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Numerical Modeling of Growth Zoning
at Nonstationary Crystallization of Solid Solutions:

Metamorphic Garnets1

P. Azimov2,3 and A. Shtukenberg4

In this paper we consider crystallization of solid solutions and formation of growth zoning in minerals.
To ascertain the role of various mechanisms producing zoning we have constructed kinetic models of
nonsteady solid solution crystal growth. The equations obtained describe the temporal evolution of the
solute and crystal composition. Since these equations are not solvable analytically we have solved them
numerically by a fourth-order Runge–Kutta method. On the basis of this solution we can compute the
zoning profiles for different crystallization modes and conditions. The constructed models have been
used for study of mechanisms of zoning formation in metamorphic garnets. We conclude that the main
mechanism of production of growth zoning is fractionation. The role of change of distribution coefficient
in “equilibrium crystallization” is negligible. The modelling of zoning profiles reveals that simple arc-
shaped profiles originate from crystallization in a closed system while complicated nonmonotonic
profiles appear with crystallization in open systems under fluid flow. The duration of metamorphic
garnet crystallization is estimated.

KEY WORDS: intracrystalline zoning; crystal growth; metamorphic crystallization; numerical
modeling.

INTRODUCTION

Many natural and synthetic crystals are solid solutions. Microprobe studies show
that most of them are zonal (Tracy, 1982). The intracrystal zoning can form dur-
ing crystal growth (primary zoning) or during later transformations (secondary
zoning). Though growth zoning is a fairly common phenomenon, its origin is in-
sufficiently studied. Most investigators assume that zoning in natural crystals arises
under control of thermodynamic conditions (temperature and pressure). The role
of crystal growth kinetics in the origin of zoning is obscure. No theory exists for
solid solution crystal growth. The effect of crystallization mechanisms on growth
zoning patterns is unknown. Such disregard to growth zoning seems amazing.
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Most metamorphic garnets have chemical zoning manifested as a change of
the divalent cation (Fe, Mg, Mn, and Ca) contents from crystal core to rim (Tracy,
1982). In normally zoned garnets Mn content decreases to the crystal edge, while
Mg content rises. Fe content, as a rule, also rises. Garnets with normal zoning
have usually arc- or bell-shaped concentration profiles. In reverse-zoned garnets
Mn and Fe contents decrease while Mg content increases. The profile shape in
these garnets is more complicated: the core is almost unzonal while composi-
tion in the rim changes abruptly. Both normal- and reverse-zoned garnets display
antipathetic behavior of Mg and Mn. Other zoning types belong to complicated
zoning including nonmonotonic change of element concentrations from the grain
core to rim or sympathetic change of Mg and Mn contents. The content of calcium
can change irregularly.

Interest in garnet zoning reflects the abundance of garnets and their impor-
tance to metamorphic thermobarometry. However, the origin of zoning is not obvi-
ous. In Azimov and Shtukenberg (2001) we showed that thermodynamic analysis
is insufficient to reveal the main mechanism of formation of growth zoning. It
compelled us to consider the kinetics of mixed crystal growth. The mathematical
modelling of crystallization of solid solutions at disequilibrium and nonstation-
ary conditions allows us to ascertain the effect of the crystallization mechanism
on zoning character (trend and concentration profile shape). Since metamorphic
minerals crystallize from aqueous fluid (Rubie, 1986), we have modelled solid
solution crystal growth from aqueous solution. Note that similar calculations are
useful not only for reconstruction of mineral genesis but also for prediction of
zoning in industrial crystals.

THE PRINCIPAL MECHANISMS FORMING THE GROWTH ZONING

The component distribution between solid and aqueous solutions is described
by the Henderson–Kracek equation (Henderson and Kracek, 1927):

ci

cj
= Ki j

xi

x j
(1)

whereci is molality of thei th component in the aqueous solution,xi is the mole
fraction of thei th component in the solid solution, andKi j is the distribution
coefficient. This equation manifests that growth zoning forms with change of
the solute composition or distribution coefficient. The solute composition can
change because of fractionation in a closed system or mass influx in an open
system. The distribution coefficient changes if temperature or pressure varies over
crystallization. The intracrystalline diffusion must be negligible otherwise zoning
pattern would be smoothed or obliterated.

Rayleigh fractionation was supposed by Hollister (1966) to explain the bell-
shaped Mn concentration profiles. Hollister used the equation for fractionation of a
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minor component. The fractionation behavior of major components in the aqueous
solution can be described by the differential Doerner–Haskins equation [Doerner
and Haskins, 1925]:

Ki j d ln ci = d ln cj . (2)

This equation is suitable for equilibrium between the outer crystal layer and aque-
ous solution. Since the inner core retains its composition such crystallization was
called quasiequilibrium. Integration of equation (2) at constantKi j yields the
relation (

ci

c0
i

)Ki j

= cj

c0
j

, (3)

with index “0” indicating initial value of a parameter. Intensity of fractionation
depends evidently on the value of the distribution coefficient. Equations (2) and (3)
show the evolution of the composition of the aqueous solution with fractionation
but do not describe the change of the crystal composition. The mass influx in open
systems happens under advective mass transfer, for instance, in metasomatism.
If fluid flow is nonstationary then intracrystalline zoning is determined by the
evolution of the fluid composition (Drugova, Nikitin, and Terent’eva, 1970; Yardley
and others, 1991).

Change of the intense parameters (temperature or pressure) during crystal-
lization should modify the distribution coefficient. In turn, change of the distribu-
tion coefficient results in change of the composition of growing layer. So, in this
case, zoning ensues not from steady partition but as a result of change of external
conditions. In many authors’ opinion (e.g., Spear and Selverstone, 1983; Tracy,
Robinson, and Thompson, 1976) just this mechanism is responsible for the pri-
mary zoning in metamorphic garnets. Some authors call it “equilibrium partition”
or “equilibrium crystallization” though the last term means any crystallization with
distribution coefficient independent from the crystal growth rate. Temperature is
the main factor since the effect of pressure on the Fe/Mg distribution coefficient
is negligible (Perchuk, 1977). Therefore we consider below only the temperature
effect.

CONSTRUCTION OF MATHEMATICAL MODELS OF SOLID
SOLUTION CRYSTAL GROWTH

Phase Relations in the System “Solid Solution – Aqueous Solution”

To describe the crystallization kinetics we should know the phase diagram
of the system. We shall use the description of the phase relations in the system
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“solid solution – aqueous solution” (SSAS) (Azimov and Shtukenberg, 2000). For
simplicity let us consider the ideal solid solution especially because the mixing
parameters in Fe–Mg–Mn garnets are low and close to zero. Solubility of an ideal
solid solution is

c̃ = λ

√∑
i

(
xi sλi

)
(4)

wherec̃ is the bulk molality of the solute,si is the solubility of the purei th end-
member,xi is the mole fraction of thei th component of the solid solution, and
λ is an empirical parameter, approximately 2. Equation (4) describes the solidus
of the SSAS system. Respectively, the solutus of this ideal solid solution may be
described by equation

c̃ = λ

√√√√√
∑
i

ci∑
i

ci

sλi

= λ

√∑
i

yi

sλi
(5)

in which yi is the mole fraction of thei th component in the solute. The component
distribution between solid and aqueous solutions obeys the Henderson–Kracek
Eq. (1), and the distribution coefficient is

Ki j =
(

si

sj

)λ
. (6)

This expression together with the Doerner–Haskins equation indicates that a less
soluble component should be concentrated in the crystal while a more soluble
component will be held in the aqueous solution. Therefore, the crystal core should
be enriched with the less soluble component while the rim is richer in the more
soluble component.

The Generalized Equation of Mixed Crystal Growth

Let us consider a growing crystal having a polyhedral form face. The volume
W of the crystal can be expressed in general form as

W = 8r 3. (7)

Taking into account the additivity of the volume of ideal solid solution we may
write it also as

W = 8r 3
0 +

∑
i

(wi ni ). (8)
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Here,8 is a shape factor (a numerical coefficient depending on the crystal shape),
r is the crystal “radius” (the length of the normal to a crystal face),r0 is the radius
of the nucleus or seed,wi andni are molar volume and mole amount of thei th
component of the solid solution. The shape factor is eight for a cube, 4

√
3 for an

octahedron, 4
√

2 for a dodecahedron, and43π for a sphere.
To describe the crystal growth rate we take the empirical power law equation:

ṙ = kσκ (9)

wherer is crystal growth rate,k is kinetic coefficient,σ is relative supersaturation,
andκ is an exponent. At the dislocation crystal growthκ value is approximately
2. For the diffusion-controlled crystallizationκ = 1 andk = D/δ where D is
the diffusion coefficient andδ is the diffusion zone thickness [Chernov, 1984].
The relative supersaturation is defined by the ratio of solute concentrations in the
supersaturated and saturated solutions:

σ = c

c̃
− 1. (10)

Further, we suppose that the component distribution does not depend on the crystal
growth rate (such crystallization is called an equilibrium one). In this case, we
can use equations (9) and (10) for the description of the crystallization kinetics
in a system with isomorphic components [Soloviev and others, 1997]. Then,c
in relation (10) is the total solute concentration,c =∑i ci , and the equilibrium
concentratioñc can be found from Eqs. (4) and (5). Substituting expression (4) into
relation (10) and taking into account thatyi = ci /

∑
j cj we derive an expression

for supersaturation of aqueous solution with isomorphic components:

σ = λ

√∑
i

ci ·
∑

i

ci

sλi
− 1. (11)

The general form of the mass balance equation fori th component in the system is

Ṅi + ṅi − Ji = 0 (12)

whereNi andni are mole amounts of thei th component in the aqueous solution
and in the crystal andJi is the total influx of thei th component into the system.
In the closed system the last term is absent:Ji = 0.

If we denote thei th component amount in surface layer of the crystal as
dni then its mole fractionxi in the overgrowing layer is equal todni /

∑
j dnj .

In equilibrium crystallization the composition of the crystal surface layer can be
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expressed as

xi =
ci

sλi∑
j

cj

sλj

.

Equation (11) for supersaturation contains the molalities of componentsci while
mass balance equation (12) contains the mole amounts of componentsNi in the
solution. These quantities are connected to each other by relation,Ni = mci , where
m is the solvent mass in the system. In a closed system,m is constant while in an
open system it may change (for instance, with solvent evaporation or nonstationary
solution flow through the system). Thus, the relation between change of the amount
of the i th component in aqueous solution and their molality is controlled by the
mode of crystallization.

The character of the kinetic coefficient dependencek on the solid solution
composition is poorly studied. The linear form of the dependencek =∑i xi ki

seems to be unlikely since then the Arrhenius law would not be true fork even
if it was valid for everyki . Therefore, the form,k =∏i kxi

i , of compositional
dependence seems to be preferable. Below, we use as parameterk implying a
general formk(xi ).

Equating relation (7) to (8), differentiating the resulting relation and inserting
into the resulting relation (9), (11), and (12) withni = 0 at the initial moment we
can write

∑
i

[wi (Ṅi − Ji )] = 38k

{
r 3

0 +
1

8

∑
i

[
wi

(
1Ni +

∫ t

0
Ji dt

)]}2/3

×
 λ

√∑
i

ci ·
∑

i

ci

sλi
− 1

κ

(13)

with1Ni = N0
i − Ni being the change of thei th component amount in the aqueous

solution during timet . Equation (13) describing crystallization in the SSAS system
cannot be solved since we do not know the general interrelationship betweenNi ,
Ji , andci . To find connections between these quantities we should consider various
mechanisms of the crystallization.

Isothermal Desupersaturation

Isothermal desupersaturation is one of the basic crystallization mechanisms.
Nonzero initial supersaturationσ0 > 0 may be produced in various ways: solution
cooling, solvent evaporation, and so on. The crystallization proceeds owing to
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decrease of the supersaturation. Since the process is isothermal the solubilitiessi

of components and their kinetic coefficientski do not change during the process.
Desupersaturation happens in a closed system, henceJi = 0 andm= const. Con-
sideration of this transformation of equation set (13) yields a differential equation
for the composition of the aqueous solution at desupersaturation:

∑
i

(wi ċi ) = −38k

m

{
r 3

0 +
m

8

∑
i

[
wi
(
c0

i − ci
)]}2/3

 λ

√∑
i

ci ·
∑

i

ci

sλi
− 1


κ

.

(14)

With isothermal conditions, the distribution coefficientsKi j for each pair of compo-
nents are constant. Therefore, the relation between two components of the aqueous
solution obeys the integral form of the Doerner–Haskins Eq. (3). The solid solu-
tion consists of thez components, hence the crystallization can be described by
the set consisting of Eq. (14) and (z–1) equation (3). The initial condition is deter-
mined as relationc0 > c̃. The only mechanism producing zoning under isothermal
desupersaturation is fractionation.

The set can be reduced to a single equation. Let us introduce an auxiliary
variable,α, such thatα ≡ c1/c0

1. Substitutingα into (3), resigningK li asKi and
transforming we get expressions for concentration and its time derivative:ci =
c0

i α
Ki andċi = c0

i α
Ki−1Ki α̇. Substituting these relations into Eq. (14) we obtain

the desired equation for crystallization in a system with isomorphic components
and isothermal desupersaturation:

α̇ = −38

m
· α∑

i

(
wi Ki c0

i α
Ki
)k(α)

{
r 3

0 +
m

8

∑
i

[
wi x

0
i

(
1− αKi

)]}2/3

×
{

λ

√∑
i

(
c0

i α
Ki
) ∑

i

(
c0

i

sλi
αKi

)
− 1

}κ
. (15)

The initial condition for this equation isα0 = 1. Equation (15), just like the set
comprising Eq. (14) along with (z–1) equation (3), has no analytical solution and
should be solved numerically. Transforming the solutionα = α(t) we come to
functions of the formci = ci (t) describing the evolution of solution composition.
Then we can find solution supersaturation, crystal size, and composition.

Polythermal Crystallization in Closed System

Solubility reduction upon change of temperature produces supersaturation.
Crystallization happens with cooling of the solution if the temperature coefficient is
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positive (solubility rises with increasing temperature) and with heating if the tem-
perature coefficient is negative. In the model under consideration crystallization is
in a closed system (Ji = 0 andm= const) like desupersaturation. So polythermal
(nonisothermal) crystallization can be described by the set of Eq. (14) and (z–1)
equation (2). The integral form of the Doerner–Haskins equation is inapplicable
for nonisothermal process since the distribution coefficientKi j depends in that
case on temperature. The parametersk andsi entering Eq. (14) depend on temper-
ature also. The form of such dependence may vary. The kinetic coefficient shows
usually the Arrhenius behavior:

k = k∗ exp

(
− E

RT

)
(16)

In this expression,k∗ is pre-exponential factor,E is activation energy, andR is
universal gas constant (8.314472 J/mol· K).

The transformation of the equation set to a single equation in this model
is impossible. However, we can rewrite the set to make it more convenient for
numerical solution:

ċi = ci

sλi
· A, (17)

wherei = 1, . . . , z, andA is the factor common for allz equations:

A = −38k∗ exp
(− E

RT

)
m
∑

j

w j cj

[sj (T)]λ
·
{

r 3
0 +

m

8

∑
j

[
w j
(
c0

j − cj
)]}2/3

×
 λ

√∑
j

cj ·
∑

j

cj

[sj (T)]λ
− 1


κ

.

As initial condition we accept zero supersaturation.
Crystallization in a closed system is accompanied by component fractiona-

tion. At the same time, the distribution coefficient depends on temperature. As a
result, there are two different mechanisms producing the growth zoning.

Polythermal Crystallization From Aqueous Solution
of Constant Composition

To estimate the effect of dependence of the distribution coefficient on temper-
ature we shall examine the crystallization without the fractionation. It means that
composition of the aqueous solution is constant during the whole crystallization.
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Such crystallization is possible in an open system, with buffering of the solu-
tion composition or for the crystal being small in comparison with total amount
of the solute in the system. Then, zoning is controlled only by the temperature
dependence of the distribution coefficient. Therefore, such zoning can be called
“temperature” zoning. Supersaturation of the solution in polythermal crystalliza-
tion is produced with decreasing solubility. The total solute concentration,c, can
be calculated from the system phase diagram:

c = (1+ σ0)

(∑
i

yi(
s0
i

)λ
)−1/λ

= const.

σ0 is the initial supersaturation ands0
i is solubility at the initial temperatureT0. In

this model,yi = const. Then, the crystal growth rate at temperatureT is equal

ṙ = k∗ exp

(
− E

RT

)c λ

√∑
i

yi

[si (T)]λ
− 1


κ

and the crystal size can be found by time integration of the crystal growth rate:

r =
∫ t

0
ṙdt

Isothermal Crystallization in the Open System: Model of the “Flow Reactor”

In the previous model, we have suggested that fractionation in the system
is completely suppressed. It can be evoked, in particular, by very intense fluid
flow. However, at lower fluid velocities, the fractionation takes place though less
so than in a closed system. Open systems play an important role in metamorphic
processes, therefore an investigation of the formation of intracrystalline zoning
with fluid flow appears essential. The crystallization in an open system may be
described by the “flow reactor” model which supposes steady flux of aqueous
solution with constant velocityv and supersaturationσ through the system. In this
case the influx of thei th component can be described with expression

Ji = Svd1ci (18)

where S is fluid flow cross-section,d is fluid density (m= V d with V being
the volume of the crystallization area) and1ci = c0

i − ci is difference between
contents of thei th component in the inflowing fluidc0

i and in the fluid in the
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crystallization areaci . Substituting expression (18) into Eq. (13) and denoting
ω = Sv/V we achieve the main equation for the crystallization in open system:

∑
i

(wi ċi ) = ω
∑

i

(wi1ci )− 38k

m

{
r 3

0 +
m

8

∑
i

[
wi

(
1ci + ω

∫ t

0
1ci dt

)]}2/3

×
 λ

√∑
i

ci ·
∑

i

ci

sλi
− 1


κ

. (19)

To describe the component relations in open system we can use the differential
form of the Doerner–Haskins Eq. (2). To make the set of Eqs. (19) and (z–1) Eq. (2)
more convenient for numerical solution, we transform it to a set ofz equations of
the form

ċi = ci

sλi
B (20)

whereB is the common factor:

B = 1∑
j

w j c j

sλj

ω∑
j

(
w j1cj

)− 38k

m

{
r 3

0 +
m

8

∑
j

[
w j

(
1cj + ω

∫ t

0
1cj dt

)]}2/3

×
 λ

√∑
j

cj ·
∑

j

cj

sλj
− 1


κ .

This equation set is similar to set (17), but it includes integro-differential equations
which can be reduced by a change of variables to simple differential equations.
For this, let us introduce auxiliary variablesαi =

∫ t
0 1ci dt, thenci = c0− α̇i and

ċi = −α̈i . By substituting these relations into set (20), we obtain the set consisting
of z numerically solvable second-order differential equations:

α̈i = −c0
i − α̇i

sλi
C
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with common factor

C = 1∑
j

(
w j

c0
j−α̇ j

sλj

) [ω(∑
j

w j α̇ j

)
− 38k

m

{
r 3

0 +
m

8

∑
j

[
w j

(
α̇ j + ωα j

)]}]2/3

×

√√√√∑

j

(
c0

j − α̇ j

)
·
∑

j

c0
j − α̇ j

sλj
− 1


κ

.

The initial conditions for this set are defined by relationα0
i = 0. It is evident

that the system behavior depends on the value of the parameterω. The physical
meaning of it is the rate of solution replacement in the crystallization area. The
ω value at constantV and S is determined by the flow velocity. Atv = 0 the
process is reduced to isothermal desupersaturation while atv→+∞ the solution
concentration has no time to drop soċi = 0.

Numerical Parameters of Models

The parameter values selected are very important to the numerical calcula-
tions. Here, we report only their values. For detailed examination and discussion
see Azimov (2000). We compute the zoning profiles for garnets in the isomorphous
series “almandine Fe3Al2Si3O12 – pyrope Mg3Al2Si3O12.”

The solubilities of the garnet minerals,si , in unmineralized aqueous fluid were
calculated for some T and P values using the thermodynamic data on garnets from
Berman and Aranovich (1996) and on aqueous species from Tanger and Helgeson
(1988) and Shock and Helgeson (1988), and the computer codes SUPCRT92
[Johnson, Oelkers, and Helgeson, 1992], GBFLOW [Grichuck, 1996], and FLUID
[Skvirsky, 1995]. We interpolated the temperature dependence of solubility with
expressions= exp(a1+ a2/T + a3T) (mol/kg H2O) whereT is absolute tem-
perature. AtP = 5 kbar the coefficients area1 = −5.894, a2 = −9.873· 102,
anda3 = −4.629· 10−3 for almandine anda1 = −5.467,a2 = −1.937· 102, and
a3 = −5.208· 10−3 for pyrope. The molar volumes of almandine and pyrope are
equal to 115.24 and 113.11 cm3/mol correspondingly [Berman and Aranovich,
1996]. The Fe : Mg ratio in the fluid is accepted to be 1. The garnet kinetic coeffi-
cient does not depend on the composition of mixed crystal and obeys the Arrhenius
law (16) with parametersk∗ = 1.6 · 10−5 cm/s andE = 50 kJ/mol estimated in
Azimov (2000). For the exponent in Eq. (9), we use valueκ = 2 corresponding to
dislocation growth. The nucleus sizer0 = 0.1µm.

Model calculations of isothermal desupersaturation have been done for
500◦C and 5 kbar. At this temperature,sAlm = 2.136· 10−5 mol/kg H2O,
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sPrp= 5.812· 10−5 mol/kg H2O, andk = 0.21 cm/year. The initial fluid supersatu-
ration under isothermal desupersaturation is supposed to be 0.1–0.3. In polythermal
crystallization, the initial fluid supersaturation is accepted to be zero. The tempera-
ture change obeys linear equationT(t) = T0+ qt with q = 500–2000◦C/Ma and
T0 = 773 K (500◦C). Such heating rate corresponds to a rock burial rate up to
some centimeter per year.

Calculating crystallization in an open system, we consider the garnet crystal
growth from unmineralized fluid (not containing dissolved salts, HCl and NaOH)
at 500◦C and 5 kbar and from alkaline fluid (1M NaOH) at 600◦C and 5 kbar.
In alkaline fluidKFe–Mg> 1 (the distribution coefficient is inverted) (Azimov and
Shtukenberg, 2001). The solubilities of garnets in the alkaline fluid are equal to
7.403· 10−6 mol/kg H2O for almandine and 2.429·10−6 mol/kg H2O for pyrope.
The kinetic coefficient at 600◦C is k = 0.51 cm/year. The fluid density at 500◦C
and 600◦C (P = 5 kbar) is equal to 0.88 and 0.81 g/cm3. The flux velocitiesv
used in the “flow reactor” model fluid lie in the range 0.005 to 500 cm/year.

DISCUSSION

Those of the models discussed above which describe crystallization in a closed
system have analogous structures. Differential equation sets representing them
describe the evolution of the aqueous solution during the growth of mixed crystals.
We have solved these equation sets using a fourth-order Runge–Kutta method. To
find the zoning profile for the crystallization at constant fluid composition any
method of numerical integration may be used.

The solutions obtained have the formci = ci (t). Using them, we have cal-
culated functionsxi = xi (t) andr = r (t) and have found functional dependencies
xi = xi (r ) describing intracrystalline zoning patterns (Figs. 1–7). We have calcu-
lated only zoning profiles for systems with two isomorphic components (Fe and
Mg) but suggested models may analyze multicomponent solid solutions. Below,
we consider separate models and obtained results in detail.

Isothermal Desupersaturation

In this model, growth zoning is produced by fractionation. Zoning contrast
as it follows from Eq. (3) depends on the value of the distribution coefficient.
The kinetic curves,σi = σi (t), have sigmoidal shape (Fig. 1(a)). Supersaturation
diminishes and asymptotically vanishes. The higher initial solution supersatura-
tion the faster it diminishes and the earlier the system achieves equilibrium. Initial
supersaturation in this case determines not only system disequilibrium but also
crystallization nonstationarity. With desupersaturation, garnet crystals grow rather
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Figure 1. Crystallization of Fe–Mg garnet at the isothermal desupersaturation (500◦C and
5 kbar). (a) evolution of the solution supersaturation; (b) zoning profiles. Values of the initial
supersaturationσ0 are given in the legend. For the explanations and parameters used see the text.
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Figure 2. Polythermal crystallization of Fe–Mg garnet in the closed system at 5 kbar. (a) evolution
of the solution supersaturation; (b) zoning profiles. Values of the heating rateq are given in the
legend.
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Figure 3. Polythermal crystallization of Fe–Mg garnet at 5 kbar and the constant fluid composition.
(a) evolution of the solution supersaturation; (b) zoning profiles. Values of the heating rateq are
given in the legend.
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Figure 4. Crystallization of Fe–Mg garnet in the open system at 500◦C, 5 kbar and various fluid
flow rates (σ0 = 0.3). (a) evolution of the solution supersaturation; (b) zoning profiles. The fluid
flow velocitiesv (cm/year) are shown near curves.
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Figure 5. Crystallization of Fe–Mg garnet in the open system at 500◦C, 5 kbar and various
initial fluid supersaturations. (a) evolution of the solution supersaturation; (b) zoning profiles
(the velocity of the fluid flowv = 0.05 cm/year); (c) evolution of the solution supersaturation;
(d) zoning profiles (the fluid flow velocityv = 50 cm/year). Values of the initial supersaturation
σ0 are given in the legend.
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Figure 5. Continued.
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Figure 6. Crystallization of Fe–Mg garnet in the open system from 1 M NaOH solution at
600◦C, 5 kbar and various fluid flow rates (σ0 = 0.3). (a) evolution of the solution supersatu-
ration; (b) zoning profiles. The fluid flow velocitiesv (cm/year) are shown near curves.
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Figure 7. Crystallization of Fe–Mg garnet in the open system from 1 M NaOH solution at 600◦C,
5 kbar and various initial fluid supersaturations. (a) evolution of the solution supersaturation;
(b) zoning profiles (the velocity of the fluid flowv = 0.05 cm/year); (c) evolution of the solution
supersaturation; (d) zoning profiles (the fluid flow velocityv = 50 cm/year). Values of the initial
supersaturationσ0 are given in the legend.
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Figure 7. Continued.
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rapidly (about 10 years at 500◦C and initial supersaturation 0.1 and about 500 years
at the same temperature and initial supersaturation 0.01). The zoning profiles are
monotonic and cup- or arc-shaped (Fig. 1(b)). They are like common profiles in
garnets with normal zoning. Zoning contrast for the same values of the cocrys-
tallization (distribution) coefficient is controlled by initial supersaturation of the
parent solution. High initial supersaturation leads to high contrast zoning.

Polythermal Crystallization in Closed System

The kinetic curvesσi = σi (t) of the polythermal crystallization in the closed
system obtained by solving equation set (17) are shown in Fig. 2(a). The super-
saturation changes nonmonotonically in this process since it is a superposition
of two competing processes: increase due to the solubility decrease with system
heating and decrease due to crystallization. The zoning profiles for polythermal
crystallization are similar to simple cup- or arc-shaped (Fig. 2(b)). Increase of
heating rate leads to higher supersaturation and steeper slope of the functionσ (t),
that is, higher nonstationarity. Correspondingly, increase of nonstationarity results
in more zoning contrast. Probably, heating rates used for calculations are overesti-
mated in comparison with real values, but they allow emphasis of the contribution
of thermal nonstationarity to zoning contrast.

Polythermal Crystallization From the Aqueous Solution
with Constant Composition

Which of two mechanisms producing zoning in closed system (fractiona-
tion or “equilibrium crystallization” with change of thermodynamic conditions)
are prevalent? Zoning trends in both cases should be the same (Azimov and
Shtukenberg, 2001). To reveal the contribution of “equilibrium crystallization”
we have considered crystallization without fractionation. Supersaturation evoked
by heating (Fig. 3(a)) increases monotonically. The higher the heating rate, the
higher the contrast of zoning profiles (Fig. 3(b)). However, concentration gradi-
ents of components in the crystal drop as this crystal grows. Such a profile shape is
unusual for natural garnets. Comparison of Figs. 2(b) and 3(b) demonstrates that
crystals growing at constant fluid compositions display less contrast zoning pro-
files than crystals growing at polythermal crystallization in closed system. Even
with a heating rate of thousands of degrees per million years zoning formed under
polythermal crystallization from a fluid with constant composition is extremely
slight. This means that fractionation is the prevalent mechanism producing zon-
ing in both polythermal and isothermal crystallization. The role of “equilibrium
crystallization” with change of temperature is negligible.
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Isothermal Crystallization in Open System

Many researchers have noted the great significance of fluid flow in metamor-
phism. However the influence of moving fluid on garnet growth zoning has been
hardly studied. Only limited features of growth zoning under fluid flow are dis-
cussed by Whitney and Ghent (1993), and Whitney and others (1996a,b). These
studies show that fluid flow affected the shape of zoning profiles in metamorphic
garnets. A model of the crystallization in an open system allows us to study the
effect of the fluid flow on zoning. Most interesting are the not too high fluid flow
rates at which the influx of the components does not suppress the fractionation
entirely. Since we suggested that volume of the crystallization areaV and flow
cross-sectionS in the model under consideration are fixed then fluid flow velocity
v is unambiguously related to the parameterω (whose physical meaning is the rate
of solution renovation in the crystallization area). Therefore we consider justv as
parameter of the crystallization process.

In a system with steady fluid flow, the supersaturation decreases monotoni-
cally (Figs. 4(a) and 6(a)) as with desupersaturation in a closed system. With time,
supersaturation achieves a steady level. Figures. 4(b) and 6(b) demonstrate that at
the same initial supersaturation the shape of profiles is determined byv. At low v

zoning patterns are simple arc-shaped and similar to ones formed under isothermal
desupersaturation. Augmentation of the fluid stream velocity leads to inflexion of
profile near crystal rim. At relatively low fluid velocity the zoning trend remains
but at highv values it becomes opposite at the inflection point. The partition trend
stays unmodified. Further intensification of fluid flow leads to disappearance of
inflexion and flattening of zoning patterns. Profiles become hat-shaped. At even
higher flow velocities the growing crystal is unzonal. Thus, zoning in crystals
growing under fluid flow can be nonmonotonic despite fractionation being the
only mechanism producing zoning with isothermal crystallization.

Dependence of zoning on process disequilibrium (at constantv) is demon-
strated in Figs. 5 and 7. It is evident that diminution of initial supersaturation
results in profile flattening. Thus, here, as in a closed system, zoning contrast
depends on initial supersaturation. In the low-supersaturated system the zoning is
less pronounced. One can also see (Figs. 5 and 7) that the effect of fluid velocity on
the shape of zoning profiles depends on the value of the solution supersaturation.
Garnets crystallized from both unmineralized and alkaline solutions have profiles
with analogous shape though with opposite zonal trends.

According to our calculations, garnets growing from unmineralized fluid at
low stream velocities have normal zoning trend in the core and reverse zoning trend
in the rim. Profiles in Figs. 4 and 5 are similar to profiles in garnets from green-
schist and epidote-amphibolite metamorphic facies rocks. “Hat-shaped” profiles
are known also in normal-zoned garnets. Earlier they were explained by diffu-
sional smoothing (Woodsworth, 1977). However, experimental data on solid-state
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diffusion (Chakraborty and Ganguly, 1991) show that diffusion rate at 550–650◦C
is too low for significant relaxation of zoning. At last, zoning profiles calculated
using the model of crystallization from alkaline solution in open system (Figs. 6
and 7) resemble zoning profiles in garnets having classic reverse zoning.

CONCLUSION

The above modelling displays that, in a closed system, fractionation is the
main mechanism forming zoning with the different modes of crystallization. Con-
tribution of “equilibrium crystallization” with change of thermodynamic condi-
tions is negligible. This is indeed not surprising. As shown in Figs. 1 and 2, the
duration of growth of a single garnet crystal amounts from a few years to tens of
thousands of years. Such estimation is close to that of Walther and Wood (1984).
During this time, temperature rises by less then 10 degrees. The crystal growth rate
at metamorphism is evidently higher than the heating rate. Therefore, metamor-
phic crystallization is near isothermal. In the open system, fractionation is also the
basic factor. However, the role of fractionation depends on the degree of system
openness. High rate of mass influx results in weakening of zoning patterns.

Zoning contrast is determined by both thermodynamic and kinetic factors. The
main thermodynamic factor is the value of the distribution coefficient determined
by ratio of the component solubilities in the aqueous solution. The larger the
distribution coefficient the more contrast zoning is found. The leading kinetic
factors are disequilibrium, nonstationarity, and intensity of mass fluxes. The effect
of the kinetics is apparent from the difference between profile shapes for various
crystallization modes. Indeed, in three of the four models zoning forms due to the
fractionation. Nevertheless one can see clear distinctions between profiles.

As modelling shows, complicated (nonmonotonic) zoning can arise during
crystal growth under steady fluid flow. This means that nonmonotonic zoning
profiles do not point inevitably to polymetamorphic garnet history. In particu-
lar, reverse zoning can appear in crystallization from alkaline aqueous fluid. In
that case, formation of inverted rims in garnets points to quite high rate of fluid
infiltration.
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