograms in EW direction, (d) rectilinear multiple-point connectivity functions
(EW) (continuous line: channel, broken line: lens structure).

e.g., flow and transport in hydrogeology and gallery design in subsurface mining.
We need richer measures of continuity/spatial connectivity which would involve
multiple-point (mp) statistics, with much more than 2 points.

Figure 1 provides an introductory example. Figure 1(a) gives a 2D view of
what could be seen as a conceptual depiction of a braided river channel meander-
ing over an area sufficiently small not to reveal any trend, say 250× 250 m: the
channel proportion isp= 0.27. Figure 1(b) gives another depiction, of a lenticular
system this time, with the same sand proportionp= 0.27 and the same general EW
direction of continuity. Clearly, the channel structure displays large scale continu-
ity: the channels cross the whole EW extent of the figure, although in a curvilinear
fashion.

Denote byI (u)= 1 or 0 presence or absence of sand at any particular location
of coordinates vectoru. The following statistics were calculated from the 250×
250= 62,500 pixel values constituting the two images of Figure 1(a) and (b):
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• mean: E{I (u)} = p = 0.27. Hence variance: E{[ I (u)− p]2} = p(1−
p) = 0.197.

• semivariogram in the EW direction, with no angle tolerance:γ (h) =
1
2 E{[ I (u+ h)− I (u)]2}, see Figure 1(c).

Recall that an indicator semivariogram is related to the noncentered covari-
ance K(h), or 2-point probability to be in sand, by the relation:

γ (h) = C(0)− C(h) = p− K (h) (1)

whereK (h) = E{I (u) · I (u+ h)} = Prob{I (u) = 1, I (u+ h) = 1}

C(h) = K (h)-p2:centred indicator covariance

C(0)= Var{I (u)} = p(1− p):indicator variance

The lesser theγ (h), the greater the probabilityK (h) of two pointsu and
u + h to be simultaneously in sand. Figure 1 indicates that the channel and lens
structures have similar EW variograms with a slight continuity advantage to the lens
structure (lesserγ -values). The 2-point statisticsK (h) orγ (h) cannot differentiate
Figure 1(a) from (b), they are an inappropriate or insufficient measure of spatial
connectivity.

A mp rectilinear connectivity function had been introduced (Strebelle, 2002)
which generalizes the previous 2-point probability and statisticsK (h). Define the
function:

K (h; n) = E{I (u)I (u+ h) . . . I (u+ nh)}
= Prob{I (u) = 1, I (u+ h) = 1, . . . , I (u+ nh) = 1} (2)

whereh is a unit vector in any given direction,K (h; n) gives the probability of
observing a continuous string ofn points in sand.

Remarks

• K (h; 0)= p = E{I (u)}:channel proportion, a 1-point statistic.
• K (h; 1)= K (h): the traditional noncentered indicator covariance.
• K (h; n) measures only straight rectilinear connectivity; any undulation

would break that connectivity and reduce the K-value.
Figure (d) gives the two mp K-connectivity functions for the two

channel and lens structures, plotted as function of the mp string length
nh in the EW direction. Again the two curves are almost identical, with
again a slight advantage (greater connectivity) given to the lens structure!
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A measure of spatial connectivity in 2D and 3D space must accept, provide
a tolerance, for curvilinearity, just like an experimental variogram allows
for an angle tolerance around the target direction, see next section.
• For multiple categories indicatorsI (u; k) or indicatorsI (u; zk) based on

multiple thresholding of a continuous variableZ(u), expression (2) gener-
alizes into the multivariate distribution function or spatial law (Goovaerts,
1997, p. 65). Indeed, for

I (u; zk) = 1 if Z(u) ≤ zk, k = 1, . . . , K > 2

= 0 if not.

Then-point indicator covariance (2) is generalized into the multivari-
ate distribution of the continuous random functionZ(u):

K (h1, . . . ,hn; z1, . . . , zn) = E{I (u1; z1), . . . , I (un; zn)}
= Prob{Z(u1) ≤ z(u1), . . . , Z(un) ≤ z(un)}

(3)

The problem with this multivariate distribution is that it depends on
too many parameters: 2n for expression (refeq:multin). One would reduce
it to expression (2) by considering all equal threshold values and equidistant
locations:u j = u+ j h.

A CURVILINEAR CONNECTIVITY MEASURE

Similar to the tolerance allowed for calculation of an experimental variogram
(see program GAMV of the public domain software GSLIB, Deutsch and Journel,
1998, p. 53), consider the truncated tolerance cone shown in Figure 2(a). In a 2D
space, that cone is defined by

• the target directionazimuth,
• an angle tolerance± atol parameter,
• a band with bandwidth parameterbandw, controlling deviation from the

central target direction at larger distances, and
• a maximum distancemaxlagparameter.

Consider a seed locationu in channel:I (u)= 1. Within the previously defined
tolerance cone, we would like to connectu through a channel path to another
maximally distant locationu′, that distance being measured along the axis of
the cone. More precisely, the algorithm proposed in programcurvconproceeds
as
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Figure 2. Tolerance cone and dmax connectivity distance. (a) Definition of the tolerance cone
in 2D, (b)–(e): the channel must pass by the cone apexu; and only its intersection with the cone
contributes to dmax.

• Loop through all nodesu of the study area.
• If I (u) = 0, setdmax= 0 and go to next nodeu, see Figure 3(a).
• If I (u) = 1, i.e., locationu belongs to the target facies (sand),

– call MATLAB function bwselectto determine within the tolerance
cone with apex atu, the set (body) of all locationsu′ belonging to the
same facies, i.e.,I (u′) = 1, see Figure 2(b)–(e).

– loop through all these locationsu′ and determine the maximum dis-
tancedmax to the apexu. Increment then proportions of contin-
uous (and curvilinear) channel paths of lengthnh ≤ dmax, recall
definition (2).

Figure 2(b) gives an example of a noncontributing channel which does not
pass through apex locationu. Figure 2(c) shows a channel contributing up to
distancedmax= maxlag.
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Figure 3. Parameter file for programcurvcon.

Figure 2(d) and (e) shows examples of channels undulating out and in the
tolerance cone and contributing up to distancedmax< maxlag.

Figure 3 shows the parameter file of programcurvconas applied to calculation
of curvilinear directional connectivity on the two sand structures of Figure 1(a)
and (b). The two directions are NS and EW, the tolerance angle isatol= ±22.5◦,
the bandwidthbondw= 10, the maximum cone distance ismaxlag= 100, the
distance unit is the lag spacing of the underlying data grid.

The resulting two sets (NS and EW) of two connectivity functions (channel
vs. lens structure) are given in Figure 4. If the two structures present about the
same NS connectivity, the mp EW connectivity of the channel structure is clearly
greater than for the lens structure as compared to the poor differentiation given by
the 2-point measure of Figure 1(c) and (d). Note atnh = 0, the mp measure gives
back the channel proportion, herep= 0.27.

Program curvcon

Figure 3 shows the parameter file for programcurvcon. This program has
been written following the style and notations of the GSLIB variogram program
gamv(Deutsch and Journel, 1998, p. 53–55). The description of input parameters
is given below:
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Figure 4. Curvilinear directional connectivity functions. For the structures shown
in Figure 1, connectivity function is calculated along NS and EW directions with a
tolerance cone (continuous line: channel, dashed line: lens structure).

• datafl: The data file with binary indicator data (0, 1) in GEO-EAS format.
• icolvr: the column number of the variable in the data file.
• tmin, tmax: the minimum and maximum trimming limits for data.
• outfl: The output file for the connectivity values.
• nx, xmn, xsiz: the number of nodes inx direction, origin, and the grid node

separation.
• ny, ymn, ysiz: the number of nodes iny direction, origin, and the grid node

separation.
• nz, zmn, zsiz: the number of nodes inz direction, origin, and the grid node

separation.
• ndir: the number of directions.
• azi(i), atol(i), bandw(i), maxlag(i): parameters azimuth, angle tolerance,

bandwidth, and maximum lag distance for each direction.
• standardize: if set to 1, the connectivity value is divided by the global

proportion of 1s.
• erode: if set to 1, will erode the structures in the image.
• erodfl: input file for erosion template.
• extend: if set to 1, will extend the structures in the image.
• extendfl: input file for extension template.
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Figure 5. Tolerance for (dis)connecting bodies. (a) Extending the original two bodies found
in the cone allows reconnecting the channel, (b) Eroding the original single body allows
disconnecting the two distinct masses.

Tolerance for (dis)Connection

The programcurvconallows for small extension/erosion of the bodies found
in the tolerance cones in order to

• connect bodies that are close together, see Figure 5(a).
• disconnect parts if a body that were too thinly linked together, see

Figure 5(b).

The algorithm consist of extending/eroding the original bodies found by pro-
gram bwselectbefore processing them. Extension amounts to add a specified
number of one-indicator values to the original bodies borders in each of thex
and y directions of the 2D space. Erosion amounts to substract that specified
number.

If a (rather large) tolerance of 5 EW pixels is added to the lens bodies of
Figure 1(b), the resulting EW mp connectivity is considerably increased, starting
with the total proportion of sand increasing fromp = 0.27 to p = 0.42. For a fair
comparison with the original result of Figure 3, the connectivity probabilities have
been standardized by that sand proportion resulting in a unit value at the origin
nh = 0, see Figure 6.
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Figure 6. Standardized directional connectivity functions. Channel (a) and original
lens (b) EW connectivity, and Lens connectivity (c) allowing for extension of lens
bodies by 5 pixels in EW direction.

Other Connectivity Measures

The mp directional connectivity measure (2) proposed is a generalization
of the 2-point variogram/covariance statistics (1). For any particular application,
another more specific measure can be built, but it would lack the generality of a
statistics but be more physically significant. An example is given by the directional
effective permeability (or conductivity) of a binary porous media obtained by
solving the pressure field over the study area, assuming no flow boundaries along
the faces parallel to the flow direction (Deutsch, 2002, p. 333).

For both the channel and lens structure displayed in Figures 1(a) and (b), a
constant permeability of 300 mD (milliDarcies) was given to all sand nodes and
1 mD to all non-sand/mud nodes. Programflowsim(Deutsch, 1992) was used to
give the two effective permeabilities:

56.7 mD for the channel structure (Fig. 1(a)).
9.3 mD for the lens structure (Fig. 1(b)).

Prospectives

A clearly defined mp statistics such as then-point rectilinear covariance
K (h; n), itself a generalization of the classical 2-point covarianceK (h), is useful
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as the foundation for the next frontier geostatistics looks at spatial patterns rather
than mere 2-point correlations. The mp statistics brings superior pattern resolution
and the potential for much better pattern reproduction/simulation.

The problems faced by mp geostatistics are, however, multiple and
formidable:

1. First, inference of mp statistics requires a vast amount of data on a regular
grid, typically not available in the subsurface. One must rely on densely
informed training images, such as Figure l(a) and (b), deemed represen-
tative of the structures under study. As a consequence, the mp structural
function equivalent to the traditional variogram is not meant to estimate an
unknown structure, instead it characterizes a known (conceptual) structure
to be mapped into the study area after conditioning to the actual data. The
choice is clear, either one sticks to 2-point statistics that may be inferred
(typically very poorly!) from actual data and ends up ignoring fundamental
prior information such as the formation is of channel-type not of discon-
tinuities lens-type; or one decides to capitalize on that prior information,
generates a conceptual training image of the type of Figure 1(a), and pro-
ceeds with mp geostatistics.

Experience gained through the practice of variogram inference can
be exported to inference of mp statistics from the training images, as was
done above for the tolerance cone of directional connectivity functions.

2. Second andno lessdifficult, reproduction of those mp statistics condi-
tional to actual local data. One could think of using iterative algorithms a
la simulated annealing (Deutsch, 2002, p. 275), perturbing progressively
a random field until the target mp statistics are approximately reproduced.
Iterative algorithms are typically too slow to be practical for most applica-
tions involving a substantial grid (more than 103 nodes). Direct sequential
algorithms such as pioneered by Srivastava (Guardino and Srivastava,
1992) and Strebelle (2002) offer greater immediate potential.
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