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S U M M A R Y
We study the statistical properties of seismic reflection traveltimes in the presence of the
double-passage effect (DPE) in order to characterize the inhomogeneities of the reflector over-
burden. A detailed analysis of the traveltime covariance function is presented for more general
conditions than in the pioneering works by Touati, Iooss and Gaerets et al., namely 3-D geom-
etry, quasi-homogeneous fluctuations of the medium parameters, anisomeric (i.e. statistically
anisotropic fluctuations), longitudinal and transversal positions of receivers, and curved rays.
The behaviour of the traveltime covariance function is elucidated by some numerical exam-
ples. It is shown, in particular, that at large offsets the effective longitudinal correlation scale
associated with the ray trajectory is much larger than the transverse correlation scale and their
product equals the product of the correlation lengths of the fluctuations of the medium.

Key words: double-passage effect, random media, regular refraction, seismicity, tomography,
traveltime.

1 I N T RO D U C T I O N

Statistical characterization of rocks is of significant interest for many
purposes in global and exploration seismology. First, it has been
recognized that large parts of the lithosphere show spatial hetero-
geneities on several length-scales (Sato & Fehler 1998; Margerin
et al. 1999) and, therefore, deterministic Earth models should be
supplemented with statistical information on rock heterogeneity in
order to describe correctly the propagation of seismic waves. Sec-
ondly, statistical information on rock heterogeneity can be helpful
for petrophysical interpretations. For example, when estimating the
quality factor of rocks from seismic data, it is of interest to know
whether seismic attenuation has been caused either by lithologi-
cal contrasts, leading to scattering attenuation (Frankel & Clayton
1986), or by viscoelastic properties of rocks, leading to intrinsic
attenuation. Thirdly, in combination with usual macromodel-based
imaging techniques, statistical characterization of small-scale het-
erogeneities can be used in order to retrieve ‘true’ reflection coef-
ficients of large-scale heterogeneities from seismic data. Moreover,
the statistical characterization of rocks can contribute to geostatis-
tical modelling of reservoirs, to estimates of uncertainties of seis-
mic images, and to a better understanding of different features of
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structures and geoprocesses. Statistical characterization implies es-
timates for two main parameters of rocks: the correlation scale of
inhomogeneities and the degree of variation of the elastic wave ve-
locity v (or its inverse value, slowness µ = 1/v).

A promising method for estimating the characteristic horizon-
tal length of inhomogeneities lhor from traveltime fluctuations t̃
of a pulse signal reflected backwards to the source was suggested
by Touati (1996) and analysed by Iooss (1998) and Iooss et al.
(2000). The method is based on the comparison of traveltime vari-
ance var[t̃(X = 0)], measured near the source (zero offset, X =
0), with the variance at large offsets, X � lhor, which we denote by
var[t̃(∞)]. As shown by Iooss (1998), var[t̃(0)] is about twice as
large compared with var[t̃(∞)]:

var[t̃(0)]

var[t̃(∞)]
≈ 2 (1)

and is a manifestation of the so-called double-passage effect (DPE).
The transition from zero offset, X = 0, to a sufficiently large offset,
X � lhor, is associated with a spatial scale X that is comparable
with lhor. Therefore, measurements of var[t̃(X )] as a function of X
might be helpful for recovering the horizontal scale lhor of the inho-
mogeneities from experimental data. A further numerical analysis
of the method of Touati and Iooss was presented in Gaerets et al.
(2001).

The doubling of traveltime variance at X = 0 occurs when the
wave passes twice through randomly inhomogeneous media with
large-scale (as compared with wavelength λ) inhomogeneities. The
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Figure 1. Geometry of the double-passage effect. (a) Vertical ray intersects one and the same inhomogeneities. (b) Oblique ray, corresponding to large offset
X � b, passes mostly through different inhomogeneities.

DPE was revealed earlier for phase-path fluctuations in other phys-
ical situations: for light waves reflected from a mirror in a turbulent
atmosphere and for radio waves reflected from the ionosphere (see
Denison & Erukhimov 1962; Kravtsov & Saichev 1982, 1985, and
references therein and also exercise I.7.6 from the textbook by Rytov
et al. 1989; Barabanenkov et al. 1991).

The DPE can be easily explained within the framework of geo-
metrical optics (GO). At zero offset, X = 0, the incident (down-
going) and reflected (up-going) rays, rd (0) and ru (0), respectively,
pass through the very same inhomogeneities of the random medium
(Fig. 1a). Therefore, the fluctuations of the traveltimes t̃d(0) and
t̃u(0) are equal, t̃d(0) = t̃u(0), and the variance of the total traveltime
t̃(0) = t̃d(0) + t̃u(0) = 2t̃d(0) is four times larger than the variance
for one-way passage t̃d(0):

var[t̃(0)] = 4var[t̃d(0)]. (2)

At the same time, at a sufficiently large offset X , X � lhor, down-
going and up-going rays rd (X ) and ru (X ) pass through different
inhomogeneities (Fig. 1b). Therefore, the cross-product of t̃d(X )
and t̃u(X ) on average is close to zero and as a result at X � lhor

var[t̃(∞)] = var[t̃d(X )] + var[t̃u(X )] + 2covar[t̃d(X )t̃u(X )]

≈ 2var[t̃d(X )], (3)

which is roughly half of var[t̃(0)]. The relationship between these
equations and the DPE was not clearly emphasized in the works of
Touati (1996) and Iooss (1998) or Gaerets et al. (2001).

This paper is devoted to the further analysis of DPE manifesta-
tions in seismics and to the generalization of the above-mentioned
results of Touati (1996), Iooss (1998) and Gaerets et al. (2001)
in several directions. First of all, we extend the DPE formulation
from 2-D (which was used in the mentioned works) to 3-D geome-
try. Secondly, we consider fluctuations of medium parameters with
quasi-homogeneous statistics. This model allows one, in general, to
take into account the depth dependence of the slowness variance.
Thirdly, changes of the mean slowness with depth are taken into
account, so rays in our considerations can be curved. Fourthly, hor-
izontally anisomeric (i.e. statistically anisotropic) fluctuations are
considered. Fifthly, our considerations also deal with traveltime co-
variance functions in a more general treatment than before.

The outline of the paper is the following. In Section 2.1 we for-
mulate the problem of describing traveltime fluctuations in random
media within the geometrical optics method. In Sections 2.2 and 2.3

we derive an expression for the traveltime covariance function in a
3-D random medium with quasi-homogeneous fluctuations. Assum-
ing small offsets, this general formula is analysed in detail for several
measurement configurations and geometries. In particular, a formula
for the total traveltime covariance assuming a horizontal reflector
and a medium with statistical properties depending only on depth
is derived in Sections 3.1–3.3. The results are specified for both
mid-point geometry (Section 3.4) and a two-sources two-receiver
configuration (Section 3.5). Section 4 is devoted to the analysis of
the traveltime variance for small offsets, which can be derived using
the results of the previous sections. The DPE for the special cases of
horizontally anisomeric inhomogeneities and tilted inhomogeneities
are discussed in Sections 4.2 and 4.3, respectively. For larger offsets
the ray trajectories may be curved due to regular refraction. The
behaviour of the traveltime covariance in such situations is analysed
in Section 5, starting with the asymptotic behaviour of the trav-
eltime variance in the small-offset formulation (Section 5.1). The
incorporation of refraction effects in the formulation of the trav-
eltime covariance function is performed in Section 5.2. Finally, in
Section 5.3 the case of very large offsets (oblique propagation) is
considered. It is shown that in this case the DPE disappears. The
longitudinal and transversal (relative to the ray trajectory) travel-
time covariance function is formulated and analysed for a random
medium characterized by the Gaussian correlation function.

2 S TAT I S T I C A L P RO P E RT I E S O F
R E F L E C T I O N T R AV E LT I M E S — B A S I C
R E L AT I O N S

2.1 Traveltime fluctuations in the frame
of geometrical optics method

We aim to establish a relation between fluctuations of seismic re-
flection traveltimes and fluctuations of the propagation medium pa-
rameters. To do so, let us consider a point source placed at X = 0
(see Figs 1a and b) radiating a pulse signal that propagates through a
random medium. The signal is reflected from a horizontal or slightly
inclined plane interface I and is recorded by a receiver placed in the
vicinity of the source.

Assuming the inhomogeneities of the medium are large in size
compared with the typical wavelength of a seismic pulse, we apply
the geometrical optics approximation for traveltime calculations. In
this approximation the traveltime t in non-dispersive media obeys
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the formula

t =
∫

ds

v[r(s)]
=

∫
µ[r(s)] ds, (4)

where v( r) is the wave velocity, µ( r) = 1/v( r) is the slowness and
ds is an element of the ray trajectory r (s). The ray trajectory obeys
the ray equations (Kravtsov & Orlov 1990; Born & Wolf 1999)

dr

ds
= t,

dt

ds
= ∇⊥n ≡ ∇n − t(t∇n), (5)

where t is a unit vector tangent to the ray,

n(r) = v0

v(r)
= v0µ(r) (6)

is the refractive index, v0 is the wave velocity near the source and
∇⊥n = ∇ n − t(t ∇ n) is a transverse (relative to the ray) gradient
of the refractive index. In non-dispersive media the traveltime (4) is
proportional to the eikonal (‘optical path’) � = ∫

n[r(s)] ds:

t =
∫

µ[r(s)] ds = 1

v0

∫
n[r(s)] ds = �

v0
. (7)

Therefore, all the results obtained earlier for the optical path fluctu-
ations (Chernov 1960; Tatarskii 1971; Ishimaru 1978; Rytov et al.
1989) can be immediately used for traveltime calculations.

In a random medium slowness can be presented as a sum of
regular (average), µ̄(r) and random, µ̃(r), parts:

µ(r) = µ̄(r) + µ̃(r), (8)

where the mean value of µ̃ is zero (〈µ̃〉 = 0). The same is true for
the ray trajectory r (s), traveltime t(s) and the refractive index n(s):

r(s) = r̄(s) + r̃(s), t(s) = t̄(s) + t̃(s), n(s) = n̄(s) + ñ(s) .(9)

For sufficiently weak fluctuations µ̃, when

σ 2
µ ≡ var[µ̃(r)] ≡ 〈µ̃2(r)〉 � 1/v2

0 (10)

and

σ 2
n ≡ var[ñ(r)] � 1 (11)

the ray trajectory deviates only slightly from a regular trajectory r̄(s)
(here and henceforth both upper bar ¯(·) and angular brackets 〈(·)〉
are used for statistical averaging). Therefore, first-order fluctuations
of traveltime t̃ can be calculated by integrating the perturbation
µ̃(r) along the unperturbed ray r̄(s) (Chernov 1960; Tatarskii 1971;
Ishimaru 1978; Rytov et al. 1989; Snieder & Sambridge 1992):

t̃(s) ∼=
∫

µ̃[r̄(s)] ds. (12)

In the following, we omit the bar over regular ray trajectory for
brevity. Eq. (12) provides the necessary link between fluctuations
of the reflection traveltimes and fluctuations of the propagation
medium properties. Thus, in order to study the statistical proper-
ties of reflection traveltimes we also need to know the statistics of
the fluctuations of the medium.

2.2 Medium fluctuations with
quasi-homogeneous statistics

Let us now specify the statistical properties of µ̃. The model of
quasi-homogeneous fluctuations seems to be sufficiently general and
flexible for many seismological applications. Quasi-homogeneous

fluctuations are described by the covariance of the form (Rytov et al.
1989):

Cµ(r1, r2) ≡ covar[µ̃(r1), µ̃(r2)] ≡ 〈µ̃(r1)µ̃(r2)〉
= σ 2

µ(r+)K (r1 − r2; r+),
(13)

where r+ = (r1 + r2)/2 is the radius vector of the ‘centre of grav-
ity’ of vectors r1 and r2, and K is a normalized correlation function
(‘coefficient of correlation’), which turns out to be unity at r1 −
r2 = 0: K (0; r+) = 1. This quantity is supposed to decrease rapidly
with difference r1 − r2 with a small characteristic scale lc, but it
can also depend slowly (along with σ 2

µ) on r+ with a large charac-
teristic scale l+ � lc. Note that the model of quasi-homogeneous
fluctuations is more general than that of statistically homogeneous
media, where the covariance function Cµ is the same for the entire
medium. In the quasi-homogeneous model (13) the variance and
the correlation coefficient are allowed to change slowly within the
medium.

On the basis of this model we shall consider traveltime statis-
tics for depth-dependent fluctuations of medium parameters (Sec-
tion 3.1–3.5), for statistically anisotropic fluctuations (Section 4.2)
and for a medium with tilted layers (Section 4.3).

2.3 Traveltime covariance function

The unperturbed ray trajectory r(s) of a ray reflected from interface
I (Fig. 2) consists of a down-going and an up-going part:

r(s) =
{

rd(sd; R), 0 < sd < Sd(R)

ru(su; R), 0 < su < Su(R),
(14)

where sd and su are current arclengths along down-going and up-
going sections, respectively, and Sd(R) and Su(R) are the corre-
sponding total arclengths, which depend on the receiver position
R = (X , Y , 0). In eq. (14) the final point rd(Sd;R) of the down-
going ray serves as the starting point of the up-going ray: ru (su =
0; R) = rd(Sd; R). According to eq. (14), the traveltime t̃(R) can be
expressed as a sum

t̃(R) = t̃d(R) + t̃u(R), (15)

where

t̃d(R) =
∫ Sd(R)

0
µ̃[rd(sd)] dsd (16)

and

t̃u(R) =
∫ Su(R)

0
µ̃[ru(su)] dsu (17)

are time-delay fluctuations along the down-going and up-going sec-
tions of the ray trajectory.

The covariance of traveltime, recorded by two receivers placed at
points R1 and R2, as shown in Fig. 2, has the form

Ct(R1, R2) = 〈t̃(R1)t̃(R2)〉

= 〈[t̃d(R1) + t̃u(R1)][t̃d(R2) + t̃u(R2)]〉

= Cdd(R1, R2) + Cdu(R1, R2)

+Cud(R1, R2) + Cuu(R1, R2), (18)

where

Cdd(R1, R2) = 〈t̃d(R1)t̃d(R2)〉, Cud(R1, R2) = 〈t̃u(R1)t̃d(R2)〉,

Cdu(R1, R2) = 〈t̃d(R1)t̃u(R2)〉, Cuu(R1, R2) = 〈t̃u(R1)t̃u(R2)〉.
(19)
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Figure 2. Geometry for two up- and down-going ray trajectories in 3-D space.

According to eqs (16), (17) and (13), all values (19) can be ex-
pressed in the form of double integrals over the correlation function
Cµ of slowness fluctuations along the non-perturbed ray trajectories.
For example, the covariance Cdd has the form

Cdd(R1, R2) =
∫ Sd(R1)

0
ds ′

d

∫ Sd(R2)

0
ds ′′

d Cµ[rd(s ′
d; R1), rd(s ′′

d ; R2)]

=
∫ Sd(R1)

0
ds ′

d

∫ Sd(R2)

0
ds ′′

d σ 2
µ(rdd+)K [rd(s ′

d, R1)

−rd(s ′′
d , R2); rdd+], (20)

where rdd+ = [rd(s ′, R1) + rd(s ′′, R2) ]/2. These expressions gen-
eralize the results of Touati (1996), Iooss (1998) and Gaerets et al.
(2001) for 3-D geometry and quasi-homogeneous statistics of the
medium properties. In what follows we analyse and simplify the ex-
pression (20) as well as the analogous expressions for Cdu, Cud and
Cuu. In particular, we analyse the traveltime covariance for seismic
reflection surveys including small and large offsets.

3 T R AV E LT I M E C OVA R I A N C E
F U N C T I O N F O R S M A L L O F F S E T S

3.1 Ray trajectories for small offsets

We assume that the interface I is horizontal and that the regular
and statistical properties of a medium depend only on depth z. In
the simplest case when the horizontal offset vectors R1 and R2 are
small as compared with the depth D of the interface I ,

|R1,2| � D, (21)

the angles between the rays and the vertical axis z are also sufficiently
small. In this case the rays are only slightly curved, so that the ray
trajectories can be approximated by straight lines and the ray lengths
Sd(R1) and Su(R2) are equal and differ from depth D only by second-
order terms in the small parameters |R1,2|/D:

S(R1,2) =
√

D2 + (R1,2

/
2)2 ≈ D

(
1 + R2

1,2/8D2
) ≈ D. (22)

Under these conditions the ray trajectory is

rd(sd; R) = sdtd(R), 0 < sd < D,

ru(su; R) = Dtd(R) + sutu(R), 0 < su < D, (23)

Here, td(R) and tu(R) are unit vectors tangent to the down-going
and up-going rays, respectively. In the small-offset (angle) approx-
imation

td(R) ∼= R

2D
+ iz, tu(R) ∼= R

2D
− iz, (24)

where iz is the unit vector in the z-direction.

3.2 Covariances and cross-covariances
for down- and up-going rays

Let us introduce new variables into eq. (20)

ξ = s ′
d − s ′′

d , ζ = (s ′
d + s ′′

d )/2, (25)

and expand trajectories rd(sd
′; R1) and rd(sd

′′; R2) into power series
in the difference variable ξ , retaining only the first-order term in ξ

in a difference rd(sd
′; R1) − rd(sd

′′; R2) and only the zeroth-order
term in rdd+, which in fact happens to be izζ .
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As a result of the fast decrease of the correlation coefficient K
with r1 − r2, one can extend the limits of integration in ξ to infinity
and take the smaller value of S(R1) and S(R2) as the upper limit in
the ζ variable, as is commonly done in the statistical theory of wave
propagation in random media (Chernov 1960; Rytov et al. 1989).
In view of eq. (22) min [S(R1), S(R2)] ≈ D. As a result

Cdd(R1, R2) = 2
∫ D

0
dζσ 2

µ(izζ )
∫ ∞

0
dξ K [izξ + ρdd(ζ ); izζ ]. (26)

Here

ρdd(ζ ) = ρζ

2D
(27)

is a horizontal distance between rays along their down-going sec-
tions (with ρ = R1 − R2) and izζ denotes the centre of gravity
radius vector rdd+. The factor of 2 in eq. (26) arises because the
integral over ξ from −∞ to ∞ of the even function K (r1 − r2) can
be presented as a double integral of K from 0 to ∞.

A formula, similar to eq. (26), can also be derived for the trav-
eltime covariance Cuu(R1, R2) of the up-going part of the ray tra-
jectory. If we use the same variable ζ , which in fact is the distance
from the surface, the expression for Cuu(R1, R2) can be presented
in the form

Cuu(R1, R2) = 2
∫ D

0
dζσ 2

µ(izζ )
∫ ∞

0
dξ K [izξ + ρuu(ζ ); izζ ], (28)

where

ρuu(ζ ) = ρ(1 − ζ/2D) (29)

denotes the horizontal distance between up-going rays at depth ζ .
This distance equals ρ = R1 − R2 at the surface of observation,
where ζ = 0 and reduces to ρ/2 at the reflector depth ζ = D.

Somewhat more complex relationships are found for cross-
covariances Cdu and Cud. In fact, they are given by formulae similar
to eqs (26) and (28) only with other horizontal distances between
rays:

ρdu(ζ ) = R2 + (ρ/2 − R2)
ζ

D
= −R2 + ζ

D
R+, (30)

ρud(ζ ) = R1 − (ρ/2 + R1)
ζ

D
= R1 − ζ

D
R+, (31)

where R+ = (R1 + R2)/2. All the differences between the rays ρdd,
ρuu, ρdu and ρud are presented schematically in Fig. 2.

3.3 Total traveltime covariance

The total traveltime covariance (18) can be constructed using the
covariances Cdd, Cuu, and cross-covariances Cdu, Cud. We obtain

Ct(R1, R2) = 2
∫ D

0
dζσ 2

µ(izζ )
∫ ∞

0
dξ

{
K [izξ + ρdd(ζ ); izζ ]

+ K [izξ + ρuu(ζ ); izζ ]

+ K [izξ + ρdu(ζ ); izζ ] + K [izξ + ρud(ζ ); izζ ]
}
.

(32)

Eq. (32) is the final result for the total traveltime covariance
in the small-offset approximation for random media with quasi-
homogeneous statistics.

Let us now illustrate the behaviour of C t for a specific case. Fig. 3
presents behaviour of the normalized covariance function

K t(R1, R1 + ρ) = Ct(R1, R1 + ρ)

Ct(R1, R1)
(33)

Figure 3. The contour plot displays the asymmetric behaviour of the nor-
malized covariance function (33) in the plane ρ = (ρx , ρ y ). The number
near each contour denotes the value of K t. In this numerical example we
choose a Gaussian correlation function with lx = ly = lhor, lhor = 2 lz =
6 m and a constant variance of the inhomogeneities (σ 2

µ = 1). One receiver
is placed at R1 = (2 lhor, 0). The unit of the components of ρ is metres.

in a plane ρ = (ρx, ρy), where ρ = R2 − R1 is the radius vector
between two receivers. Calculations were performed on the basis of
expression (32) for R1 = (2lx, 0), for isomeric (statistically isotropic)
fluctuations in the horizontal plane with lx = ly = lhor and for lhor

= 2lz, assuming a Gaussian correlation function for the slowness
fluctuations:

K (r1 − r2) = exp(−g2), (34)

g2 =
[

(x1 − x2)2

l2
x

+ (y1 − y2)2

l2
y

+ (z1 − z2)2

l2
z

]
. (35)

Fig. 3 demonstrates the asymmetric character of traveltime fluctu-
ations: the correlation length in the longitudinal direction (along
the x-axis) is somewhat larger than in the transverse direction. This
result admits a simple ‘geometrical’ explanation: for longitudinal
geometry, when receivers are placed along the x-axis, the rays on
average are closer to each other (Fig. 4a) than for the transverse ge-
ometry (Fig. 4b), when receiver no 2 is displaced in the y-direction
relative to receiver no 1. It can also be observed that there is an
asymmetry of K t with respect to the ρ y-axis: for small values of |ρ|
(|ρ| < 2lx , which is the x-coordinate of receiver no 1) K t is larger
for negative values of ρx . This behaviour becomes reversed for large
|ρ|. The explanation for this effect is again the relative proximity
of the rays. For radio waves propagating in a layered random iono-
sphere a similar effect was described in the textbook by Rytov et al.
(1989).

3.4 Covariance for mid-point geometry

The total traveltime covariance function (32) can be further sim-
plified, assuming typical recording geometries. Let the receivers be
placed symmetrically relative to the source (mid-point geometry).
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Figure 4. Explanation of the anisomeric character of the normalized covariance function (33) as shown in Fig. 3. When the receivers are placed along the
x-axis (a), the rays are closer in average as compared with the rays within the recording geometry displayed in (b). This effect causes larger correlation in
x-direction as compared with the transverse direction.

In this case R2 = −R1 andρ= R1 − R2 = 2R1 so that the horizontal
distances between rays are of the form

ρdd = ζ

D
R1, ρuu =

(
2 − ζ

D

)
R1, ρdu = −ρud = −R1. (36)

For statistically homogeneous media (σ 2
µ = constant) and for the

Gaussian correlation function (34) the total traveltime covariance
(32) can be presented as

Ct(R1, −R1) = √
πσ 2

µlz

[ ∫ D

0
dζ

{
exp

(−R2
1ζ

2
/

D2l2
x

)
+ exp

[−R2
1(2 − ζ/D)2

/
l2
x

]} + 2 exp
(−R2

1

/
l2
x

)
D

]
. (37)

The resulting covariance (37) in fact looks like a combination of the
correlation function

Ctsph (2R1, 2D) = √
πσ 2

µlz

∫ D

0
dζ

{
exp

(−R2
1ζ

2
/

D2l2
x

)
+ exp

[−R2
1(2 − ζ/D)2

/
l2
x

] }
(38)

for spherical waves, which travelled the distance 2 D in statistically
homogeneous random media, and the correlation function

Ctpl (R1, 2D) = 2
√

πσ 2
µlz D exp

(−R2
1

/
l2
x

)
, (39)

for a plane wave, so that the total covariance can be rewritten as

Ct(R1, −R1) = Ctsph (2R1; 2D) + Ctpl (R1; 2D). (40)

3.5 Traveltime covariance for the
two-sources–two-receivers recording scheme

The total traveltime covariance function (32) can be easily gener-
alized for a measurement scheme involving two sources and two
receivers (Fig. 5). Let R01 and R02 be positions of the sources, and
ρ0 = R01 − R02 the difference between them. Then, for the travel-
time covariance C t(R1, R2; R01, R02), where R1 and R2 denote the
points of observation, the formula (32) still holds, if the horizontal
distances ρdd, ρdu, ρud and ρuu are treated in the following way:

ρdd = ρ0 + (ρ − ρ0)ζ/2D (41)

Figure 5. Geometry and notation for the two-sources and two-receivers
recording scheme.

ρuu = ρ + (ρ0 − ρ)ζ/2D (42)

ρdu = R2 − R01 +
[
ρ0 + ρ

2
− (R2 − R01)

]
ζ/D (43)

ρud = R1 − R02 +
[
−ρ0 + ρ

2
− (R1 − R02)

]
ζ/D. (44)

At R01 = R02 (i.e. the single-source scheme), when ρ0 = 0, these
expressions coincide with eqs (30) and (31), respectively. The sug-
gested formulation of the problem generalizes the results of Gaerets
et al. (2001) for the 2-D problem, where all the sources and receivers
are placed along the x-axis.
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4 T R AV E LT I M E VA R I A N C E
F O R S M A L L O F F S E T S

4.1 Relation between the traveltime variance and the DPE

The DPE can be observed from the behaviour of the traveltime vari-
ance function, which itself can be obtained from the total traveltime
covariance function (32) for coinciding receiver positions. Assum-
ing R1 = R2 = R in eq. (32) and taking into account that in this case
ρ, ρdd and ρuu vanish and that

ρdu(ζ ) = −ρud(ζ ) = R(1 − ζ/D), (45)

one obtains

var[t̃(R)] ≡ σ 2
t (R) = Ct(R, R)

= 4
∫ D

0
dζσ 2

µ(izζ )
∫ ∞

0
dξ [K (izξ ; izζ )

+ K (izξ + R(1 − ζ/D); izζ )]. (46)

In the case of statistically homogeneous media (constant variance
σ 2

µ), this expression is equivalent to the result of Iooss (1998) for the
2-D problem and is analogous to the formulae for eikonal fluctua-
tions under double-passage phenomena (Kravtsov & Saichev 1985).
At R = 0, when the traveltime is measured directly at the source,
the traveltime variance equals

var[t̃(0)] = 8
∫ D

0
dζ

∫ ∞

0
dξσ 2

µ(izζ )K (izξ ; izζ ), (47)

or, in the case where σ 2
µ = constant,

var[t̃(0)] = 8Dσ 2
µlz . (48)

Here lz is a vertical radius of correlation, defined as

lz =
∫ ∞

0
dξ K (izξ ). (49)

It is worth reminding the reader that the variance, eq. (47), is four
times larger than the one-way traveltime variance:

var[t̃(0)] = 4var[t̃d(0)], (50)

and twice as large the variance at a large offset | R | � lhor:

var[t̃(0)] ∼= 2var[t̃d(|R| � lhor)]. (51)

In the following two sections we analyse the behaviour of the
traveltime variance (46) and the DPE for different statistical models
of the slowness fluctuations and recording geometries.

4.2 Horizontally anisomeric inhomogeneities

Expression (46) enables one to consider anisomeric fluctuations,
which are characterized by different correlation lengths, say lx and
ly, for different horizontal directions. Traditionally such fluctuations
are referred to as being anisotropic, though spatial scales lx and ly are
not connected with the real anisotropy of an elastic medium. Here,
the terminology ‘anisomeric’ fluctuation might be more convenient
and not confusing.

Let the statistical properties of the elastic random medium be
described by the Gaussian correlation function (34). Fig. 6 illustrates
the normalized cross-variance γ (R) = Cdu(R)/Cdd (0) as a function
of the 2-D vector R = (X , Y ) for the case lx = 2ly. The function
γ (R) has different spatial scales in the X and Y directions, which are
proportional to the correlation lengths lx and ly. The characteristic
scale in a cross-section Y = kX (where k is a real number) is a value
between lx and ly.

Figure 6. The normalized cross-variance Cdu(R)/Cdd (0) as a function
of vector R for a medium characterized by anisomeric fluctuations. In this
numerical example we choose a Gaussian correlation function with lx = 2
ly = 2m. The quantities X , Y are in metres.

4.3 Tilted inhomogeneities and tilted reflecting interface

Let us imagine a horizontally isomeric layered medium that is tilted
in the (X , Z) plane at angle 	 (Fig. 7a). In this situation the Gaussian
correlation function is

K (r)

= exp

[
− (x cos 	 − z sin 	)2

l2
x

− y2

l2
y

− (x sin 	 + z cos 	)2

l2
z

]
.

(52)

The distribution of traveltime variance σ 2
t (R) over the plane R =

(X , Y ) for a correlation function (52) for the case when horizontal
scales lx and ly are equal to each other (isomeric fluctuations in
a tilted plane P) yields an asymmetry in the (X , Y ) plane. The
characteristic scale in the X direction turns out to be less than in
the Y direction, because fluctuations, which are isomeric in the P
plane, look anisomeric in the (X , Y ) plane. In other words, using
only the information on traveltime variance σ 2

t (R), it is not possible
to distinguish slightly anisomeric fluctuations from isomeric, but
tilted inhomogeneities.

The majority of the relations for the traveltime (co-)variance de-
rived above continue to be valid in the case of a tilted interface
(Fig. 7b). In contrast to a strictly horizontal interface the lengths Sd

and Su of down-going and up-going sections of the ray are different,
but at small angles of inclination α the difference between Sd and
Su is not large: Sd − Su ≈ Rα � R. What is more important, the
first arrival curve t(X ) is now asymmetric.

5 T R AV E LT I M E C OVA R I A N C E F O R
M O D E R AT E A N D L A RG E O F F S E T S

5.1 Asymptotic behaviour of traveltime variance

Let us consider the behaviour of the traveltime variance for larger
offsets. We start with the case when the small-angle reflection theory
developed in Sections 3 and 4 is still applicable.
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Figure 7. Geometry of a random medium containing tilted inhomogeneities (inclined by angle θ in respect to the x-axis) above a plane reflector at depth D
(a). Geometry of a dipping reflector containing horizontally isomeric inhomogeneities in its overburden (b).

As long as the offset R is small compared with the horizontal
correlation radius lhor, the second term in eq. (46), which is 2 Cdu (R),
is close to the first one (that is to 2 Cdd (0)). In the opposite case, when
R > lhor, the value K (izξ + R (1 − ζ/D)) in eq. (46) can be neglected
at ζ = 0, but at the same time it becomes comparable to K (izξ ) when
the distance ρdu = R (1 − ζ/D) between down- and up-going rays
is less than lhor. This occurs at a critical distance (D − ζ )c = lhor

D/R from the reflecting surface at z = D. Therefore, the ratio
γ (R) = Cdu(R)/Cdd (0) can be estimated as the ratio of this critical
distance (D − ζ )c to the total depth D:

γ (R) ≡ Cdu(R)

Cdd(0)
≈ (D − ζ )c

D
≈ lhor

R
. (53)

These qualitative estimates are supported by numerical calcu-
lations for the Gaussian correlation function (34). Asymptotics
of the ratio γ (R) = Cdu(R)/Cdd (0) in this case take the form
γ (R) ≈

√
π

2 lhor/R. A plot of the ratio γ (R) for the case lx =
ly = lhor is presented by the black curve in Fig. 8. A grey line on the
same figure corresponds to the asymptotic behaviour of γ (R). It is
worth noting that the analysis of the asymptotics of the ratio γ (R)
at R � lhor can serve as another method to estimate the horizon-
tal correlation length lhor from experimental data, additional to the
straightforward estimate of lhor from the plot of σ 2

t(R) as used by
Iooss (1998) and Gaerets et al. (2001).

5.2 Account for regular refraction—general
formulation using GO

For a sufficiently large offset |R|� lhor, comparable with the depth of
the reflector D, the small-angle approximation becomes insufficient
and expressions for covariances such as eq. (20) should be modified
in order to take into account the phenomenon of refraction, caused
by the gradient of regular sound velocity.

A standard procedure developed by Rytov et al. (1989) is based on
the assumption that rays corresponding to two points of observation
R1 and R2 are nearly parallel within an area of radius lhor. Then, one
can present the difference between the two rays in eq. (20) as

rd(s ′; R1) − rd(s ′′; R2) � td(sd+)sd− + ρdd(sd+), (54)

where td = drd/ds is a unit vector tangent to the ray and new
variables sd− = sd

′ − sd
′′ and sd+ = (sd

′ + sd
′′)/2 similar to eq. (25)

Figure 8. Asymptotic behaviour of traveltime variance for sufficiently large
offsets R � lx. The ratio Cdu(R)/Cdd (0) and its asymptotic behaviour (53)
are presented for a Gaussian correlated random medium (c = √

π/2).

are involved instead of s ′ and s ′′. Here sd+ is an arclength along
the ‘mean’ ray rdd+ ≡ rd (sd+), which is placed between rd(s ′; R1)
and rd (s ′′; R2), and ρdd is the current distance between two down-
going rays (Fig. 9a). Following Rytov et al. (1989), we extend the
limits of integration in sd− to infinity, and the integration over sd+
is performed from sd+ = 0 to Sd< = min[Sd(R1), Sd(R2)]. The final
result for Cdd is

Cdd(R1, R2) = 2
∫ Sd<

0
dsd+σ 2

µ(rd(sd+))

×
∫ ∞

0
dsd−K [td(sd+)sd− + ρdd(sd+)]. (55)

An analogous expression can easily be obtained for Cuu with
Su<, su−, su+ and ρuu(su+) instead of Sd<, sd−, sd+ and ρuu(sd+),
respectively.

C© 2003 RAS, GJI, 154, 841–851

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/154/3/841/713625 by guest on 02 February 2022



Statistics of reflection traveltimes 849

Figure 9. Notations for two down-going rays (a) and down- and up-going rays (b).

The cross-terms Cdu and Cud require a somewhat different ap-
proach. In this case the ‘mean’ ray is a vertical line (Fig. 9b), which
can be parametrized by a vertical coordinate ζ+ (distance from the
surface). As a result we obtain

Cdu(R1, R2) = Cud(R1, R2) = 2
∫ D

0
dζ+σ 2

µ(ζ+)

×
∫ ∞

0
dζ−K [izζ− + ρdu(ζ+)], (56)

where |ρdu(ζ+)| = |ρud(ζ+) | and ζ− is the current difference be-
tween points along the ‘mean’ ray.

The formulae obtained are in agreement with the results of the
small-angle approximation (Section 3) and generalize the results of
Gaerets et al. (2001). When the offset R becomes comparable with
depth D and the angle between incident and reflected rays exceeds,
say 40◦–60◦, the contribution of cross-covariances Cdu and Cud be-
comes small, of the order of lhor/R � 1. Under these conditions
only Cdd and Cuu terms in eq. (32) remain significant:

Ct(R1, R2) ∼= Cdd(R1, R2) + Cuu(R1, R2), R1,2
>∼ D, (57)

so that DPE completely disappears.

5.3 Statistical traveltime characteristics
for oblique propagation

Let the source and the receiver be separated from each other by a dis-
tance X that is large compared with the horizontal correlation length
lhor (Fig. 1b). In this case, the DPE is not significant and one can
neglect the cross-correlation ‘du’ and ‘ud’ terms in the expression
for the covariance function, since their relative contribution does
not exceed lhor/X � 1. Thus, for oblique incidence the covariance
function C t(R1, R2) contains only ‘dd’ and ‘uu’ terms (see eq. 57).
We analyse this function in details for statistically homogeneous but
anisomeric media, assuming that the normalized correlation func-
tion K (r1, r2) is of the form (34). For down-going rays the difference
r1 − r2 can be locally expressed through the longitudinal parameter
ξ and the transverse vector δ(s) by the relation

r1 − r2 ≈ tdξ + δ(s). (58)

For homogeneous media and for the rays laying in the (x, z) plane
td = (S, 0, C), where C = cos 	, S = sin 	 (	 is the angle of ray
incidence at the interface as depicted in Fig. 10). In this notation δ
= (C δ , 0, −S δ) and the dimensionless parameter g2 in expression

Figure 10. Two down-going rays in a homogeneous medium. The angle θ

denotes the ray incidence on interface.

(34) takes the form

g2 = (Sξ + Cδ)2

l2
x

+ (Sξ + Cδ)2

l2
z

= (S2ξ 2 + 2C Sξδ + C2δ2)

l2
x

+ (C2ξ 2 − 2C Sξδ + S2δ2)

l2
z

. (59)

In order to perform integration over variable ξ , we first isolate in
eq. (59) the term containing the full square of linear form with ξ :

g2 =
[
ξ

(
S2

/
l2
x + C2

/
l2
z

)1/2 + C Sδ
1/ l2

x − 1/ l2
z(

S2
/

l2
x + C2

/
l2
z

)1/2

]2

+ δ2

[
C2/ l2

x + S2
/

l2
z − C2 S2

(
1/ l2

x − 1/ l2
z

)2

S2/ l2
x + C2/ l2

z

]

= (ξ + α)2/ l2
ξ + δ2/ l2

δ , (60)

where α = CSδl2
ξ (1/l2

x − 1/l2
z ) and

lξ = (
S2/ l2

x + C2/ l2
z

)−1/2
(61)

is an effective characteristic length along the ray, and

lδ = (
S2l2

z + C2l2
x

)1/2
(62)
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is a characteristic scale, transverse to the ray. It is easy to verify that
the product of lξ and lδ is a constant equal to lxlz:

lξ lδ = lx lz . (63)

To our knowledge this very simple relation for random media with
anisomeric inhomogeneities has not been reported so far. According
to eqs (61)–(63), at small angles of incidence the longitudinal scale
lξ is close to lz, whereas lδ ≈ lx. Conversely, at large angles 	 →
π/2 one has lξ ≈ lx and lδ ≈ lz. Consequently, in practically relevant
situations, where lx > lz, the longitudinal scale is much larger then
the transverse scale for large angles. This can also be observed
in Fig. 11, where the functions lξ (	) and lδ(	) are depicted for
lx = 5 lz.

Integration of the Gaussian correlation function K (r1, r2) =
exp (− g2) in ξ gives∫ ∞

−∞
K (r1, r2) dξ = 2le(	) exp

( − δ2/ l2
δ

)
, (64)

where le = √
π/2lξ (	) is an effective correlation length, which

differs from lξ (	) only by a factor of
√

π/2. Using eq. (64) at δ

= 0, one can calculate the traveltime variance on the down-going
section of the ray, and the total variance will be twice as large:

σ 2
t = σ 2

µle(	)S(	) = 4σ 2
µle(	)X/ sin(	), (65)

where S(	) = √
D2 + X 2/4 = X/ sin(	) was used for the length

of down- and up-going sections of the ray: Sd = Su = S(	). From
eqs (64) and (65) on can derive the following expression for the
longitudinal traveltime covariance function:

C||(X1, X2) = σ 2
t (X1)

2S(	)

∫ 2S(	)

0
ds exp

[
− s2

4S2(	)

ρ2
x cos2(	)

l2
δ (	)

]
,

(66)

where ρx = X 2 − X 1 is the distance between the points of obser-
vation. Here we combined the expressions for Cdd and Cuu into a
single formula, and took into account that the transverse distance
δ between rays equals ρ cos (	) near the points of observation. In

Figure 11. The effective characteristic lengths along the ray (lξ ) and trans-
verse to the ray (lδ) as a function of the angle of incidence 	 for a Gaussian
correlated random medium with lz = 20 m and lx = 100 m.

Figure 12. The longitudinal traveltime covariance function (66) is the same
for the reflected rays at interface depth D and for a ‘virtual’ point source at
the depth 2D.

fact, formula (66) is identical to the covariance function for a spher-
ical wave emitted from the virtual ‘mirror’ source (Fig. 12). The
only effect that is not included in this simplified analysis is that the
rays are closer to each other between the reflection points and thus
implies an additional correlation. However, the resulting inaccuracy
is not significant because of the smallness of the difference ρx rel-
ative to X . Finally, the longitudinal correlation scale ρ || estimated
from eq. (66) is

ρ|| ≈ lδ(	)

cos(	)
≈

[
l2
z sin2(	) + l2

x cos2(	)
]1/2

cos(	)

= [
l2
x + l2

z tan2(	)
]1/2

. (67)

A formula similar to eq. (66) can also be written if there is a trans-
verse displacement of the receiver no 2 relative to receiver no 1. Let
R1 = (X 1, 0) and R2 = (X 1, ρ y). Then, by analogy with eq. (66),
the transverse traveltime covariance function is

C⊥(ρy) = σ 2
t (X1)

2S(	)

∫ 2S(	)

0
ds exp

[
− s2

4S2(	)

ρ2
y

l2
y

]
. (68)

In this case the corresponding transverse correlation scale is
ρ⊥ ≈ ly.

Eqs (66) and (68) define the total traveltime covariance for the
case of oblique propagation.

6 C O N C L U S I O N S

The double-passage effect, which has been known for decades in
other geophysical situations (e.g. radio wave reflection from the
ionosphere, phase fluctuations of light in the turbulent troposphere)
is becoming a powerful instrument for measurements of the sta-
tistical properties in elastic random media (as demonstrated in the
publications of Touati 1996; Iooss 1998; Gaerets et al. 2001). In
this paper we have studied the statistical properties of seismic re-
flection traveltimes in order to characterize the inhomogeneities of
the reflector overburden. Detailed analysis of these statistical prop-
erties on the basis of the geometrical optics approximation was per-
formed for more complicated situations than before, namely 3-D
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geometry, quasi-homogeneous fluctuations of the medium parame-
ters and curved rays.

As a result, few new features of the problem were revealed.

(1) From measurements of the traveltime variance for small off-
sets the geometry of the inhomogeneities cannot be uniquely deter-
mined: for horizontally anisomeric inhomogeneities and isomeric,
but tilted inhomogeneities, the traveltime variance shows similar
patterns.

(2) The asymptotic behaviour of the traveltime covariance can
also be used in order to infer the horizontal correlation length.

(3) For offsets comparable to the reflector depth the contributions
of the cross-covariances become small and the double-passage effect
nearly disappears.

(4) In the case of oblique propagation in anisomeric random
media the product of characteristic length-scales associated with
a ray (one along the ray and another transverse to the ray) is a con-
stant, which equals the product of horizontal and vertical correlation
lengths of the inhomogeneities.

In future publications we intend to present the results of numerical
experiments demonstrating opportunities for extracting the elastic
medium statistical parameters from traveltime fluctuations and thus
supporting the results of this study.
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