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Abstract The simple theory of equation of state recently
developed by Kumar is used to investigate the temper-
ature and pressure dependence of elastic moduli of
MgO. The results are found to present good agreement
with the experimental data. It is concluded that the
Kumar formulation is far better than the Suzuki theory
of thermal expansivity, and the Shanker formulation is
not a new relation.
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Introduction

The knowledge of thermoelastic properties of minerals
at high temperature and pressure is required for the
understanding of the Earth’s deep interior. Considerable
efforts have been made to predict the equation of state of
minerals under varying conditions of pressures using
diamond-anvil cells. However, less efforts have been
made under the effect of temperature at room pressure.
The following statement was made by Fiquet et al.
(1999): “Thermal expansion determination thus remains
scarce and extrapolations have to be made at the risk of
causing errors affecting strongly the computation of
thermodynamic quantities.” This inspired the author to
the present work. The main purpose of the present paper
is to avoid the extrapolation of data. For this, a simple
theoretical method is proposed to determine the ther-
moelastic properties of minerals under varying condi-
tions of temperatures as well as pressures. The simplicity
of the method lies in the fact that it is based on the
simple theory of equation of state (EOS).
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Method of analysis

The theoretical attempts made for thermoelastic properties may be
categorized in two parts. (1) those which are based on the theory of
interionic potentials, either two-body or three-body and (2) those
which are entirely free from the use of potentials. It has been
discussed (Kumar 1998) that the second one is better as far as
simplicity and applicability are concerned. The method used in the
present work is based on the theory of high-pressure-high-
temperature EOS recently developed by Kumar (1995, 1996, 2000).
The EOS has been found to be applicable from room pressure to
the structural transition pressure by varying the temperature from
room temperature up to melting temperature (Kumar and Bedi
1996). The same EOS has been found more applicable for different
classes of solids than the EOS already available (Kumar 1995,
1996). The mathematical form reads as (Kumar and Bedi 1996):
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Here V' is the volume, P pressure, 7 temperature, o the coefficient of
volume thermal expansion, B the isothermal bulk modulus and A
= (09 + 1),0 is the Anderson-Gruneisen parameter. 0 refers to
their value at room temperature and atmospheric pressure. Dif-
ferentiation of Eq. (1) gives (Kumar 2002):
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Combining Egs. (1) and (2) we obtain:
Kepr (1 - K) . (3)

It has been discussed that the relation of bulk modulus may be
generalized for the elastic moduli (Tallon 1980). Thus, eq. (3) may
be written as:
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Here 4;; = (d,;; + 1) and C;; are the second-order elastic constants
(SOEC), d,;; may be determined from the definition of ¢ as given
below:
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Thus, if the measurements have been made at a temperature close
to room temperature for Cj;, the values of J,; may be evaluated
using Eq. (5). For MgO, 0,11 = 6.5, do12 = —2.49, doaq = 2.57,




using the data reported by Anderson and Isaak (1995) for Cj; at
400 K.

Cowley et al. (1990) studied the pressure dependence of SOEC
using Monte Carlo simulation and lattice dynamics. The modified
Einstein model has been used by Kwon (1995), but these results do
not agree with the experimental data. Various other possible
methods have been critically reviewed by Karki et al. (2001). In the
present paper, I use Eq. (4) to study the pressure dependence of
SOEC of MgO. In these calculations ¥/} is the change in volume
under pressure as given by Eq. (1) at 7 = Tj. The values of 4;; are
evaluated using the relation (Kumar and Bedi 1996):

Ay = [(C,il/-)o + 1] and C’.lj = (8C;/0P) .

The experimental values of Cl.lj for MgO are available in the liter-
ature (Karki et al. 2001).

Equation(1) may be compared with the Mie-Gruneisen—Debye
theory which is widely used in the literature (Shim and Duffy 2000).
The theory has been followed by Suzuki (1975), expanding the
quantity G = PV. Suzuki (1975) reported what became widely
known as the Suzuki relation of thermal expansivity (Anderson
1995; Helfrich 1999). This reads as follows (Helfrich 1999):
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where k = (B} —1)/2,0 = BoVy/7y. Bo and B} are the isothermal
bulk modulus and its first-order pressure derivative, respectively. y,
is the Gruneisen ratio. The subscript 0 refers to their value at P = 0
and 7 = 300 K. Ey, is the thermal energy. In the Mie—-Gruneisen
EOS, Pr, = 7oEm/Vo. Thus, Eq. (6) may be rewritten as follows:
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where Pg, is the thermal pressure.

The Gruneisen theory of thermal expansion as formulated by
Born and Huang (1954) was advocated by Shanker et al. (1997).
These authors included a higher-order term for the change in vol-
ume in the expansion of potential energy and claimed to derive a
new expression for V/V, which reads as follows (Shanker et al.
1997; Kushwah and Shanker 1998):
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In terms of Py, Eq. (1) reads as follows (Kumar and Bedi 1996):
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By neglecting higher-order terms, it can be shown that
—In(l —x)=[1—(1-2x)"% .
Thus, Eq. (9) may be rewritten as follows:
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Results and discussion

Compare Egs. (7), (8) and (11), it is very clear that Egs.
(8) and (11) are same. Thus, the statement of Shanker
et al. (1997), that they investigated a new relation, is
flawed. A comparison of Eqgs. (7) and (11) shows that
the term (B} — 1) in the Suzuki formulation (Eq. 7) has
been replaced by (B} +1) in the Kumar formulation
(Eq. 11). To judge on the suitability of Suzuki and
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Table 1 Calculated values of V/Vj at highest temperatures. a Using
Suzuki formulation (Eq. 7). » Kumar formulation (Eq. 9). ¢
Experimental (Anderson 1995)

T(K) a b c
MgO 1800 1.063 1.067 1.069
CaO 1200 1.033 1.035 1.036
MgAlL,O4 1000 1.017 1.018 1.018
Pyrope-rich garnet 1000 1.019 1.020 1.020
Grossular garnet 1300 1.034 1.034 1.027
AlLO4 1800 1.039 1.041 1.042
Mg,SiO4 1700 1.049 1.052 1.055
Olivine Fogy Fajg 1500 1.041 1.043 1.044
Fe,SiOy4 1700 1.011 1.012 1.012
Mn,SiO4 1700 1.100 1.011 1.011
Co0,Si04 700 1.011 1.011 1.012
MnO 500 1.007 1.007 1.007
NaCl 750 1.058 1.061 1.066
KCI 850 1.067 1.071 1.077

Kumar formulations, I used Eqgs. (7) and (9) to predict
V/Vy as a function of temperature for 14 mantle min-
erals for which the required data were compiled by
Anderson (1995). It was found that the deviations are
maximum at highest temperatures. I have therefore
selected the highest temperature for comparison pur-
poses. The values of B} =4.13 for MgO and B} =4
have been used for other minerals (Shanker et al. 1997;
Shim and Duffy 2000). The results thus obtained are
given in Table 1 along with the experimental data
(Anderson 1995). It is found that Eq. (9) improves the
results obtained by Eq. (7) and there is an insignificant
difference in Eq. (9) and (11). One more important
point is that Eq. (7) gives the results under isobaric
condition (constant pressure), whilst Eq. (1) may be
used at the required value of P and 7. Thus, the
application of Eq. (1) is far better than the Suzuki
equation based on the Mie—Gruneisen—Debye theory. It
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Fig. 1 Variation of elastic moduli with temperature. The symbols
represent the values calculated in the present study (Eq. 4) and the
results of Anderson and Isaak (1995) are represented by continuous
line
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Fig. 2 Variation of elastic moduli with pressure. The symbols
represent the values calculated in the present study (Eq. 4) and the
results of Karki et al. (1997) are represented by continuous line

is also pertinent to mention here that to include a
higher-order term (Shanker et al. 1997) in the Grunei-
sen theory of thermal expansion, as formulated by
Born and Huang (1954) regarding the change in the
volume, gives nothing new (Eq.8), but reproduces the
theory reported by Kumar, as discussed above.
Equation (4) was used to calculate Cj;, C; and Cyy at
different temperatures for MgO using corresponding
values of V' /¥, obtained from Eq. (1) at P = 0. The re-
sults thus obtained are reported in Fig. 1. For the tem-
perature dependence of elastic constants, the techniques
of resonant ultrasound spectroscopy (RUS) are well
known. It has been found that in several RUS tech-
niques the predominant technique used to obtain the
data is the rectangular parallelepiped technique as used
by Ohno (1976) and Sumino (1979). The results based on
this technique have been compiled by Anderson and
Isaak (1995). These data are included in Fig. 1 for the
sake of comparison. There is good agreement between
theory and experiment for all three SOEC. Equation (4)
encompasses a complete C;;—FV-T equation of state. I
have therefore used Eq. (4) also to compute the pressure
dependence of SOEC. The results thus obtained for
MgO are reported in Fig. 2. The elastic properties of
MgO under pressure were studied by Karki et al. (1997)
up to 150 GPa using the first-principles pseudopotential
method within the local density approximation. These
results are included in Fig. 2 for the sake of comparison.
The results are in good agreement with each other. It is
observed that Cj; varies largely under the effect of
temperature and pressure as compared with the varia-
tion of Cj; and Cyy. The constant Cj; represents elas-
ticity in length. A longitudinal strain produces a change
in volume without a change in shape. The volume
change is highly related to the temperature/pressure,
thus producing a large change in Cj;. The constants Cj,
and Cy4 are related to the elasticity in shape which is a

shear constant. A transverse strain or shearing causes a
change in shape without a change in volume. Thus, Cj,
and Cy4 are less sensitive to temperature and pressure
than Cy;.
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