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An efficient finite-difference scheme for electromagnetic logging
in 3D anisotropic inhomogeneous media

Sofia Davydycheva∗, Vladimir Druskin‡, and Tarek Habashy‡

ABSTRACT

We consider a problem of computing the electro-
magnetic field in 3D anisotropic media for electromag-
netic logging. The proposed finite-difference scheme for
Maxwell equations has the following new features based
on some recent and not so recent developments in nu-
merical analysis: coercivity (i.e., the complete discrete
analogy of all continuous equations in every grid cell,
even for nondiagonal conductivity tensors), a special
conductivity averaging that does not require the grid to
be small compared to layering or fractures, and a spec-
trally optimal grid refinement minimizing the error at
the receiver locations and optimizing the approximation
of the boundary conditions at infinity. All of these fea-
tures significantly reduce the grid size and accelerate the
computation of electromagnetic logs in 3D geometries
without sacrificing accuracy.

INTRODUCTION

In recent years and in connection with the development of
horizontal and inclined drilling, it has become important to in-
vestigate anisotropic and highly-contrasted layered media in-
tersected by a deviated borehole. We consider the problem of
computing the electromagnetic fields in an inhomogeneous 3D
anisotropic medium with anisotropy tensors whose principal
axes are arbitrarily oriented in space. In more detail, geophys-
ical motivation behind this problem and literature reviews on
the petrophysics of electrically anisotropic rocks can be found
in Anderson et al. (1999), Wang and Fang (2001), and Weiss
and Newman (2002). In this paper, we concentrate on compu-
tational aspects of the forward modeling.

As a rule, problems of such type are usually solved by means
of a finite-element (FE) method or a finite-difference (FD)
method. The staggered grid modeling approach was proposed
by Yee (1966) and, since that time, has been successfully applied
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to problems of computing electromagnetic fields in arbitrary
3D isotropic media by many authors [see Wang and Fang (2001)
and Weiss and Newman (2002) for more detailed literature
review]. This approach yields coercive approximation, that is,
every continuous Maxwell equation has its discrete counterpart
satisfying conservation laws (Gauss and Stokes theorems)—
important features for a good approximation.

However, generalization of this approach to important prac-
tical 3D anisotropic models with arbitrary tensors of electric
conductivity, magnetic permeability, and dielectric permittivity
is not straightforward. Yee’s (1966) scheme implies that differ-
ent electric field components are defined at different points in
space. This is enough for isotropic problems, where the consti-
tutive relationships between vectors can be written indepen-
dently for every component. For example, the isotropic Ohm’s
law connects only x-components of the electric field and the
electric current, etc. However, in order to use Ohm’s law with
tensor conductivity (and similar constitutive laws with other
anisotropy tensors), one needs to specify all three field com-
ponents at every point to compute cross terms.

There are two main approaches to circumvent this diffi-
culty enabling the implementation of anisotropy in Maxwell
equations.

The first and more obvious approach is to interpolate the
electric field from neighboring nodes (Weidelt, 1999; Wang and
Fang, 2001; Weiss and Newman, 2002). This approach solves
the problem in principle; however, the interpolation effectively
doubles the size of the FD steps for the computation of the cross
terms, so it brings additional errors.

Another important drawback of this interpolation approach
is that, in contrary to the isotropic Yee scheme, not all the
counterparts of the continuous anisotropic equations can be
written in the local discrete form. For example, in the inter-
polation scheme, the electric current at a given node depends
via the anisotropic Ohm’s law only on the values of the elec-
tric field at the neighboring nodes. However, the inverse of
a local interpolation operator cannot be local, so the inverse
of the FD Ohm’s law connects the electric field at one point
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with all the components of the electric current on the entire
grid. Due to this phenomenon, for example, the second-order
FD Maxwell system of Weiss and Newman (2002) cannot be
equivalently rewritten in local form in terms of the magnetic
field. Therefore, such an important physical principle as duality
(symmetry) between electric and magnetic fields is lost in this
FD implementation.

The above-mentioned phenomenon has been known from
the 1960s, and one approach to overcome it is the so-called
totally conservative (finite-volume) scheme suggested by
Lebedev (1964). Such a scheme allows specifying all three com-
ponents of the electric field at the same points on the grid with-
out interpolation. This enables representing both Ohm’s law
and its inverse locally in the case of general anisotropy. Simi-
larly to the isotropic Yee (1966) approximation, all the counter-
parts of the continuous relationships for the electromagnetic
field exist in Lebedev’s scheme. It is worth mentioning that
the drawbacks of the interpolation approach were known in
the geophysical literature (Igel et al., 1995), where Lebedev’s
scheme was independently proposed for anisotropic elasticity
and then rejected because of an apparent fourfold increase of
computational cost, a problem which is circumvented in this
paper.

Lebedev’s (1964) scheme was implemented for the solution
of the Maxwell equation by Davydycheva and Druskin (1995,
1999). In the present paper, we report on the progress in this
approach.

Lebedev’s scheme can be split in four uncoupled (primary
and dual) conventional staggered schemes. As it was correctly
noticed by Igel et al. (1995), Wang and Fang (2001), and Weiss
and Newman (2002), such a splitting can increase computa-
tional cost fourfold compared to the standard Yee grid in
isotropic media. To circumvent this problem, we modify the
condition at the external boundary of computational domain
and the summation of the total solution. As a result, we are able
to take advantage of the error cancellation properties of the
primary and dual schemes, so even for homogeneous isotropic
medium our scheme becomes more efficient than the standard
Yee grid.

Even for the case of an isotropic medium, contrast discon-
tinuities can often introduce gross errors within the standard
FD approach if not properly handled, unless the interfaces are
gridded in detail, which may require unrealistically large-size
grids. Of course, introducing fine dipping layers with crossbed-
ding or nonconformal thin fractures would make accurate ap-
proximation of Maxwell equation even more challenging. To
circumvent this problem, we use the equivalent medium ap-
proach of Moskow et al. (1999) that allows homogenization of
the medium enclosed inside a grid cell. The advantage of this
approach is that it allows constructing the grid independently
of the medium model.

In the induction logging problem, it is assumed that the
sources and receivers are located at the borehole axis. Typ-
ically one needs to compute the electromagnetic fields only
along that line and is not so interested in accurate solutions
elsewhere. It is well known that the grid should be refined to-
wards the source-receiver locations, but until recently it was not
known how to optimize such refinements (at least for the FD).
It was shown by Druskin and Knizhnerman (1999) that a proper
grid refinement (so-called “optimal” grids) can make second-
order FD schemes exponentially convergent. Such grids are

obtained by minimizing the FD impedance error at the re-
ceiver, as opposed to the standard adaptive grids that minimize
the global truncation error. The optimal grids use only generic
asymptotic spectral properties of the Green’s functions and,
in many cases (such as in induction logging where typically
skin depth is much larger than the minimal FD grid steps),
can be done a priori independently of the conductivity model.
Another important feature of such grids is that they are con-
structed based on the same rational approximation principles
as the absorbing boundary conditions for wave equations, so
they produce an optimal domain truncation. Applied to hyper-
bolic problems the optimal grid approach has shown about one
order acceleration for typical 2.5D acoustic logging problems
(Asvadurov et al., 2000). In this paper, we accelerate the com-
putation of the dissipative electromagnetic problem at hand
using optimal geometric grids developed by Ingerman et al.
(2000).

We successfully implemented the new scheme within the
framework of the spectral Lanczos decomposition method
(SLDM) (Druskin and Knizhnerman, 1994) for high-frequency
problems and its preconditioned modification (Druskin et al.,
1999) for low frequencies. However, we believe that, due to
a small grid size of our optimized FD approximation, direct
solvers potentially can be more efficient.

GRID DISCRETIZATION OF MAXWELL EQUATIONS

Consider the frequency-domain Maxwell equations with
anisotropic coefficients in 3D space R3;

∇ × E = iωµH, ∇ ×H = σE− iωεE+ J, (1)

with zero boundary conditions at infinity. Here E≡
(Ex, Ey, Ez) and H≡ (Hx, Hy, Hz) are the electric and magnetic
field vectors, respectively, and J≡ (Jx, Jy, Jz) is the transmitter
current density, with the time dependence exp(−iωt) assumed.
The conductivity σ(x, y, z), magnetic permeability µ(x, y, z),
and dielectric permittivity ε(x, y, z) are symmetric nonnega-
tive definite 3× 3 tensors.

Introduce a Cartesian 3D grid,

(xi , yj , zk), i = 0, 1, . . . ,Mx;
j = 0, 1, . . . ,My; k = 0, 1, . . . ,Mz, (2)

where Mx , My, and Mz are even numbers. Denote subgrids P
and Ras follows: let the subgrid P contain nodes with even sum
of indices (three even numbers or one even number and two
odd ones), whereas the subgrid R contains the rest of the grid.
Denote functions with upper indices P or R as approximations
on the corresponding subgrid.

We substitute the unbounded medium R3 by the rectangu-
lar computational domainÄ= [x0, xMx

]× [y0, yMy
]× [z0, xMz

].
Obviously, its boundary ∂Ä contains nodes of both subgrids P
and R.

Define finite differences along the x axis,

f P
x =

{(
f P
x

)
i, j,k

}
,

(
f P
x

)
i, j,k =

f R
i+1, j,k − f R

i−1, j,k

xi+1 − xi−1
,

f R
x =

{(
f R
x

)
i, j,k

}
,

(
f R
x

)
i, j,k =

f P
i+1, j,k − f P

i−1, j,k

xi+1 − xi−1
,

(3)
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and similarly along the y and z axes. Obviously, finite differ-
ences defined in this way perform mapping from P to R and
vice versa, because (i, j, k)∈ P⇔ (i ± 1, j, k)∈ R. Therefore,
if we consider the grid approximation of the electric field ER

on the subgrid R, the approximations of the magnetic field
obtained by using the grid curl of ER will be defined on the
subgrid P.

Thus, we can write a grid approximation of Maxwell equa-
tions following equations (1):

∇̃ × ER = iωµPHP,

∇̃ ×HP = σRER− iωεRER+ JR, (4)

where ∇̃× is the grid curl defined using equation (3). In this
way, a system for ER can be derived:

∇̃ × [(µP)−1∇̃ × ER]− iωσ̇RER = iωJR, (5)

where σ̇R=σR+ iωεR. Similarly, the equivalent dual system
for HP can be written as

∇̃ × [(σ̇R)−1∇̃ ×HP]− iωµPHP = iω∇̃ × (σ̇R)−1JR.

The zero boundary conditions at infinity can be replaced by the
conditions

ER|∂Ä × n = 0, HP|∂Ä × n = 0, (6)

where n is the vector normal to ∂Ä.
As we mentioned in the Introduction, the existence of the

equivalent dual FD system is one of the advantages of Lebe-
dev’s (1964) approach. It insures that HP can be accurately
computed from ER and vice versa. We should point out that in
the already mentioned interpolation approach (Weidelt, 1999;
Wang and Fang, 2001; Weiss and Newman, 2002), the dual sys-
tem for magnetic fields can not be written in a local FD form
because of the nonlocality of the inverse of the interpolation
operator.

Connection with the standard Yee scheme

Consider a group of elements of the subgrid functions ER

and HP with the following indices:

ER
x (1, 0, 0), ER

y (0, 1, 0), ER
z (0, 0, 1),

H P
x (0, 1, 1), H P

y (1, 0, 1), H P
z (1, 1, 0),

FIG. 1. Two-dimensional cross-section (in the plane Oxz) of Lebedev’s staggered grid consisting of two clusters.
The thick double arrows in the right diagram denote the subgrid R (“electric” nodes) of Lebedev’s grid, whereas
the nodes of the subgrid P (“magnetic” ones) are denoted by circles. The magnetic nodes are located in staggered
order with respect to the “electric” nodes.

where, for brevity, (1,0,0) denotes (2i + 1, 2 j, 2k), (0,1,0) de-
notes (2i, 2 j + 1, 2k), etc. It can be shown that they are nothing
but the elements of the standard Yee scheme for the isotropic
problem (Druskin and Knizhnerman, 1994; Yee, 1966). This
group is called cluster 000 (see Figure 1).

Now consider the elements of the same components ER and
HP with shifted indices:

ER
x (0, 0, 1), ER

y (1, 1, 1), ER
z (1, 0, 0),

H P
x (1, 1, 0), H P

y (0, 0, 0), H P
z (0, 1, 1).

We denote this group as cluster 101. Then, let clusters 110 and
011 be, respectively,

ER
x (0, 1, 0), ER

y (1, 0, 0), ER
z (1, 1, 1),

H P
x (1, 0, 1), H P

y (0, 1, 1), H P
z (0, 0, 0);

ER
x (1, 1, 1), ER

y (0, 0, 1), ER
z (0, 1, 0),

H P
x (0, 0, 0), H P

y (1, 1, 0), H P
z (1, 0, 1).

One can easily show that the finite-difference operator
∇̃× defined by formulas (3) performs mapping within each
cluster independently. Coupling between clusters in equa-
tion (5) is performed by nondiagonal elements of the ma-
trices σR,µP, εR only. They relate elements defined at the
same node of the grid but belonging to different clusters,
as it is shown in Figure 1 for the components of the elec-
tric field. It is easy to see that the components ER

x and
ER

z belonging to different clusters are defined at the same
nodes. If the matrices σR,µP, εR are diagonal (isotropic
case), equation (5) can be divided into four uncoupled clus-
ters. Each of these clusters coincides with the standard Yee
system.

Averaging of sources, solutions, and error cancellation

The discrete source has to be properly introduced for every
cluster, otherwise the solution on some clusters can be iden-
tically zero. We obtain the electromagnetic field as a linear
combination of the solution on the four clusters with prop-
erly chosen weights. As we will see, such a “proper” averaging
greatly reduces the approximation error compared to a single
Yee grid.
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Let us consider for simplicity the problem of computation of
the Green’s function of a unit electric x-oriented source dipole
located at a point (xi0 , yj0 , zk0 ). Let, for example, this point be at
cluster (000), then the point with indices (i0+ 1, j0+ 1, k0) be at
(110), etc. We place sources (x-oriented dipoles) at (i0, j0, k0)
and at some four points for each of the remaining three clusters.
These twelve points have indices (i0+ `x, j0+ `y, k0+ `z, where
the shifts `x, `y, `z are given by all combinations of ±1 and 0
satisfying the condition

|`x| + |`y| + |`z| = 2. (7)

The weights (strengths of the sources) are defined by the fol-
lowing two conditions: (1) the sum of the sources in every clus-
ter must be equal to 1; (2) the center of the mass of the source
distribution in every cluster should be located at (xi0 , yj0 , zk0 ).

Suppose we want to compute a component of the electric
field at a point (xi0 , yj0 , zk0 ). Let, for simplicity, that point again
belongs to (000). Then, on this cluster we just take the solu-
tion at (xi0 , yj0 , zk0 ). Solutions on each of the remaining clus-
ters should be obtained by linear interpolation from the nearest
points [i.e., (xi1 + `x

, yj1 + `y
, zk0 + `z

) with the shifts satisfying con-
dition (7)]. The final solution is the arithmetic average of the
solutions on the four clusters.

We will see that even for isotropic media the above averaging
procedure together with the boundary condition (6) increases
drastically the accuracy of the total solution compared to the
one computed on each cluster separately.

In Figures 2 and 3, we show the magnetic induction Bx of a
x-oriented magnetic dipole (Bxx) computed in a homogeneous
whole space. We compare the analytic solution with the ones
obtained using Yee and Lebedev’s grids. The Yee grid (basic
cluster with the “electric” boundary condition) corresponds to
the cluster (000), under the compensating clusters we mean the
remaining three clusters. As we see, the compensation drasti-
cally increase accuracy compared to the single Yee grid. At

FIG. 2. Cancellation of the errors of ImBxx in the vicinity of
the transmitter due to properly chosen grid source currents
on different clusters. The field computed on Lebedev’s grid
and separately on different clusters is depicted. The clusters
effectively compensate each other, or cancel the errors, after
averaging the field over them.

least in the case of the homogeneous isotropic medium, the
presented results coincide rather precisely with the analytical
solution everywhere, whereas this is impossible when using the
standard Yee grid. Especially remarkable is that Lebedev’s grid
yields an accurate approximation starting from the nodes im-
mediately adjacent to the transmitter and the outer boundary,
as is shown in Figures 2 and 3, respectively. We will rigorously
explain this phenomenon in a following sections.

Let us note that Davydycheva and Druskin (1995, 1999) used
another way to approximate the field in the vicinity of the trans-
mitter and at the outer boundary. The grid dipole moments of
the transmitter in that work were taken to be equal on differ-
ent clusters, and Davydycheva and Druskin implemented only
electric boundary conditions at the boundary of the domain.
Thus, in the case of isotropic models, they got four identical in-
dependent sets of the equations, each of them coinciding with
the standard Yee scheme. Since the results on the different
clusters were also identical, three of them were redundant. In
our new approach, we force the clusters to cancel the errors of
each other.

GRID COEFFICIENTS APPROXIMATION

Important to such an approach is the development of a ma-
terial averaging formula that gives an effective medium corre-
sponding to a heterogeneously varying conductivity enclosed
within the grid cells.

Let us consider the grid approximation of the conductiv-
ity σR. Consider a finely layered, transversely homogeneous
medium stratified along an arbitrary N-direction. We use two
different schemes for obtaining the averaging formulas. The
first one we call standard homogenization, since it corresponds
to the addition rules of resistances and conductances in electric
circuits.

In the case when the layers are isotopic, it is easy to show
that these rules yield the averaged tensor Σ with the following
normal (ΣN N), transverse (ΣT T), and nondiagonal components

FIG. 3. Cancellation of the errors of ImBxx at the outer bound-
ary due to the combined boundary conditions. The errors in-
duced by truncating the domain have opposite signs on dif-
ferent clusters, depending on the boundary conditions, so the
errors are cancelled after summing the field over the clusters.
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(ΣT N and ΣN T):

ΣN N =
〈
(σR)−1〉−1

, ΣT T =
〈
σR
〉
,

ΣT N = 0, ΣN T = 0, (8)

where < · · · > refers to a spatial (volumetric) averaging.
The second scheme we call nodal homogenization. It is based

on the rule that the energy within each grid cell is unchanged
after averaging. That is, the integral of the current density mul-
tiplied by the electric field over the grid cell is the same for
the initial and the effective media. This scheme is described in
detail by Moskow et al. (1999).

Both averaging schemes were investigated by Moskow et al.
(1999), where a similar problem for the dc-case was consid-
ered. It was shown that standard averaging works well enough
to compute the electric field in the presence of thin-contrast
highly resistive or conductive inclined structures, but that nodal
averaging works even better, especially for high-resistive thin
structures. Neither approach requires the grid to be small with
respect to the thickness of individual layers. For example, it
was shown that even for a contrast as high as 1:500 and for a
thickness as small as one-fifth of the grid size, the relative error
of the electric field computed outside the inhomogeneity does
not exceed a few percent. This is despite the fact that the FD
scheme implies that the electric field is constant within every
grid cell, whereas in reality its normal component has a jump
of 500 times across the contrast.

The examples shown in this paper are adequately modeled
using the standard homogenization approach. For this reason
and for the benefit of completeness, we derive in this section the
standard averaging formula for an arbitrary anisotropic media,
based on a paper by Habashy et al. (1993).

Let us assume that each layer is a general anisotropic homo-
geneous medium, whose conductivity is an arbitrary tensor σ.
Suppose that the layers extend infinitely along both transverse
directions, and their thicknesses are much smaller than the skin
depth at the frequency of the exciting electromagnetic field.

The constitutive relation of each layer is given by

J = σ · E.
Since the layer thickness is much shorter than the skin depth,
the electric field E as well as the current J are almost uniform
within each layer. From the boundary conditions (viz., the con-
tinuity of the transverse components of the electric field ET and
the normal component of the current JN at the boundaries sep-
arating the layers), we deduce that ET and JN will only vary
very slowly over the composite of the fine layers. On the other
hand, the transverse components of the current JT and the nor-
mal component of the electric field EN will vary rapidly from
layer to layer due to the variation in the conductivities of the
layers.

From the above discussion, we can cast the constitutive re-
lation in the following form:

J =
JT

JN

 =
σT T σT N

σN T σN N

 ·
ET

EN

 .
Employing this representation, we express the rapidly varying
transverse components of the current JT and the normal com-
ponent of the electric field EN in terms of the slowly varying

transverse components of the electric field ET and the normal
component of the current JN to obtain

EN = σ−1
N N · JN − σ−1

N N · σN T · ET ,

JT = σT N · σ−1
N N · JN +

(
σT T − σT N · σ−1

N N · σN T
) · ET .

Upon averaging, we obtain

〈EN〉 = 〈σ−1
N N〉 · JN −

〈
σ−1

N N · σN T
〉 · ET ,

〈JT 〉 =
〈
σT N · σ−1

N N

〉 · JN +
(〈σT T〉

− 〈σT N · σ−1
N N · σN T

〉)·ET .

Finally, to obtain the conductivity of the averaged medium, we
express the averaged current in terms of the averaged electric
field:

JN =
〈
σ−1

N N

〉−1 · 〈EN〉 +
〈
σ−1

N N

〉−1 · 〈σ−1
N N · σN T

〉 · ET ,

〈JT 〉=
〈
σT N · σ−1

N N

〉 · 〈σ−1
N N

〉−1 · EN

+ (〈σT T〉 −
〈
σT N · σ−1

N N · σN T
〉+ 〈σT N · σ−1

N N

〉
· 〈σ−1

N N

〉−1 · 〈σ−1
N N · σN T

〉) · ET .

Hence, the constitutive relation for the averaged medium is
represented by

〈J〉 = Σ · 〈E〉,
or 〈JT 〉

JN

 =
ΣT T ΣT N

ΣN T ΣN N

 ·
 ET

〈EN〉


where

ΣT T = 〈σT T〉 −
〈
σT N · σ−1

N N · σN T
〉+ 〈σT N · σ−1

N N

〉
· 〈σ−1

N N

〉−1 · 〈σ−1
N N · σN T

〉
,

ΣT N =
〈
σT N · σ−1

N N

〉 · 〈σ−1
N N

〉−1
,

ΣN T =
〈
σ−1

N N

〉−1 · 〈σ−1
N N · σN T

〉
,

ΣN N =
〈
σ−1

N N

〉−1
. (9)

This derivation assumes that the finely layered composite
can be represented by an effective averaged medium. When the
conductivity inside of a grid cell is an arbitrary 3D function, we
choose as the effective direction of layering that of maximum
variation of the conductivity. We construct such a direction (m̂)
so that ∇ · [σ(r) · m̂]= 0 in a least-squares sense by minimizing
the functional∫

Ä

dr{∇ · [σ(r) · m̂]}2, subject to‖m̂‖ = 1. (10)

However, for the models of the medium considered below,
the direction of layering is obvious for most of the grid cells:
it is the direction perpendicular to the border of the borehole,
invasions, or layers, depending on the cell’s position.

OPTIMAL GRID APPROACH

Above, we presented a general scheme to calculate the elec-
tromagnetic field of an arbitrary configuration of the transmit-
ters, at any point of the space.
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However, for a very important special case, when the trans-
mitters and receivers are placed along one line (usually this is
the z-axis which coincides with the axis of the borehole; how-
ever, an eccentric borehole is also possible), the grid size can
be drastically reduced without loss of accuracy. This can be
achieved by using the asymptotically-optimal grids outside the
region where the transmitters and the receivers are situated
(i.e., along the x- and y-axes). The concept of optimal grids
was recently introduced by Druskin and Knizhnerman (1999,
2000). Since then it has been successfully applied to a num-
ber of problems, including such complicated ones as the solu-
tion of acoustic logging problems in elastic media (Asvadurov
et al., 2000, 2002). It is known that for standard equidistant
grids, the FD error is controlled by the grid step and the dis-
tance to boundary of the computational domain. Obviously,
a nonuniform grid with the same minimal step and bound-
ary of the computational domain would require much fewer
steps than the equidistant grid. However, too rapid “coars-
ening” can significantly increase the error. The optimal grids
provide a maximally possible grid nonuniformity without intro-
ducing significant additional errors. The optimal gridding can
be considered to be an extension of the concept of the Gaus-
sian quadrature rule for numerical integration to finite differ-
ences. The basic concept of the optimal grid was developed
for the standard staggered FD scheme (i.e., the Yee scheme).
However, as we recently found, for Lebedev’s grid an even
stronger result can be obtained. We start with the description
of the optimal grid for a single Yee grid (cluster), and then
show how the convergence rate can be improved for Lebedev’s
grid.

Background of the theory of optimal grids

Here, we briefly outline the concept of the optimal grids
according to works by Druskin and Knizhnerman (1999, 2000)
and Ingerman et al. (2000). First, as the simplest illustration,
we consider the approximation of the electromagnetic field of
the electric dipole (dc case) in 2D space R2 and discuss the
extension to induction problems later. Let us assume that the
z-oriented electric dipole (of strength 2) is located at the origin
of the plane Oxz, and we need to compute the electric potential
only along the line x= 0 that corresponds to the measurements
at the borehole axis. The electric potential satisfies Poisson
equation,

−∂
2w(x, z)
∂z2

− ∂
2w(x, z)
∂x2

= 2δ(x)
dδ(z)

dz
, (11)

and zero condition at infinity.
For simplicity, we analyze only the FD approximation along

x, assuming that the approximation along z is exact. However,
our analysis would remain valid in case of a finite grid along
z. In this section, we consider a single staggered Yee grid. We
slightly abuse notations used earlier and introduce the grid
with primary nodes x1−k, . . . , xk+1, and dual ones x̂1−k, . . . , x̂k

on (−∞, +∞) such that xi < x̂i < xi+1 < x̂i+1 and x1= 0. The
solution is defined at the primary nodes, its first derivative is at
the dual ones. Primary and dual nodes correspond, respectively,
to even and odd nodes of Lebedev’s grid introduced earlier. We
set x1= 0 and require the grid to be symmetric with respect to
x= 0.

We approximate equation (11) on this grid as

−∂
2wi (z)
∂z2

− 1

ĥi

[
wi+1(z)− wi (z)

hi
− wi (z)− wi−1(z)

hi−1

]

= 2
dδ(z)

dz

δi
1

ĥ1
, i = 2− k, . . . , k,

wi |z=±∞ = 0, w1−k(z) = 0, wk+1(z) = 0, (12)

where hi = xi+1− xi , ĥi = x̂i+1− x̂i and δi
1 is the Kronecker func-

tion (i.e., δi
1= 1 if i = 1, and δi

1= 0 otherwise).
With the help of the Fourier transform

F · = 1

i
√
λ

∫ ∞
−∞

e−i
√
λz · dz, (13)

equations (11) and (12) can be presented, respectively, for
u(x, λ)= F · w(x, z) as

λu− d2u

dx2
= 2δ(x), u|x=±∞ = 0, (14)

and for Wi (λ)= F · wi (z) as

λWi − 1

ĥi

[
Wi+1 −Wi

hi
− Wi −Wi−1

hi−1

]
= 2

δi
1

ĥ1
,

i = 2− k, . . . , k, W1−k = 0, Wk+1 = 0. (15)

Due to the symmetry with respect to the origin, equation (14)
can be equivalently written on [0,∞) as

λu− d2u

dx2
= 0,

du

dx

∣∣∣∣
x=0
= −1, u|x=+∞ = 0. (16)

We are interested in

f (λ) = u(0, λ) = −u(0, λ)

/
du(x, λ)

dx

∣∣∣∣
x=0
, (17)

where f (λ) is commonly called the impedance function. Solv-
ing equation (16) analytically, we obtain f (λ)= λ−1/2.

Now let us also reduce equation (15) to an equivalent bound-
ary problem on [0,∞). For that purpose, we use only the nodes
with positive indices from those defined earlier on (−∞,∞). In
addition, we need to introduce fictitious nodes x̂0= 0 and some
x0 < 0 for imposing the discrete Neumann boundary condition
precisely at the boundary x= 0, so the new step ĥ1 will be half
of the old one, and the new step h0 will be an arbitrary positive
number. The system (15) can be equivalently reduced to

λWi − 1

ĥi

[
Wi+1 −Wi

hi
−Wi −Wi−1

hi−1

]
= 0, i = 1, . . . , k,

(18)
and boundary conditions

W1 −W0

h0
= −1, Wk+1 = 0. (19)

The accuracy of the solution of equation (12) at x= 0 is de-
termined by the accuracy of W at the first node. The crucial fact
is that W1(λ)= fk(λ), where fk(λ) is a rational function of λ.
It can be found from equations (18)–(19) by the simple Gauss
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elimination, in the form of a Stieltjes continued fraction:

fk(λ) = 1

ĥ1λ+ 1

h1 + 1

ĥ2λ+ . . . 1

hk−1 + 1

ĥkλ+ 1
hk

. (20)

The Stieltjes continued fraction (S-fraction) is an extremely
well-studied tool used in many areas of pure and applied math-
ematics, such as theory of orthogonal polynomials, dynamical
systems, Gaussian processes, number and approximation the-
ories, etc. (Baker and Graves-Morris, 1996).

We want to optimize the grid with respect to the FD error of
the Dirichlet data at the boundary W1, that is,

δk = |W1(λ)− u(0, λ)| = | fk(λ)− λ−1/2|. (21)

Thus, the problem of the grid optimization can be reduced
to the problem of the Stieltjes rational approximation of the
inverse square root. Several ways to construct such an approxi-
mant are described by Druskin and Knizhnerman (1999, 2000)
and Ingerman et al. (2000). It is proven there that it is possi-
ble to construct the approximant converging exponentially as
k increases.

Here, we present so-called “optimal geometric grids” ac-
cording to Ingerman et al. (2000). It is known that, for the stan-
dard equidistant grids, the FD error is controlled by the grid
step h [O(h2) for the Yee grid] and the distance to the bound-
ary of the computational domain. The optimal geometric grid
is a nonuniform grid which provides the maximally possi-
ble progression coefficient not increasing the approximation
error.

Let us consider the n-point equidistant grid

hi = h, i = 1, . . . ,n,

ĥ1 = h/2, ĥi = h, i = 2, . . . ,n.

Let us also construct the geometric progression grid

hi = hαi−1, i = 1, . . . , k,

ĥ1 = h
/

(1+√α), ĥi = hi
/√

α, i = 2, . . . , k,

such that xk+1= nh. If α satisfies

α = exp
(
γπ
/√

k
)
, 0 ≤ γ ≤ 1, (22)

then δk will be of the same order as the error of the n-point
equidistant grid. Obviously, γ = 1 is optimal; it minimizes k for
given h and n. So, for the same accuracy of the optimal and
equidistant grids, we obtain

k ≈ (log n/π)2.

Geometric grids are widely used for the FD approxima-
tions of singular solutions. However, the conventional ap-
proach optimizes the global truncation error. This approach
implies centered differences with x̂i = (xi−1+ xi )/2 and rather

small progression coefficients for the grid steps, typically not
exceeding 2.

Superconvergence of Lebedev’s grid

Here, we explain the error cancellation phenomenon of the
Lebedev grid outlined in a previous section (see Figures 2–3).

First, note that on every face of the grid domainÄ, two clus-
ters satisfy the electric boundary condition (6), whereas the
other two satisfy the magnetic condition (6). If we consider
a Green’s function in homogenous medium, then the effect
of the boundaries can be estimated using the method of the
fictitious images. Because of the two different types of bound-
ary conditions, the first mirror reflection has different signs on
the various clusters, so that after averaging the solutions, these
reflections cancel. In other words, if the error of truncating
the domain is positive for two clusters, it is negative for two
other ones. So, Lebedev’s grid effectively decreases the error
of truncating the computational domain. This phenomenon is
presented in Figure 3.

Let us now rigorously explain the error cancellation in the
vicinity of the source shown in Figure 2. We derive a rela-
tionship between errors obtained on the different clusters (for
constant coefficients). Based on this relationship, we show that,
compared to a single cluster (Yee grid), the Lebedev grid
cancels the error (up to a quadratic term) on the borehole
axis.

Using the same assumptions and reasoning as in the previous
subsection, the FD problem can be reduced to the approxima-
tion of the impedance function f (λ)= λ−1/2 for equation (16).
The 1D Lebedev scheme is reduced to two clusters, i.e., equa-
tion (18) and the dual scheme. To define this scheme, we add a
fictitious node x̂k+1 > xk+1, remove the fictitious node x0, and in-
troduce variable Vi defined at dual nodes. New variables satisfy
the dual equation

λVi − 1
hi

[
Vi+1 − Vi

ĥi+1
− Vi − Vi−1

ĥi

]
= 0, i = 1, . . . , k.

(23)
and boundary conditions

V1 − V0

ĥ1
= −1,

Vk+1 − Vk

ĥk+1
= 0. (24)

Now, let us return to the averaging procedure for Lebedev’s
grid described earlier. Obviously, the sources for the both clus-
ters satisfy condition (1) (see subsection “Averaging of sources,
solutions, and error cancellation”). Condition (2) means that
the center of the mass of the sources at every cluster should be
located at x= 0. For the first cluster, this solution is satisfied
automatically because the source is located at x1= 0 in equa-
tion (15). Now, let us consider the dual cluster. System (23)–
(24) can be symmetrically extended to (−∞,∞), so it will be
the dual counterpart of equation (15) with the discrete sources
located at x̂1 and the symmetric node. Obviously, V0 defined at
the fictitious node x̂0 is the solution on the dual cluster, interpo-
lated at x= 0. So the 1D projection of the averaging procedure
for the Lebedev grid described earlier would yield

u|x=0 ≈ (W1 + V0)/2.

Let us estimate the error of the above approximation.
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One can check, by direct substitution, that W and V satisfy
the first-order system

c
√
λWj = Vj − Vj−1

ĥ j
, j = 1, . . . , k+ 1

c−1
√
λVj = Wj+1 −Wj

h j
, j = 0, . . . , k (25)

with some constant c 6= 0. For example, equation (18) can be
obtained by excluding V from system (25) (for any nontrivial
c), and similarly, by excluding W from system (25) one can
obtain equation (23). Thus, with a proper choice of c, system
(25) maps equation (18) into equation (23) and vice versa.

Now, multiplying the first equation of system (25) for j = 1
by the second one for j = 0, dividing the obtained equality by
λ, and using the first boundary conditions (19) and (24), we
obtain the equality

W1V0 = λ−1 W1 −W0

h0
· V1 − V0

ĥ1
= 1/λ. (26)

Recall that u(0)= f (λ)= λ−1/2. Let δk be the impedance er-
rors of the primary cluster, i.e.,

δk = u(0)−W1 = λ−1/2 −W1.

Then using equation (26), we obtain

(W1 + V0)/2 = 1
2

(
W1 + 1

λW1

)
= 1

2

(
λ−1/2 − δk + 1

λ(λ−1/2 − δk)

)
= λ−1/2 + δk

2

2(λ−1/2 − δk)
.

For large k, the primary cluster error δk becomes small, so the
total error of Lebedev’s grid will be close to

1
2
λ1/2δk

2.

The most important feature in the above definition of
Lebedev’s scheme is that the solutions W1 and V0 for both clus-
ters are located at the same point x= 0. As a result, the total
Lebedev error is squared. Even in the case of an equidistant
grid, we obtain fourth-order convergence instead of second
order. For the optimal grid, we double the exponential conver-
gence rate.

Extension to induction problems with variable coefficients

A useful property of the optimal grids is that the one optimal
for the Laplace equation can be optimal or nearly optimal for
many other partial differential equations (PDEs) or systems
including equation (5) with variable coefficients.

Let us, instead of equation (11), consider 2D scalar E-
polarization problem in diffusion approximation

−∂
2w(x, z)
∂z2

− ∂
2w(x, z)
∂x2

+ ib(x, z)w(x, z) = 2δ(x)δ(z),

(27)
where b=ωσµ is a bounded real positive function.

First, we consider the case of constant b. Applying the same
FD approach and the Fourier transform analysis, we can obtain

the exact counterparts of all continuous and discrete equations
of the previous subsections but with λ+ ib instead of λ. So, the
FD error will be given by

‖ fk(z)− z−1/2‖
for Yee grid or its square for Lebedev’s grid, with z= λ+ ib,
and instead of the real approximation problem we arrive at
the approximation at the complex plane. It is known that if a
Stietltjes rational approximant exponentially converges on the
real positive semi-axis, then it also exponentially converges
on the complex plane, except for the real negative semi-axis
(Baker and Graves-Morris, 1996, chapter 6). From this analysis
made in the process of the proof of lemma 4.3 by Ingerman
et al. (2000), it follows that for the complex approximation
with Re(z)≥ 0, the condition for γ in equation (22) should be
replaced by

0 ≤ γ ≤ 1
/√

2.

From the above condition, the optimal progression is given by

γ = 1
/√

2.

We refer to this progression as to the “optimal geometric grid.”
Let us now consider horizontally layered media, i.e., when

b= b(z). For this case, instead of the Fourier transform (3), one
can use transform

Fb· =
∫ ∞
−∞

q(z, λ) · dz,

where −λ and q(z, λ) are, respectively, eigenvalue and eigen-
function of operator

− d2

dz2
+ ib(z)I ,

i.e., q(z, λ) is a uniformly bounded solution of equation

−d2q

dz2
+ ib(z)q = λq

on (−∞,∞). It is easy to see that Fb would allow us to treat
the case of b(z) the same way as the case with constant b.

Finally, let us discuss the most general case, when b= b(x, z).
For this case, we can use the asymptotic analysis of Borcea
and Druskin (2002). Although that paper only considered in
detail PDEs with coefficients depending on x, it was noted
there that the asymptotic result for the forward problem can
be straightforwardly extended to the case of b= b(x, z). That
result is formulated for the high-frequency asymptotics of the
Fourier transform (13) of the solution, i.e., when λÀ b. The
result states that the error of the Fourier transform at x= 0 on
the optimal grid can be estimated as

O(E0(0))+ O

(‖E0‖1 + ‖Eb‖1√
λ

)
, (28)

where E0(0) is the error of the optimal grid for the homoge-
neous medium at x= 0,‖E0‖1 and‖Eb‖1 are the L1 global errors
in the homogeneous medium and for b(x, z), respectively. The
proof is based on the fact that the variable coefficient does not
affect the leading term of the PDE. The estimate (28) shows
that for large λ, the dominant part of the error is defined by
the error in the homogeneous medium. The latter converges
exponentially thanks to the optimal grid. It is well known that
the most difficult case for the conventional FD schemes is the
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case of rapidly varying oscillatory components of the solution
but, according to equation (28), for those, the optimal grid is
almost as accurate as the optimal grid in the homogeneous
medium. That means that fast convergence will be observed
until the break-even point between first and seconds term of
equation (28). After the first term becomes small, the conver-
gence speed will be the same as the standard FD scheme for
smooth solutions.

The 3D problem can be analyzed similarly, using 2D Fourier
transform.

The final conclusion is that the superconvergent properties
of the optimal and Lebedev grids remain valid for the induc-
tion problems with the skin depths significantly larger than the
minimal steps of the FD grid. This assumption is always true
for conventional induction logging problems; however, it may
not hold for some other electromagnetic problems (for exam-
ple, for magnetotellurics). We believe that for these problems
the optimal grid approach still can be applied within a domain
decomposition framework similar to the one presented in As-
vadurov et al. (2000, 2002) for even more difficult time-domain
acoustic logging problems in elastic media. However, the de-
scription of that approach is beyond the scope of this paper.

Implementation for the Lebedev FD scheme

Let us consider, as an example, the magnetic field of a mag-
netic dipole which is situated on the axis of a borehole cross-
ing inclined anisotropic layers. We want to compute the mag-
netic field along this axis, having the exciting currents on the
same axis. For gridding, we apply the approach of the previous
section.

Let the borehole axis be the line x= 0, y= 0. Then, the opti-
mal grids can be applied along x and y coordinates. We typically
use the same grids along x and y. Let us, for example, consider
the x grid. It consists of the primary and dual nodes of the op-
timal grid, symmetrically reflected with respect to the origin
(with nodes x̂0 and x0 excluded), so Mx = 4k [see equation (2)
and the previous section for the definitions]. Thus, in every
half-space, we obtain the primary and dual optimal clusters, as
in the previous section.

Before we defined only the progression factor exp (π/
√

2k)
for the optimal geometric grid. However, for the complete grid
description, we need to define the minimal step and the bound-
ary of the computational domain. As was mentioned earlier,
the optimal geometric grid provides the same accuracy as the
equidistant grid with the grid steps equal to the minimal step of
the optimal grid and the same boundary of the computational
domain. So for the choice of these two parameters, one can
use the ad hoc rules adopted for conventional FD techniques.
Those rules, however, can be significantly relaxed due to the
error cancellation phenomena of Lebedev’s scheme, described
earlier.

NUMERICAL EXPERIMENTS

The efficacy of the developed scheme was illustrated in
the benchmark comparison with the analytic solution for the
dc electric potential in the presence of thin resistive fracture
(Moskow et al., 1999), in which case the solution jumps across
the fracture.

There were also several good benchmarks to check the
presently described FD scheme against analytic solutions for

layered media for induction logging applications (Anderson
et al., 1999, 2001).

A comparison of our results with two independently derived
solutions is presented in Figure 4. We examined the magnetic
field of an axial 160-kHz transmitter along the axis of a conduc-
tive borehole intersecting a dipping anisotropic space. One can
see that all three solutions are close to each other. Our results
are in excellent agreement with those by Weiss and Newman
(2002) for the imaginary part of the magnetic field and with
those by Avdeev et al. (2002) for its real part.

Another comparison (Figure 5) shows the computed re-
sponse of synthetic (skin-effect-corrected) induction logs for
a 2C-40 sonde (one receiver coil is coaxial with a 20-kHz
transmitting coil, offset by 1.016 m) traversing the crossbed-
ded contact between an isotropic upper half-space and an
anisotropic lower half-space. We use optimal x and y grids,
whereas along the z-axis we set the grid to be equidistant be-
tween the transmitter and the receiver, and optimal geometric
otherwise. We present the comparison with a quasi-analytical
solution by Anderson et al. (2001). Note that the same exam-
ple was considered by Weiss and Newman (2002), where they
needed a grid of 59× 59× 59= 205 379 nodes to obtain rea-
sonable results, whereas the grids of 30× 30× 30= 27 000 and
38 × 38× 30= 43 320 nodes were certainly not good enough.
It is easy to see that our approach makes it possible to get
reasonable results even for the grid of 12× 12× 28/2= 2016
nodes (that is, only three optimal steps along the x- and
y-directions to the right and to the left from the origin). Both
primary and dual nodes are counted here. By the division by
two we mean that only the nodes of the subgrid R are used for
the FD approximation in equation (5), rather than all nodes
(see Figure 1). The results for the grids of 16× 16× 46/2= 5888
and 20× 20× 46/2= 9200 nodes are hardly distinguishable
from the analytical solution. We should point out that the FD
stencil in our scheme is even slightly smaller than that in Weiss
and Newman (2002). This means an acceleration at least of
20–40 times, provided that the same linear solver is used.

FIG. 4. Comparison of the results for the axial magnetic field
with the results of two other numerical 3D codes in presence
of a borehole. The quantity plotted is the difference between
the total field and the field from an equivalent source located
in a vacuum.
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Let us consider self-consistency convergence tests for
more complicated 3D models. We calculated the magnetic
induction along the axis of a borehole with an invasion in-
tersecting two dipping layers, one of which is anisotropic
(see Figure 6). A 52.65-kHz transmitting coil is oriented
along the x-axis and placed at the origin. Figure 7 shows
the plots of the ImBxx and ImBxz, two components of the
magnetic induction versus z. Along the x- and y-directions,

FIG. 5. Comparison of the 2C-40 induction sonde responses
computed analytically (solid lines) and by FD method (sym-
bols). Solutions from three FD meshes with k optimal steps
along x- and y-directions are shown.

the geometrically optimal grid is used, with different num-
bers of steps k. We solve the problem on the whole axis
x and on the positive semi-axis y using the symmetry of
the model with respect to the plane y= 0. This means that
Mx = 4k, whereas My= 2k [see equation (2) for the definition
of Mx and My]. A detailed-enough, nonoptimal grid along
the z-axis, with number of nodes Mz= 98, is used in all the
comparisons.
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Figure 7 shows that the plots for the optimal grids with k= 4,
k= 5, and k= 6 are practically identical. Moreover, even the
plots with k= 3 are almost as good, except for a few nodes
near the transmitter.

Let us note that in a homogeneous medium, Bxz would be
equal to zero, so we can observe the pure effect of inhomo-
geneity. The convergence of the solution, as k increases, is as
fast as for the case of Bxx.

In Figure 9, we plot the axial component of the magnetic in-
duction (ImBz) along the axis of the borehole intersecting a dip-
ping thin anisitropic layer, whose conductivity in perpendicular

FIG. 6. A model of the medium on the background of Lebe-
dev’s grid containing 98 z-nodes and 4k optimal x-nodes. Dot-
ted lines show the basic grid, whereas dashed lines show the
dual grid. The asterisk signifies the position of the transmitter.

FIG. 7. The imaginary part of the horizontal (ImBxx) and verti-
cal (ImBxz) magnetic induction versus z for the model contain-
ing two inclined layers, a borehole, and an invasion (see Figure
6).

direction σN is of high contrast with respect to the background
conductivity. The model is depicted in Figure 8. A 52.65-kHz
transmitting coil is oriented along z-axis and placed at the ori-
gin. The upper plot in Figure 9 illustrates the case when σN is
equal to the background conductivity, whereas for the lower
plot it is 200 times smaller. It is easy to see that, in both cases,
the plots of ImBz for the grids with the number of optimal
nodes k= 6 and k= 12 can hardly be distinguished. This is de-
spite the fact that the width of the anisotropic layer (0.25 m)

FIG. 8. A model containing a thin inclined layer with the per-
pendicular conductivity of high contrast. The optimal grid
along x for k= 6 (i.e., 24 nodes) is depicted as vertical dotted
lines (the basic grid) and dashed lines (the dual grid). The grid
along z is not depicted, since it is the same as for the previous
model (see Figure 6).

FIG. 9. The imaginary part of the vertical magnetic induc-
tion ImBz versus z for the model containing a thin dipping
anisotropic layer of high contrast (see Figure 8).
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is less than the steps of the optimal grid for k= 6 along the x-
and y-directions (the optimal x-grid is depicted in Figure 8 as
a background).

For all the considered examples, the computation time did
not exceed 1 minute per model on a 1-GHz Pentium. Re-
cently, we achieved further acceleration by implementing opti-
mal grids also along the measurement line z and using a special
postprocessing technique, as in Asvadurov et al. (2002). How-
ever, this approach is beyond of the scope of this paper.

CONCLUSIONS

The examined examples illustrate the high effectiveness of
Lebedev’s staggered grid for computing electromagnetic fields
in 3D inhomogeneous anisotropic media for induction logging
applications. The proper averaging of the parameters of the
medium and the optimal grid approach make it possible to
handle models of finely layered media with high contrast in
conductivity, using the FD grids containing only a few nodes
along the x- and y-directions. This means that the new FD
scheme allows handling complicated 3D models more than one
order faster than other known FD schemes and, therefore, can
be successfully used for the interpretation of induction log data
in fully anisotropic formations.
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