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S U M M A R Y
This paper introduces and discusses a new polarization filter which can aid interpretation
of single or multichannel multicomponent seismograms. We define a measure of degree of
polarization based on instantaneous polarization attributes of analytic traces. Computation of
the data eigenstructure is not required and the measure can be used in combination with its
spatial coherence to enhance polarized signals on seismic record sections. Our approach avoids
suppressing signals with spatially changing characteristics such as happens in the transition to
post-critical reflections or for reflections from laterally varying interfaces. The simplicity of
the method permits the filter to be tailored to various data characteristics and the concept can be
applied to cross-energy methods. We also show that non-linear amplification of rectilinearity
and planarity weight functions in time-domain principal-component filters permits the size of
data windows to be decreased, improving resolution and suppressing noise.
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1 I N T RO D U C T I O N

The study of signal detection and enhancement is motivated by the
goal of extracting more information from small energy signals to
constrain the fine structure of the Earth. However, signal and noise
often share similar amplitudes, frequencies, waveforms and/or other
characteristics. When there is no clear separation between signals
and noise, it is difficult to establish objective criteria for how best
to enhance the signals.

This paper deals with signal enhancement using triaxial data sys-
tems through a time-domain degree of polarization filter. Where
densely spaced data are available, the filter can incorporate the
spatial coherence of the degree of polarization for further noise
suppression. To aid seismic interpretation, interfering signals such
as multiple reverberations or reflections from subsurface scatter-
ers are often classified as signal-generated noise and ideally should
be suppressed just like other noise during data processing. Signal-
correlated noise can exhibit partial spatial coherence and resembles
the signals in most characteristics. It is therefore often the most dif-
ficult noise to eliminate. Directional coherence measurements (for
example, Stoffa et al. 1981; Kong et al. 1985; Duncan & Beresford
1994; Schimmel & Paulssen 1997; Kennett 2000) and/or polar-
ization analyses (for example, Montalbetti & Kanasewich 1970;
Samson 1983; Christoffersson et al. 1988; Perelberg & Hornbostel
1994; Du et al. 2000; Reading et al. 2001) are helpful tools for
attenuating noise, including signal-generated noise.

Directional coherence measurements exploit the spatial coher-
ence and enhance the signal wavefield by suppressing incoherent
signals and coherent signals with energy outside specified apparent
velocity (equivalently, slowness or wavenumber) ranges. There are

various approaches that operate in the time–distance, frequency–
wavenumber or intercept–slowness domains. The domain that best
separates the signal from the noise should be preferred in the data
processing.

Polarization analysis makes full use of the three-component
vector field to characterize the particle motion. Polarization at-
tributes are usually derived in the frequency domain (for example,
Samson 1983; Park et al. 1987) or in the time domain (for exam-
ple, Kanasewich 1981; Bataille & Chiu 1991). The frequency do-
main approaches are most efficient for dispersed or superimposed
waves of distinct frequency content. If, however, the signals are
separated in time and exhibit similar spectral characteristics then
time-domain approaches are recommended. Some approaches are
time–frequency domain hybrids (Jurkevics 1988); others employ
analytic signals (Taner et al. 1979) rather than real time-series to
obtain instantaneous polarization attributes (Vidale 1986; Bataille
& Chiu 1991; Morozov & Smithson 1996, among others).

Independently of their domain, most algorithms rely on the eige-
nanalysis of the data covariance matrix (in the frequency domain
also called the spectral density matrix). The covariance matrices are
determined for sliding time windows, which should be long enough
to permit noise attenuation but which should not include multiple
signals. Multitaper algorithms can be employed to diminish spectral
leakage if required (Park et al. 1987). The eigenanalysis provides a
decomposition of the windowed data into their principal energy com-
ponents (Samson 1983; Jackson et al. 1991) given by eigenvalue–
eigenvector pairs. The eigenvalues are the energy components and
the eigenvectors are the corresponding principal directions. Linear
or elliptical motions are projected on to one or two principal direc-
tions, respectively. Rotation of the triaxial data into the eigenvector
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frame is called principal-component transformation and can be ob-
tained directly by singular-value decomposition (SVD) of the data
matrix (Jackson et al. 1991). This rotation is the basis for many
polarization filters.

The directional coherence measure and principal-component
analysis can be combined when using densely spaced data (Samson
& Olson 1981; Jurkevics 1988; Bataille & Chiu 1991). To take ad-
vantage of spatial signal coherence, following time alignment either
the triaxial recordings or the covariance matrices are averaged. De-
pending on the window size, averaging covariance matrices requires
less accuracy in the time alignment than first stacking the data. Both
methods improve the resolution of the polarization attributes, but
attenuate polarized signals with spatially changing characteristics.

In the following we present and discuss a new method to enhance
signals by noise attenuation using instantaneous polarization at-
tributes. The data windows used in our approach can be very small
so they enable good signal resolution. Furthermore, dealing with
multichannel data, we obtain in combination with a directional co-
herence measure a 2-D filter that can enhance the polarized signals
and which is invariant to phase or polarization changes at various
offsets. Signal-generated noise with a low degree of polarization
and/or unexpected apparent velocities is suppressed by the filter.
The method is quite simple so permits several extensions to aid
seismogram interpretation. We test the approach with synthetic data
and compare it with a powerful eigenapproach that uses a weighted
eigenimage composition of the three-component seismograms (De
Franco & Musacchio 2001). We slightly extend their approach to
enable the use of shorter data windows and to facilitate comparison
with our method. Finally, we apply the filter to a record section of the
Ligurian Sardinian (LISA) wide-angle seismic profile, which was
used by Gallart et al. (2001) to study the onshore–offshore crustal
transect in the eastern Pyrenees.

2 M E T H O D O L O G Y

First, we briefly review the analytic signal and its use for determin-
ing instantaneous polarization vectors for three-component seismic
records. The polarization vectors describe the instantaneous ori-
entation of the semi-major and semi-minor axes of an ellipse that
represents the signal motion in 3-D space. We will use a new ap-
proach and explain how these axes can be employed to define the
degree of polarization and to suppress signals that are less polarized.
The method is an alternative to principal-component analysis and
can enhance signals of elliptical and linear motion without assum-
ing any predefined polarization or direction. It is straightforward
and easily comprehensible, permitting various extensions such as
directional filtering.

2.1 Analytic signal and instantaneous signal polarization

The complex signal or trace uc(t)

uc(t) = u(t) + i H [u(t)] = A(t) exp [i�(t)] (1)

is uniquely defined by the real time-series u(t) and its Hilbert trans-
form H[u(t)] and can be expressed as a real-valued amplitude vec-
tor A(t) and a real phase function �(t). These last two functions
are called the envelope and instantaneous phase (Taner et al. 1979).
The analytic signal is advantageous since it factorizes the signal as a
function of time into a low-frequency envelope function and a high-
frequency phase function. This is obtained without explicitly per-
forming a moving window analysis as required by time–frequency

analyses. Indeed, a moving window is implicitly included through
the Hilbert transform which locally weights the time-series. The
transform applies a phase shift of π /2 to obtain the orthogonal com-
plex part of the analytic signal. The analytic trace enables the direct
determination of trace attributes on a sample by sample basis and
hence can be exploited to obtain the instantaneous polarization of
three-component (or general multicomponent) signals.

To compute the instantaneous polarization one needs to build an
analytic signal vector

B(t) = [
uc

1(t), uc
2(t), uc

3(t)
]

(2)

from the three-component seismic record, where uc
i (t) denotes the

analytic signal of the ith component seismogram. Following Vidale
(1986), B(t) can be used to compute the instantaneous covariance
matrix and its eigenstructure. Bataille & Chiu (1991) have shown
that it is sufficient to use the real part of the instantaneous covariance
matrix since the principal directions can be considered to be real.
They further stress that instantaneous covariance matrices provide
eigenvalues that are invariant to constant signal phase shifts.

Instantaneous polarization attributes can also be determined di-
rectly as shown by Morozov & Smithson (1996). Their approach is
based on the factorization of the analytic vector B(t)

B(t) = C(t) exp[i�(t)] (3)

into one single real-valued phase �(t) and a complex-valued vector
function C(t) with amplitude, polarization and phase-shift informa-
tion. The phase function is obtained directly through a variational ap-
proach that maximizes the form

∑
k{Re[exp(−iψ)uc

k(t)]}2 together
with a small regularization term which stabilizes the calculation
when the first term becomes constant. Semi-major a(t) and semi-
minor b(t) axes are easily extracted from the complex vector C(t).
Since �(t) is determined with a phase uncertainty of π the sign of
the axes is unknown. Besides the phase uncertainty the vectors a(t)
and b(t) describe the ground motion, which is always represented by
an ellipse lying in a plane in the 3-D space (Morozov & Smithson
1996).

2.2 Degree of polarization measure

We now define polarized signals as features that do not change their
polarization during the duration of the signal. Constraining the defi-
nition to a particular type of polarization would lead to a directional
polarization filter but that is not the aim here. A rotationally invariant
measure for the degree of polarization may be constructed as

c(t) =
[

1

T + 1

t+T/2∑
τ=t−T/2

∣∣∣∣ m(t)

|m(t)| · a(τ )

|a(τ )|
∣∣∣∣
ν1

]ν2

. (4)

T denotes a short data window of T + 1 samples and m(t) is the
mean polarization vector of the data window. The T + 1 projections
of the instantaneous unit polarization vectors are summed on to their
unit mean vectors. Owing to the phase uncertainty of π , absolute
values are used to avoid destructive addition through phase changes.
The transition between low and high degrees of polarization is con-
trolled by the exponents ν1 and ν2. This helps to increase noise
attenuation when the differences between more polarized and less
polarized signals are small. ν1 and ν2 act on the individual vector
projections and their sum, respectively. It is not very important how
these differences are increased and we routinely use ν1 = ν2 = ν to
decrease the number of parameters. Thus, c(t) is a functional that
ranges between 0 and 1 with 1 indicating a homogeneously polar-
ized signal throughout the time window T . If the semi-major axis
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direction is strongly varying then the projections on to the mean
vector m(t) become smaller and lead to a small value for c(t).

Vector m(t) is a mean (or median) vector that characterizes the
polarization in the data window. It can be tailored for different ap-
plications and statistics. For instance,

m(t) = 1

T + 1

t+T/2∑
τ=t−T/2

a(τ ) or m(t) = 1

T + 1

t+T/2∑
τ=t−T/2

a(τ )

|a(τ )|
(5)

provide two different mean directions of the semi-major axis. The
first direction is weighted by the signal amplitudes. This defini-
tion is useful for better determination of polarization attributes of
large-amplitude signals. Conversely, the second mean is indepen-
dent of signal amplitudes and can therefore be used to attenuate
strong bias caused by large-amplitude noise. We use the second ap-
proach since we are interested in discriminating signals from their
signal-generated noise independently of their amplitudes. Note that
other, more specialized, low-pass filters can also be used to produce
vectors m(t) from a(t) vectors normalized in other ways.

The functional c(t) is defined purely as a function of the instanta-
neous semi-major axis. This axis is generally well defined with the
exception of circular or almost circular motion. As a result of the
presence of noise the possibility cannot be excluded that the instan-
taneous semi-minor axes of a noise-free signal are exchanged with
the semi-major axes because of noise contamination. Consequently,
for almost circular polarized ground motion these directions might
not be stable during the signal duration. We tackle this problem by
defining a planarity vector

p(t) = a(t) × b(t) (6)

for circular or elliptical motion. p(t) is perpendicular to the elliptical
plane of motion and should not vary if the motion stays in the same
plane. This is what we expect during the course of an elliptically
polarized signal and hence can be used for signal discrimination.
The degree of polarization is constructed by replacing attribute a(t)
in eqs (4) and (5) by the planarity vector p(t) whenever the mean of
the ratio of the semi-minor to the semi-major axis becomes larger
than some defined limit. We will use c(a(t), p(t)) to indicate that the
degree of polarization depends on the semi-major and planarity vec-
tor. The filtered traces f i (ui ) = ui (t) · c(a(t), p(t)) are obtained by
multiplying the time-series by the instantaneous attribute. Note that
the degree of polarization function is the same for all components.
The amplitude ratios across the three components are therefore pre-
served. Moreover, the concept of ‘degree of polarization’, as defined
here, can also be used in principal-component analysis with respect
to the corresponding eigenvectors.

2.3 Examples with synthetic data

In what follows, we apply the method to synthetic data to demon-
strate its ability to suppress relatively unpolarized signals. The test
records in Figs 1(a) and (b) mimic broad-band (bb) and narrow-band
(nb) three-component single-station data. The time-series are dis-
played with their sample index rather than their time values to sim-
plify comparison with the window sizes of only a few samples. Four
signals are present in each data set. Signals 1–4 have elliptical, lin-
ear, circular and elliptical polarization, respectively. The time-series
have been contaminated with small- and large-amplitude noise. The
noise is built in the frequency domain by ascribing a random phase
spectrum to the scaled signal amplitude spectrum and is added to
the data after the application of an inverse Fourier transform. The

polarization filtered traces are shown in Figs 1(c) and (d). Some of
the instantaneous polarization attributes are shown in Figs 1(e) and
(f): from top to bottom these are the rectilinearity, the semi-major
|a(t)|, the semi-minor |b(t)|, attributes c(a(t)), c(p(t)) and c(a(t),
p(t)) using five (bb and nb data), seven (bb data) or 11 (nb data)
sample windows. The power ν is 6 and 12 for the bb (Figs 1c and
e) and nb data (Figs 1d and f), respectively. The lowermost trace is
the degree of polarization employed to filter the data from Figs 1(a)
and (b).

It can be seen from Figs 1(a)–(d) that the filter removed both the
large and small energy noise. This is to be expected since the at-
tribute c(a(t), p(t)) is explicitly amplitude unbiased. Figs 1(e) and
(f) further show that the linearly polarized signal 2 is better detected
by c(a(t)) than by c(p(t)). c(a(t)) does not detect the circular motion
of signal 3 due to the ambiguity already discussed of the semi-major
axis associated with a(t). The figure shows that the circular and el-
liptical signals 1, 3 and 4 are best detected with c(p(t)). Altogether,
the combination of both measures into c(a(t), p(t)) enables the si-
multaneous detection of all signals.

From Figs 1(e) and (f), it appears that a longer data window (T in
eq. 4) improves the noise attenuation. This is not generally expected
to be the case, since the summation (eq. 4) in data windows that
include the stretched signal, the surrounding noise and other signals
may not be as effective as for windows that include only the signal or
portions of it. This is partly because no negative values are permitted
in the addition of the vector projections in eq. (4). Nevertheless, the
window needs to be long enough to discriminate between signal
and noise. In our example, with the nb data (Figs 1b, d and f), the
five-sample window yields little suppression of the noise. The noise
and the signal differ only slightly in the triaxial data system over
five samples.

The dependence on window length and power in our test data
is illustrated in Fig. 2. We define the signal-to-noise (S/N) energy
ratio as S/N = (S0 + Sf)/(N 0 + N f) · nf/ns, where S0, N0 and Sf,
N f are the signal and the noise energy before and after the filter on
the vertical component records and nf and ns are the total number
of noise and signal samples, respectively. The signals are defined by
their grey background in Figs 1(a) and (b). S0 and N0 stabilize the
S/N ratio in the cases where N f or N f and Sf become very small.
The values plotted in Figs 2(a), (c) and (d) are the mean ratios
obtained for 40 different random noise realizations. The different
noise realizations were obtained by ascribing random phase spectra
to the scaled signal amplitude spectrum. First, we consider only the
linearly polarized signal 2 and substitute small-amplitude noise for
signals 1, 3, 4 (Figs 1a and b).

Fig. 2(a) shows the energy ratios of the unnormalized (bb and
nb) and normalized (bb n and nb n) vertical component records. In
Fig. 2(b) we show the vertical component filter output for different
window lengths and power values.

The monotonic decrease of the bb and nb energy ratios (Fig. 2a)
at the long windows beyond the maximum ratios reflects the overall
decrease of the weighting attribute c(a(t), p(t)) due to the inclusion of
additional noise in the analysis window. That is, Sf and N f decrease
so much that the ratio almost reaches its limit of S0/N 0 · nf/ns. This
may give the incorrect impression that signals cannot be detected
with long windows. In fact, noise is generally more attenuated than
the signals which may still permit signal detection. Therefore, the
energy ratio is also shown for the amplitude normalized traces. The
larger bb n and nb n energy ratios indicate that the signals (and
noise) are not entirely suppressed by the filter. This is illustrated by
the first and third trace in Fig. 2(b). These traces were obtained using
seven and 49 sample windows. Their bb energy ratios (Fig. 2a) are
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Figure 1. The three-component test data in (a) and (b) were generated with a broad (a) and narrow (b) frequency band. Numbers and the grey background
mark the signals. The traces are contaminated with random noise, which is built from the signal amplitude spectrum. Parts (c) and (d) show the filtered data
and (e) and (f) contain the distinct corresponding polarization attributes. The lowermost trace in (e) and (f) are the attributes used to obtain the data from (c)
and (d), respectively.

quite different, but the curve bb n for the normalized traces shows
a similar ratio, which is consistent with their waveform semblance.

The two lowermost seismograms (Fig. 2b) are the filter outputs
that correspond approximately to the maxima of the nb curves
(Fig. 2a). The larger power value seems to increase the differences
between signal and noise and thus permits use of shorter windows
to obtain similar results. The fourth trace in Fig. 2(b) shows that
one does not need to stick to the maximum values in order to obtain
signal-enhanced seismograms.

Figs 2(c) and (d) illustrate the influence of the window length
and power value on the bb and nb test data using all four signals
from Fig. 1. The energy ratios have a similar trend to the curves in
Fig. 2(a). We see that the window size can be quite small and that the
optimum filter performance is controlled by the window length to
power trade-off. The signals and noise are often difficult to separate

with short windows. In these cases, larger power values can raise
the differences to permit a stronger attenuation of the less polarized
signals. Larger power values can therefore enable noise suppression
with shorter data windows.

In Figs 3(a) and (b) we show the vertical component filter output
for the test data from Figs 1(a) and (b). Various filter settings are used
to demonstrate the different waveform responses. It is obvious from
this figure that intermediate windows can suppress signals beginning
at their start and end time. This is due to the other signal and noise
components which start to affect c(a(t), p(t)) when the data window
is centred at the signal beginning or end. It can make a difference
whether random noise or a second distinct polarized signal enters
the data window. This explains, for instance, the survival of signals
1 and 2 in Fig. 3(b) for a 49-sample window. Fig. 3 shows that the
filter can be most effective at the shorter data windows. The short
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Figure 2. Dependence of window length and power using the three-component broad-band (bb) and narrow-band (nb) signals from Fig. 1 with 40 different
random noise realizations. For (a) and (b) we use signal 2 and for (c) and (d) all signals. Parts (a), (c) and (d) show the mean signal-to-noise energy ratios for
the filtered–unfiltered vertical component records. bb n and nb n indicate that the traces were normalized with respect to the trace maximum after the filter
operation. The traces in (b) are filtered vertical components from the data used in (a). The filter efficiency increases at shorter windows for increasing power
within a limited range of values.

windows and higher power values permit isolation of signals in the
vicinity of higher-amplitude noise. This can be seen for signal 4
from the top four traces in Fig. 3(b).

2.4 Minimum signal duration and waveform preservation

To enable further signal enhancement we can discriminate signals
from noise by defining the minimum duration of a polarized state.
That is, we assume that the signal has a minimum duration with
degree of polarization c(a(t), p(t)) larger than a defined reference
value. We raise the attribute c(a(t), p(t)) to 1 whenever the cor-
responding sample belongs to a signal that satisfies the minimum
duration condition and square the value of the attribute everywhere
else. Fig. 4 shows the data from Figs 1(a) and (b) after application of
the minimum signal duration algorithm. We use an analysis window
of five samples and a minimum signal duration of 10 samples at
a reference amplitude of 0.9ν to obtain the filter output in Fig. 4.
For complete clean-up of short-duration signals the squared values
should be replaced by zeros. Raising the selected c(a(t), p(t)) val-

ues to 1 or any other constant value ensures that the signals are not
distorted. Any feature that has a degree of polarization larger than
the reference value and which satisfies the minimum duration con-
dition will not be suppressed at all. Thus some noise might not be
suppressed and it can be difficult to establish good values for noisy
data when one does not have a priori information concerning the
expected signals.

This algorithm has been applied to the test data from Figs 1(a)
and (b) with 40 random noise realizations with amplitude spectra
matching that of the signal. The S/N energy ratio is depicted in
Fig. 5(a). In comparison with Figs 2(a) and (b), it can be seen that
the algorithm did not much change the course of the ratio with,
however, slightly increased amplitude range. Fig. 5(b) shows that
the shape of the curves does not vary greatly when increasing the
noise amplitudes by a factor of 2, 3 or 4. The overall amplitudes are
certainly decreased since the signal waveforms are more contami-
nated by noise and the signals are therefore less polarized. Conse-
quently, polarization and signal detection generally become more
ambiguous.
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Figure 3. The three-component data from Figs 1(a) and (b) have been filtered with the distinct filter length and power (ν) values. The vertical components for
the bb (a) and nb (b) data are shown.
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Figure 4. The three-component data of Figs 1(a) and (b) are filtered using an analysis window of five samples. The attributes are flattened using a minimum
duration algorithm to avoid signal distortion and to suppress short-duration signals.

2.5 Spatial averaging of the degree of polarization

With densely spaced data the filter can be adapted to include the
directivity of the wavefields, thereby increasing the filter efficiency.
This is recommended in any noisy polarization analysis since the
signal polarization is vulnerable to noise. For linear arrays, such as
shown below, we apply the local slant stack (for example, Milkereit
1987; Duncan & Beresford 1994) to the instantaneous degree of
polarization rather than to the individual seismic records themselves.
This is a simple way to incorporate full triaxial data information to
favour the polarized signals measured with the array. The stacks or
averages of the attributes become waveform independent and punish
signals with a low degree of polarization and/or without spatial
attribute coherence. Since the degree of polarization method does
not depend on the type of polarization the polarization of signals
can change without being attenuated. This permits the detection of
polarized signals with spatially changing characteristics, such as
obtained in the transition to post-critical reflections or with laterally
varying reflector properties. Averaging of the polarization attribute

enables removal of spatially coherent signals (noise) that are less
polarized, such as signal codas generated by the superposition of
multiple reverberations.

The diagrams in Figs 6(a) and (b) illustrate the procedure. A slid-
ing time–distance window (box in Fig. 6a) across the instantaneous
degree of polarization section specifies the subsidiary data for the lo-
cal stack. The averages (e.g. mean or median) are determined along
straight lines defined by a range of slowness values. The maximum
average value is assigned to the centre sample of the 2-D window,
which is then moved to an adjacent sample location and the entire
procedure is repeated.

To avoid the need for signals to be exactly aligned along straight-
line segments and to enable some control of the minimum signal
duration, a time window �T centred at the straight lines is used.
Concerning the average, we suggest use of the median, but mean
and other averages are also possible. The median is more robust than
the mean to noise bursts or outliers; the mean is more affected by
outliers and this blurs sharp detail. In Figs 6(c)–(e) we illustrate the
differences between median and mean averaging in our algorithm.
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Figure 5. (a) The mean S/N energy ratio is shown for the vertical traces from Figs 1(a) and (b), but 40 different random noise realizations derived from the
signal amplitude spectrum. The filter employs the minimum duration algorithm. (b) Same as (a) but the noise has been multiplied by 2, 3 and 4. The power ν

is 6 (bb) and 12 (nb), respectively.
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Figure 6. Illustration of local averaging of filter attributes. (a) The degree of polarization as a function of time and trace offset is locally smoothed within a
moving data window. The mean or median are determined along straight trajectories with width �T and the different slowness values p. (b) The maximum
value is assigned to the centre sample of the 2-D data window before it is moved to the next position. (c) Test attribute section and its mean (d) and median (e)
filtered result. �T is set to three samples and the data window is seven traces wide. The isolated features at samples 30–40 (c) and the smaller gaps at sample
20 (c) may be caused by isolated polarized noise and unpolarized signals due to noise corruption, respectively. The median filter (e) preserves the edges and
removes the outliers while the mean (d) blurs these features.
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A hypothetical degree of polarization section is shown in Fig. 6(c).
A coherent event with gaps of different sizes is located at sample
20. The smaller gaps could have been caused by unpolarized signals
owing to interference from other events. Random noise is inserted at
samples larger than 40. The remaining isolated signals are outliers
such as might be caused by polarized noise.

The mean and median averages are shown in Figs 6(d) and (e),
respectively. �T equals three samples and the data window is seven
traces wide. It can be seen from these figures that the median better
preserves the sharp edges than the mean filter. The median also
removed the outliers. Whether the gaps in the signal at sample 20
are preserved or not depends on the width of the sliding 2-D data
window.

The effects of applying the filter to signals with spatially changing
characteristics, signal interference and random but spatially coher-
ent noise are illustrated in the examples of Fig. 7. We use synthetic
nb data comprised of four polarized signals with no energy in the
transverse components. The vertical and radial component record
sections are depicted in Figs 7(a) and (b). The transverse compo-
nents contain random noise and are not shown. The first arrival at
about sample 40 has elliptical polarization, which changes its phase
by 3◦ per trace. The second signal has positive slowness, is linearly
polarized and interferes with a third circular polarized signal that
arrives at about sample 100. The circularly polarized signals contain
two discontinuous arrival time changes. The fourth signal is located
at samples 160–170. It has elliptical polarization and its amplitude
on the vertical component is modulated by the absolute values of a
cosine function. The signals after sample 179 are amplified random
noise, but spatially coherent. The signal waveforms change laterally
where the signals interfere, where the arrival time changes discon-
tinuously, and where the polarization varies as a function of offset.
The entire data have been contaminated by random noise derived
from the signal amplitude spectrum.

Fig. 7(c) shows the vertical component filter output determined
with local averages over 15 traces. The window length, the power ν

and �T are set to 9, 10 and 3. The corresponding averaged degree
of polarization is illustrated in Fig. 7(d). Comparison of Figs 7(a)
and (c) shows that the signals with abrupt or smooth changes are
not more attenuated than the other signals. It demonstrates that the
averages do not punish polarized signals with laterally changing
properties. Interfering signals are generally not much attenuated for
two reasons: the interference of polarized signals can yield newly
polarized signals and less polarized signals sandwiched between
polarized signals may not be suppressed owing to the averaging.

The spatially coherent noise has almost been removed. It is not
entirely removed since part of the noise is slightly polarized. If
polarized noise is also coherent then it cannot be separated from a
polarized signal without other a priori information.

Figs 7(e) and (f) show the data from Figs 7(a) and (b) with stronger
noise contamination. A frequency bandpass filter cannot remove the
noise since it is derived from the signal amplitude spectrum. The
vertical component filter output and the averaged degree of polar-
ization are displayed in Figs 7(g) and (h). The filter settings are the
same as those of Figs 7(c) and (d). The signal degree of polariza-
tion has been decreased due to the overall unpolarization through
the increased noise interference. Nevertheless, the signals are en-
hanced since less polarized noise has been attenuated. Further noise
increases in the data would increasingly corrupt the signal polar-
ization and deteriorate the filter output. As long as the differences
in the degree of polarization values between unpolarized signals
and noise are large enough there will be a stronger attenuation of
the noise. If the noise becomes too large then one needs either

a priori knowledge/estimates of the noise or to work in another
domain where the signal and the noise can be separated.

3 D E G R E E O F P O L A R I Z AT I O N
F I LT E R C O M PA R E D W I T H
A N E I G E N A P P ROA C H

Most polarization filters are based on the eigenstructure of the data
covariance matrix and are used with some design of weighting
function for seismic wave-type selection (for example, Perelberg &
Hornbostel 1994). A filter based on the eigenapproach to enhance
both elliptical and linear motion has recently been published by De
Franco & Musacchio (2001). It is an interesting method which we
will employ and compare with our filter. It is not our purpose to
determine a best method. In general, data properties and the appli-
cation at hand are the key elements for deciding which method(s)
should be used to process the data from amongst those available.

The method of De Franco & Musacchio (2001) uses the principal-
component transform through a SVD to rotate the data matrix di-
rectly into the eigenvector frame. The transform is also known as
the Karhunen–Loéve transform (Jackson et al. 1991). De Franco
& Musacchio (2001) assume that the elliptically polarized signal
energy is mainly on the first two principal axes and construct the
filtered signals F of the triaxial system from a weighted sum of the
first two eigenimages E1 and E2:

F = (E1 · R1 + E2 · R2) · P (7)

where R1, R2 and P are the rectilinearities along the first and second
principal axes, and the planarity, respectively. The authors obtain
these values from the eigenvalues on non-overlapping windows and
cubic spline interpolation. Their method enhances linear and el-
liptical motion through the weights and the omitting of the third
eigenimage, which should be dominated by noise.

We modify their approach using overlapping windows for the
weights and eigenimages and ascribe a power (ν) to the weights R1,
R2 and P in eq. (7). With the power, the importance of the weights
can be raised to further clean the records of noise.

For the purpose of comparison, we use the test data from Figs 1(a)
and (b). The vertical component filter output for different window
lengths and power values are shown in Fig. 8. The traces with ν = 1
correspond to the filter published by De Franco & Musacchio (2001)
and show what is generally accepted for most principal-component
filters: longer windows are required to suppress the large-amplitude
noise, and signal 4 is not separated from its large-amplitude random
coda. The use of large power values, however, raises the sensitivity
and enables more effective noise suppression. In particular, with
short windows, large power values are required. The combination
of large power values and short windows permits separation of signal
4 from its large-amplitude noise coda. Although the eigenapproach
is amplitude biased, the weights of the large-amplitude noise are still
slightly smaller than for the signals, which justifies the use of the
power. At long windows, signal 4 is not resolved due to its large-
amplitude coda, which already dominates at the end of the signal
for 21 sample windows.

In Fig. 9, we show the mean energy ratios for 40 different ran-
dom noise realizations with signal amplitude spectrum. It proves
the importance of the introduction of the power value. Short win-
dows should be used with large power values. The trade-off between
window size and power can be used to improve the signal resolu-
tion. This is helpful when there is small signal separation and/or
large noise. We expect that the reported trade-off holds for other
polarization filters with weight functions.
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Figure 7. Vertical component (a) and radial component (b) input data to test the spatial averaging procedure. The first arrival has elliptical polarization with
changing phase (3◦/trace). The other signals have circular, linear or elliptical polarization. Signals and noise have the same frequency spectrum. After sample
179 the data consist of spatially coherent noise. The corresponding vertical component filter result and the averaged degree of polarization are shown in (c) and
(d). The spatial averaging does not punish the abrupt and continuous waveform changes. Parts (e)–(h) show the data with greater noise contamination and the
corresponding filter results.
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Figure 8. The test data from Figs 1(a) and (b) have been filtered using the weighted eigenimage approach and various filter settings. The vertical component
filter output is demonstrated in (a) and (b) for the bb and nb data, respectively. The traces with ν = 1 correspond to the filter suggested by De Franco &
Musacchio (2001). Long windows (ν = 1) are required to suppress the large-amplitude noise which also attenuate signal 4. The introduction of the power
relationship helps to reduce the noise. This permits resolution of signal 4 at smaller window lengths.
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Figure 9. (a) Signal-to-noise energy ratio as a function of data window and power for the weighted eigenimage filter. (b) Same as (a) but the filter output has
been normalized. The introduction of the power relationships improved the filter efficiency at shorter window lengths which enables improved signal resolution.

4 R E A L DATA E X A M P L E S

In the following we test the performance of our filter with data
from one Ligurian Sardinian wide-angle seismic profile acquired

during 1995 in the Western Mediterranean. The record section used
comes from profile 5 in Gallart et al. (2001) and was recorded at
the coast on station C. The air-gun shots were separated by about
50 m and the corresponding wavefields were recorded with a sample
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interval of 16 ms in the easternmost Pyrenees. The objective was
the study of the onshore–offshore crustal transect at the eastern
Pyrenees (see Gallart et al. 2001, for details). Here we focus on the
filter performance and do not discuss the structural implications.

4.1 Example without spatial averaging

Figs 10(a)–(c) show the 5–10 Hz bandpassed three-component
recordings. No data stacking or other processing are applied to di-
minish noise. Every 40th trace of the record section is plotted, the
traces are balanced with their rms (root-mean-square) amplitude,
and a reduction velocity of 6 km s−1 is used. The vertical compo-
nent record section is also shown with a higher record density in
Figs 11(a) and (c).

At the smaller distances the data contain a refraction from the
basement (Pg) and, as the strongest features reflections from the
Moho boundary (PmP). Refractions and reflections at other bound-
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Figure 10. Every 40th record from profile 5, station C is used to increase the seismogram visibility. The 5–10 Hz bandpassed three-component recordings are
shown in (a)–(c). The traces in (d)–(f) are from the degree of polarization filter. Parts (g)–(i) show three different outputs of the eigenimage filter. The numbers
in square brackets are the number of samples in the moving data windows.

aries have been detected. They are, however, smaller in amplitude
and are not visible in this data representation. Beyond 70 km offset,
noise seems to dominate the recorded section. The data in Fig. 10
show little spatial coherence due to the record decimation to about
2 km trace spacing, as well as heterogeneities and the presence of
noise.

Subsequent panels in Fig. 10 contain the vertical component
data. All the filtered traces are balanced by the rms values of the
unfiltered vertical component data. Spatial averaging procedures
or other algorithms are not applied. The seismograms obtained
with our degree of polarization filter are shown in Figs 10(d)–(f).
Panels 10(g)–(i) illustrate three different outputs using the modified
weighted eigenimage approach by De Franco & Musacchio (2001).
The power and the window length are indicated below each panel.
All filtered sections show noise reduction. Beyond 70 km offset,
many isolated signals are visible. These are mostly attenuated noise
but are visible due to the trace balance. Isolated polarized signals
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Figure 11. (a) The record section contains every fifth trace of the vertical component bandpassed input data. The complete data set is filtered with the
instantaneous degree of polarization filter and every fifth trace is shown in (b). The number of traces for the spatial averaging refers to the complete data set.
Parts (c) and (d) show a zoom into the complete vertical component record section.
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in a dense record section are probably noise and can be sup-
pressed when employing a spatial averaging of the instantaneous
attributes c(a(t), p(t)). In the following we show that the inclusion
of spatial information greatly improves the signal detection by the
polarization.

4.2 Example with spatial averaging

We use the complete data set from profile 5, station C to show
the filter performance with spatial averaging of the instantaneous
degree of polarization. The median is used in all examples. Fig. 11(a)
shows every fifth vertical component record of the data set. The
only processing is a 5–10 Hz bandpass filter. To improve the visual
appearance of the data, the traces are normalized using their rms
values. Fig. 11(c) shows a detailed subsection of the complete data
set. The filtered data are shown in Figs 11(b) and (d). We use the
power ν = 4 and an analysis window of nine samples (128 ms)
for the polarization analysis. 41 traces have been used in the local
averaging with a three-sample time window (�T = 32 ms).

An overall noise reduction is clearly visible in the filtered record
section. At distances larger than 70 km the PmP phase has been
particularly enhanced through attenuation of surrounding noise. At
distances smaller than 50 km, the record section is dominated by
various reverberations that start at the Pg phase and which cause
spatially coherent coda signals (Fig. 11c). A local slant stack would
have enhanced all spatially coherent signals while inclusion of the
polarization (Fig. 11d) suppressed the less polarized portions of the
coda.

The PmP phase is not visible as a spatially coherent signal
throughout the record section. This has also been observed further
south at the Valencia trough (Gallart et al. 1994). The absence may
be attributed to topography and other complexities as responses to
deep crustal faulting during the different tectonic episodes that af-
fected the NE Iberian–Mediterranean transition (Gallart et al. 1994,
2001). Note that the filter did not taper these complexities since the
averages are determined by the instantaneous degree of polarization
functions.

The filter results are controlled by the filter settings, which depend
on the data processor, his/her experience, goals and data constraints.
Fig. 12, therefore, shows various other results obtained with more
conservative (a) to very aggressive settings (d). With the more ag-
gressive settings of Fig. 12(d), only the most polarized signals are
visible. Everything else has been attenuated and causes the image to
look very rough. Signals that are slightly less polarized are thus also
completely suppressed. The conservative settings diminish much
less of the information content of the seismogram section and start
to gently enhance the polarized features. We recommend starting by
using the filter with various conservative settings and proceeding by
changing the settings in response to the data and goals. In this way,
the information content is reduced until robust signals are found and
can be interpreted.

5 D I S C U S S I O N

In this study, signal-to-noise ratio discrimination is based on the sta-
bility of an instantaneous polarization state throughout the signal.
For this purpose, we define a degree of polarization estimator for
triaxial seismic data systems which we use to build an image en-
hancement tool. The degree of polarization is invariant under seis-
mogram component rotation since it is built from the projections of
the semi-major and planarity vectors on to their mean directions.

Consequently, the signals can be recorded in any spatial orientation.
This is an advantage with respect to single-component signal pro-
cessing, which often requires rotation to achieve the best S/N ratio.
Furthermore, the degree of polarization is independent of the wave-
form and the type of polarization. Therefore, the spatial averaging
of this measure does not punish signals that are polarized with spa-
tially changing waveform characteristics. Conversely, conventional
waveform and covariance matrix averaging attenuates polarized sig-
nals with spatially changing properties. Spatially coherent but less
polarized signals can be attenuated, which makes this method suit-
able for suppressing signal-generated noise such as less polarized
coda reverberations.

Since our filter is a time-domain multiplication of the time-series
by an attribute with amplitude between 0 and 1, signals can only
be more or less attenuated. Thus, spatial averaging of the instanta-
neous degree of polarization cannot alter the signal polarity. What
may happen is that noise sandwiched between polarized signals is
not attenuated during the averaging. This can be solved with shorter
windows or other post-polarization analyses. Nevertheless, it may
also be a welcome feature: the spatial averaging can act as an im-
age restorer, attenuating isolated polarized signals and avoiding the
suppression of features that are less polarized due to unfortunate
placement between a suite of polarized signals. This also holds at
the crossing of reflections. At a point where signals interfere, the fil-
ter without attribute averaging may attenuate the signals conforming
their polarization, whereas the averaging can preserve the crossing
of reflections.

There are different ways to average. We prefer to use the median,
which is a non-linear average with little blurring and is robust with
respect to amplitude outliers. Generally, some averaging in polariza-
tion analyses is appropriate for improving signal resolution (Bataille
& Chiu 1991; Jurkevics 1988, and others). However, averaging can
be difficult for complex wavefields due to spatial lag and decreased
signal correlation (Christoffersson et al. 1988).

Note that our filter is not designed to reconstruct the polarized
signal waveforms. No statistical noise estimation is employed and
the noise-corrupted signals are simply attenuated based on their
polarization. More polarized signals are enhanced relative to less
polarized signals and noise as long as the differences in their corre-
sponding degree of polarization values are sufficiently large. Oth-
erwise, the signal is excessively corrupted and therefore attenuated
as noise. The time domain is not a good choice for separating these
signals from noise. Methods based on various philosophies should
be applied to reveal them, for instance, in the frequency domain and
with noise estimates from windows prior to the signal arrival time
(Du et al. 2000).

An alternative definition of the degree of polarization is given
by Samson & Olson (1980). They seek polarized signals with one
(or two) non-zero eigenvalues of the spectral matrix and construct
a corresponding degree of polarization. Their frequency-dependent
measure weights the Fourier transform in the sliding data window
of a data-adaptive polarization filter (Samson & Olson 1981). The
frequency-dependent degree of polarization acts as a bandpass filter,
that is, it suppresses the less polarized frequency components.

Different weighting functions have been designed, generally
from principal-component attributes (for example, Montalbetti &
Kanasewich 1970; Bataille & Chiu 1991; Perelberg & Hornbostel
1994; Morozov & Smithson 1996) and are used as directional
and/or pre-defined polarization filters. Their weighting functions
can suppress signal-generated noise such as out-of-plane arrivals
and ground roll or can separate P-to-S conversions. Bai & Kennett
(2000) use the low gradient of signal strike and the difference
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Figure 12. Four distinct degree of polarization filter results are shown. We use the complete data set (station C, profile 5) with moderate (a), (b) to more
aggressive (c), (d) filter settings. Sections (a)–(d) contain every fifth record.
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between linear and elliptical polarization to aid their body wave sig-
nal detector. Many other weighting systems have been constructed,
most of which enhance linear motion.

Linear signals can be recorded as elliptical signals due to noise and
structural complexities (Perelberg & Hornbostel 1994; Wagner &
Owens 1996) and would be attenuated by a filter relying on rectilin-
earity or other measures of degree of linear polarization. These prob-
lems are bypassed in our approach. Another concern is the explicit
noise energy bias of the diagonal elements of the covariance ma-
trix (for example, Perelberg & Hornbostel 1994; Schimmel 1999).
The degree of polarization method presented here uses amplitude
normalized vectors and is therefore explicitly amplitude unbiased.
The presence of large energy noise within the analysis window is
therefore less disturbing in our approach. However, if no large en-
ergy noise is expected and if the preservation of large-amplitude
signals is more important, then the use of an amplitude-biased mea-
sure can be the better choice. The polarization of large-amplitude
signals is less vulnerable to noise than is that of smaller signals.
We therefore also present an amplitude-biased degree of polariza-
tion functional. The same concept can also be employed with more
specialized low-pass filters to determine the mean vector from the
optionally normalized semi-major and planarity vectors.

The eigenmethod of De Franco & Musacchio (2001) is a filter
which performs the principal-component transform using a SVD
method. The combination of planarity and linearity weighting func-
tions permits detection of linear and elliptically polarized motion.
We attach a power to their weight functions and show that similarly
to our approach, there exists a window length against power trade-
off that can be exploited to increase the signal resolution. On the
one hand, the data windows must be long enough to discriminate
between signals and noise, but on the other hand, only one signal
should be included within any window. The power value permits use
of shorter windows to prevent inclusion of other signals and addi-
tionally increases the efficiency of noise suppression. We consider
that this trade-off can be an important option in many principal-
component filters, especially with noisy data.

Note that our filter presents an alternative to principal-component
filters thanks to the analytic vector definition of Morozov &
Smithson (1996). The filter concept is straightforward and easily
applied to other formalisms such as the eigenanalysis, which, in
general, plays an important role in the analysis of multicomponent
multichannel data. The advantages of our time-domain approach
are: the time windows are short giving better signal resolution, no
noise estimation is required, the method is robust with respect to
large-amplitude noise in the vicinity of the signal, a waveform-
independent spatial averaging is enabled and permits attenuation
of isolated polarized noise but prevents the attenuation of isolated
unpolarized signals.

6 C O N C L U S I O N S

A new objective measure for the degree of polarization is shown to
be useful both as a filter and an image enhancement tool. The in-
stantaneous attribute is independent of the orientation of the triaxial
seismic data system and handles linear and elliptically polarized
signals. The measure can be constructed from short data windows
and does not need the eigenanalysis of a data covariance matrix. The
degree of polarization is defined to be independent of signal energy,
although an amplitude-biased alternative is also given.

For seismic record sections, the degree of polarization is aver-
aged over space to suppress isolated polarized features. The median

is used since it is robust to noise bursts with minimal blurring of
sharp detail. Filter records are obtained by time-domain multiplica-
tion of the instantaneous degree of polarization with the time-series.
Since the same function is used for all three components, amplitude
ratios are preserved across the triaxial recordings. The waveforms
themselves are only preserved when the degree of polarization is
constant throughout the course of the signals and this can be forced
using a minimum duration algorithm. Since the degree of polariza-
tion is explicitly independent of waveform and polarization state, it
does not attenuate polarized signals with spatially varying character-
istics. This enables, for instance, enhancement of signals reflected
near critical angles. Spatially coherent but less polarized signals
can be attenuated, which makes this method suitable for suppress-
ing signal-generated noise such as coda reverberations.

Furthermore, combining our approach with a weighted eigen-
image filter, it is shown that the optimum window length can be
controlled by an exponent of the weighting functions. The trade-off
between window and power is important to regulate signal resolu-
tion, which depends on window size. We suggest that this concept
can be applied to the distinct principal-component filters, which
generally require long windows to discriminate between signal and
noise energy, to allow them to work more efficiently at shorter
windows.

Our approach reduces the information content of the seismograms
as a function of the filter settings to find the polarized features. This
can significantly improve seismogram interpretation. We suggest
starting filtering with conservative settings and proceeding to more
aggressive settings as required by the data. The concept of the filter
is simple enough to allow for various data-specific optimizations.
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