Уральский геологический журнал, 2003, № 4 (34), с.3-33

УДК 549.6+549.612(234.852)

© И.А.Бакшеев¹, О.Е.Кудрявцева¹, Б.В.Беляцкий², М.П.Попов³, Н.П.Саранцева, М.В.Выдрин³

ТУРМАЛИН-СОДЕРЖАЩИЕ МЕТАСОМАТИТЫ УРАЛЬСКИХ ИЗУМРУДНЫХ КОПЕЙ. СТАТЬЯ П. СЛЮДИТЫ (ФЛОГОПИТЫ)

 1 – Геологический факультет Московского государственного университета им. М.В.Ломоносова
 2 – Институт геологии и геохронологии докембрия, РАН
 3 – Уральская государственная горно-геологическая академия

(Представлена д. чл. УАГН проф. Э.М.Спиридоновым)

I.A. Baksheev, O.E. Kudriavtseva, B.V. Beliatsky, M.P. Popov, N.P. Sarantseva, M.V. Vidrin. TOURMALINE-BEARING ALTERATIONS IN THE EMERALD MINES, CENTRAL URALS. PART 2. PHLOGOPITITE

Abstract

Tourmalines from phlogopitite, pockets, and cut veinlets can be classified as variety between the shorl-dravite endmembers with the Fe_{ofut.}*100%/(Fe _{ofut.}+Mg) ratio ranging from 16.4 to 30.3%. Based on the F⁻ contents tourmaline composition ranges from hydroxy- to fluor-dravite. Temperature of tourmaline crystallization estimated from the tourmaline-biotite thermometer is 360-490°C. Phlogopitite, pockets, and cut veinlets have been formed at the f_{F2} increasing and low values of f_{O2} and f_{CO2}. Absolute age of phlogopitite estimated from Rb/Sr and Sm/Nd methods is about 210 Ma.

Настоящая статья является продолжением серии работ о турмалин содержащих метасоматитах Уральских Изумрудных копей [1].

Метасоматиты существенно слюдистого состава - слюдиты (флогопитититы, биотититы) являются стандартными изумрудоносными породами на месторождениях так называемого «сланцевого типа». К таковым относятся Изумрудные копи Урала в России, Cobra в ЮАР, Sandawana в Замбии, Regal Ridge в Канаде и другие. В большинстве из них слюдиты содержат 3 турмалин. В данной статье приведена характеристика химического состава турмалина и ассоциирующего флогопита, дана оценка условий формирования этого типа метасоматитов, приведены определения абсолютного возраста слюдитов, а, следовательно, и время формирования изумрудной минерализации.

Методы исследования

Химический состава минералов определен с помощью электронного микрозонда "Сатеса SX-50" (кафедра минералогии МГУ, аналитик Н.Н.Кононкова); ток зонда на образце 30 нА, ускоряющее напряжение – 15 кВ, диаметр зонда ~3 мкм. Эталоны: роговая обманка (Si, Al, Ca, Mg, Fe), ортоклаз (K), альбит (Na), фторфлогопит (F), пирофанит (Mn, Ti), ванадинит (V), NiO (Ni), Cr₂O₃ (Cr). Чувствительность определений 0.02%, ошибка измерений основных компонентов ±2 отн.%, элементов примесей ~20 отн.%; для процедуры коррекции использованы РАР поправки.

Спектроскопические исследования (ЯГР спектроскопия) и интерпретации спектров выполнены в Институте минералогии УрО РАН в г. Миассе, аналитик А.Б.Миронов.

Измерения изотопного состава и концентраций Rb, Sr, Sm и Nd проведены в ИГГД РАН (Санкт-Петербург). Содержания элементов определены методом изотопного разбавления. К навеске мономинеральной фракции (40-50 мг), предварительно очищенной от поверхностных загрязнений в разбавленной соляной кислоте, добавлялся смешанный изотопный трассер ¹⁴⁹Sm-¹⁵⁰Nd и ⁸⁴Sr-⁸⁵Rb, затем осуществлялось разложение и гомогенизация образца в герметичной тефлоновой капсуле при температуре 110°С в автоклаве в течение трех-четырех дней в среде HF+HNO₃+HClO₄. Выделение Sm и Nd проводилось по стандартной методике двухступенчатого катионнообменного и хроматографического разделения аналогичной описанной в работе [2]. Разделение Rb и Sr проведено на стандартных катионно-обменных колонках (Bio-Rad AG 50Wx8-100-200 меш) объемом 10 mL с последующей дочисткой фракции Sr на колонках объемом 2 mL в среде HCl. Измерение изотопного состава исследованных элементов выполнено на многоколлекторном твердофазном масс-спектрометре Finnigan MAT-261 в двухлен-4

точном режиме с одновременной регистрацией ионных токов разных изотопов элемента. При этом исследуемый элемент наносился на Та ленту, а в качестве ионизатора применялась Re лента (ширина - 0.8 мм, толщина - 30 мкм). Величина изотопного отношения ¹⁴³Nd/¹⁴⁴Nd для исследованного образца определялась как среднее из 3 независимых опытов. Воспроизводимость определений содержания, вычисленная на основании многократных анализов стандарта BCR-1 равна для Rb, Sr, Sm и Nd ~ 0.5%. Величина холостого опыта на период проведения работ составляла: Rb-0.05 нг, Sr-0.1 нг, Sm-0.02 нг, Nd-0.04 нг и не вносила существенных изменений в изотопный состав исследованных образцов.

Значение изотопного стандарта Sr SRM-987 во время проведения исследований составило ⁸⁷Sr/⁸⁶Sr=0.710238±21 (2σ, 5 величина Nd стандарта La измерений). а Jolla ¹⁴³Nd/¹⁴⁴Nd=0.511865±18 (2о, 3 измерения). Корректировка изотопного состава Sr на эффект изотопного фракционирования осуществлялась нормированием состава по отношению ⁸⁸Sr/⁸⁶Sr=8.37521, а состава Nd - по отношению ¹⁴⁸Nd/¹⁴⁴Nd=0.241570. Результаты анализа стандартного образца BCR-1: [Sr]=335.8 ppm, [Rb]=47.16 ppm, [Sm]=6.487 ppm, [Nd]=28.45

ppm,⁸⁷Sr/⁸⁶Sr=0.705053±11,⁸⁷Rb/⁸⁶Sr=0.40615,¹⁴³Nd/¹⁴⁴Nd=0.51266 3±9,¹⁴⁷Sm/¹⁴⁴Nd 0.13829.

Вычисление параметров изохрон проводилось по программе Isoplot/Ex 2.49 [13] при 2 σ уровне значимости. При этом принимались ошибки воспроизводимости для измеренных отношений: ¹⁴⁷Sm/¹⁴⁴Nd - 0.3 %, ¹⁴³Nd/¹⁴⁴Nd - 0.003 %, ⁸⁷Rb/⁸⁶Sr - 1.0 %, ⁸⁷Sr/⁸⁶Sr - 0.01 %.

Результаты исследования

Слюдиты сложены в основном флогопитом, а также переменными количествами турмалина, талька, плагиоклаза, амфибола тремолит-актинолитового ряда, хлорита, апатита и флюорита. Нами изучены слюдиты сложенные ассоциациями флогопит+амфибол+плагиоклаз+турмалин, флогопит+турмалин, а также турмалин-флогопит-кварц-плагиоклазовых гнезд в слюдитах и турмалин-флюоритовых прожилков, рассекающих слю-5 диты, из разных месторождений и проявлений Изумрудных копей Урала.

Тремолит-турмалин-флогопитовые метасоматиты

<u>Флогопит</u> представлен чешуйками бурого цвета размером несколько мм, слагающих основную массу породы, а также мелкими включениями в турмалине. По химическому составу флогопит основной массы можно разделить на две разновидности. Первая характеризуется незначительными содержаниями Na (0.03-0.05 ф.е.), концентрации Ti, F, а также железистость $Fe_{oбщ}$ *100%/($Fe_{oбщ}$ +Mg) (f) составляют соответственно 0.04-0.07 ф.е., 0.26-0.29 ф.е., 33.9-34.8% (табл. 1, ан 1-2). Содержания Na и Ti и величина f во флогопите второй разновидности идентичны таковым для первой разновидности. Однако концентрация фтора здесь существенно выше и составляет 0.89 ф.е. (табл. 1, ан. 3). Флогопит включений содержит существенно больше Na (0.25 ф.е.) и меньше F (0.20 ф.е), а содержания Ti, а также железистость, составляющие, соответственно 0.07 и 35.1% ф.е., идентичны флогопиту основной массы (табл. 1, ан. 4).

<u>Плагиоклаз</u> представлен выделениями двух типов. Первый тип вместе с флогопитом слагает основную массу метасоматитов, второй - это включения в турмалине. Состав плагиоклаза основной массы варьирует от олигоклаза до альбита An₁₄₋₀ Плагиоклаз включений – более кальциевый - андезин An₃₅ (табл. 2).

<u>Турмалин</u> слагает кристаллы черного цвета длиной до 1 см, в основном ориентированные по сланцеватости метасоматитов. На кристаллах турмалина развиты индукционные поверхности совместного роста с флогопитом. Зачастую в центральных частях кристаллов наблюдаются мелкие включения плагиоклаза и флогопита (рис. 1). Иногда такие включения содержатся и в краевых частях зерен. По данным расчета кристаллохимических формул и согласно классификации [11] турмалин отвечает гидроксил-дравиту (табл. 3, рис. 2). Минерал содержит F, концентрации которого варьируют от 0 до 0.28 ф.е. Железистость изменяется от 16.4 до 27.9%, величина отношения Ca/(Ca+Na) (*Ca*) - от 16.8 до 35.5%. Для большинства изученных кристаллов характерно зональное распределение содержаний фтора, f и *Ca*, однако закономерности в таком распределении нет (табл. 3).

Таблица 1

Химический состав (мас.%) флогопита тремолит-турмалин-

Комп.1234SiO238.7837.0940.3239.56TiO21.280.710.371.25Cr2O30.000.000.000.17V2O30.000.170.170.17Al2O316.0416.5314.5916.33NiO0.020.030.170.00FeO_ofm_15.0715.278.7214.32MnO0.160.160.320.16MgO16.4616.0520.5914.81CaO0.000.000.000.38K2O8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Cymma101.0199.0099.4199.71Формульные единицы в расчет на 7 катиото0.071.07Cymma4.004.004.004.00Mg1.791.782.231.63Feodia0.920.950.530.89Al ^{V1} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01V0.01V-0.010.010.01Na0.030.050.060.25Ca </th <th></th> <th>флогопитов</th> <th>вых мета</th> <th>соматитов</th> <th></th>		флогопитов	вых мета	соматитов	
SiO238.7837.0940.3239.56TiO21.280.710.371.25Cr2O30.000.000.000.17V2O30.000.170.170.17Al2O316.0416.5314.5916.33NiO0.020.030.170,00FeO_o6m,15.0715.278.7214.32MnO0.160.160.320.16MgO16.4616.0520.5914.81CaO0.000.000.000.38K2O8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Cymma101.0199.0099.4199.71Формульные единицы в расчете на 7 катионов5i2.832.76Si2.832.762.932.93Al ^{IV} 1.171.241.071.07Cymma4.004.004.004.00Mg1.791.782.231.63Feosina0.920.950.530.89Al ^{IVI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01V-0.010.010.01Ni0.01V <td>Комп.</td> <td>1</td> <td>2</td> <td>3</td> <td>4</td>	Комп.	1	2	3	4
TiO2 1.28 0.71 0.37 1.25 Cr2O3 0.00 0.00 0.00 0.17 V2O3 0.00 0.17 0.17 0.17 Al2O3 16.04 16.53 14.59 16.33 NiO 0.02 0.03 0.17 0,00 FeO_o6m_ 15.07 15.27 8.72 14.32 MnO 0.16 0.16 0.32 0.16 MgO 16.46 16.05 20.59 14.81 CaO 0.00 0.00 0.00 0.38 K2O 8.81 8.64 9.28 7.59 Na2O 0.21 0.35 0.43 1.74 F 1.26 1.10 3.87 0.85 H2O* 3.45 3.36 2.21 2.74 2F=O 0.53 0.46 1.63 0.36 Cymma 101.01 99.00 99.41 99.71 Формульные единицы в расчете на 7 катионов 1.07	SiO ₂	38.78	37.09	40.32	39.56
$C_{r_2O_3}$ 0.000.000.0170.17 V_2O_3 0.000.170.170.17 Al_2O_3 16.0416.5314.5916.33NiO0.020.030.170,00FeO_ofmin15.0715.278.7214.32MnO0.160.160.320.16MgO16.4616.0520.5914.81CaO0.000.000.000.38K2O8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Cymma101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.76Si2.832.762.932.93Al ^{IV} 1.171.241.071.07Cymma4.004.004.004.00Mg1.791.782.231.63Fe_ofmin0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01V0.01V-0.010.010.01Ni0.01V-0.010.050.06Na <t< td=""><td>TiO₂</td><td>1.28</td><td>0.71</td><td>0.37</td><td>1.25</td></t<>	TiO ₂	1.28	0.71	0.37	1.25
V2O3 0.00 0.17 0.17 0.17 Al2O3 16.04 16.53 14.59 16.33 NiO 0.02 0.03 0.17 0,00 FeO_ofm_ 15.07 15.27 8.72 14.32 MnO 0.16 0.16 0.32 0.16 MgO 16.46 16.05 20.59 14.81 CaO 0.00 0.00 0.00 0.38 K2O 8.81 8.64 9.28 7.59 Na2O 0.21 0.35 0.43 1.74 F 1.26 1.10 3.87 0.85 H2O* 3.45 3.36 2.21 2.74 2F=O 0.53 0.46 1.63 0.36 Cymma 101.01 99.00 99.41 99.71 Формульные единицы в расчете на 7 катионов 5i 2.83 2.76 2.93 2.93 Al ^{1V} 1.17 1.24 1.07 1.07 1.07	Cr_2O_3	0.00	0.00	0.00	0.17
Al2O316.0416.5314.5916.33NiO0.020.030.170,00FeO_ofmt15.0715.278.7214.32MnO0.160.160.320.16MgO16.4616.0520.5914.81CaO0.000.000.000.38K2O8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Сумма101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.76Si2.832.762.932.93Al ^{IV} 1.171.241.071.07Сумма4.004.004.004.00Mg1.791.782.231.63Feofin0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01V0.01V-0.010.01-K0.820.820.860.72Na0.030.050.060.25Ca0.03K0.850.870.921.00	V_2O_3	0.00	0.17	0.17	0.17
NiO 0.02 0.03 0.17 0,00 FeO _{oбщ} 15.07 15.27 8.72 14.32 MnO 0.16 0.16 0.32 0.16 MgO 16.46 16.05 20.59 14.81 CaO 0.00 0.00 0.00 0.38 K ₂ O 8.81 8.64 9.28 7.59 Na ₂ O 0.21 0.35 0.43 1.74 F 1.26 1.10 3.87 0.85 H ₂ O* 3.45 3.36 2.21 2.74 2F=O 0.53 0.46 1.63 0.36 Cymma 101.01 99.00 99.41 99.71 Формульные единицы в расчете на 7 катионов 5i 2.83 2.76 2.93 2.93 Al ^{IV} 1.17 1.24 1.07 1.07 Cymma 4.00 4.00 4.00 4.00 Mg 1.79 1.78 2.23 1.63 Fe _{ofini} <td>Al₂O₃</td> <td>16.04</td> <td>16.53</td> <td>14.59</td> <td>16.33</td>	Al ₂ O ₃	16.04	16.53	14.59	16.33
FeO _{общ.} 15.07 15.27 8.72 14.32 MnO 0.16 0.16 0.32 0.16 MgO 16.46 16.05 20.59 14.81 CaO 0.00 0.00 0.00 0.38 K ₂ O 8.81 8.64 9.28 7.59 Na ₂ O 0.21 0.35 0.43 1.74 F 1.26 1.10 3.87 0.85 H ₂ O* 3.45 3.36 2.21 2.74 2F=O 0.53 0.46 1.63 0.36 Cymma 101.01 99.00 99.41 99.71 Формульные единицы в расчете на 7 катионов Si 2.83 2.76 2.93 2.93 Al ^{IV} 1.17 1.24 1.07 1.07 1.07 Сумма 4.00 4.00 4.00 4.00 4.00 Mg 0.79 0.78 0.35 0.89 Al ^{VI} 0.21 0.21 0.18 0.35 </td <td>NiO</td> <td>0.02</td> <td>0.03</td> <td>0.17</td> <td>0,00</td>	NiO	0.02	0.03	0.17	0,00
MnO0.160.160.320.16MgO16.4616.0520.5914.81CaO0.000.000.000.38K2O8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Cymma101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.76Si2.832.762.932.93Al ^{IV} 1.171.241.071.07Cymma4.004.004.004.00Mg1.791.782.231.63Feofin0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.01V-0.010.010.01Ni0.01Ni0.01Ni0.01Ni0.01Ni0.01Na0.030.050.06O.25CaO.030.850.870.92O0.850.870.92	FeO _{общ.}	15.07	15.27	8.72	14.32
MgO16.4616.0520.5914.81CaO0.000.000.000.38K2O8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Сумма101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.762.93Al ^{1V} 1.171.241.071.07Сумма4.004.004.004.00Mg1.791.782.231.63Fe _{oбш.} 0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.01V-0.010.010.01Ni0.01Ni0.01Ni0.01Ni0.01Na0.030.050.06K0.820.820.86O0.050.060.25Ca0.03Cymma0.850.870.92Na0.850.870.92	MnO	0.16	0.16	0.32	0.16
CaO0.000.000.000.38 K_2O 8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H_2O*3.453.362.212.742F=O0.530.461.630.36Cymma101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.762.93Si2.832.762.932.93Al ^{IV} 1.171.241.071.07Cymma4.004.004.004.00Mg1.791.782.231.63Feodul0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.01V-0.010.010.01Ni0.01Ni0.01Ni0.01Ni0.01Na0.030.050.066Na0.030.050.06Cymma0.850.870.92	MgO	16.46	16.05	20.59	14.81
K_2O 8.818.649.287.59Na2O0.210.350.431.74F1.261.103.870.85H2O*3.453.362.212.742F=O0.530.461.630.36Cymma101.0199.0099.4199.71Формульные единицы в расчете на 7 катионов5i2.832.762.93Si2.832.762.932.93Al ^{IV} 1.171.241.071.07Cymma4.004.004.004.00Mg1.791.782.231.63Fe _{oбш.} 0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01Ni0.01-Cymma3.003.003.003.00K0.820.820.860.72Na0.030.050.060.25Ca0.03Cymma0.850.870.921.00	CaO	0.00	0.00	0.00	0.38
Na2O0.210.350.431.74F1.261.103.870.85 H_2O^* 3.453.362.212.742F=O0.530.461.630.36Сумма101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.762.93Al ^{IV} 1.171.241.071.07Сумма4.004.004.004.00Mg1.791.782.231.63Feodim0.920.950.530.89Al ^{VI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01Ni0.01-Cymma3.003.003.003.00K0.820.820.860.72Na0.030.050.060.25Ca0.03Cymma0.850.870.921.00	K ₂ O	8.81	8.64	9.28	7.59
F 1.26 1.10 3.87 0.85 H_2O^* 3.45 3.36 2.21 2.74 $2F=O$ 0.53 0.46 1.63 0.36 $Cymma$ 101.01 99.00 99.41 99.71 Формульные единицы в расчете на 7 катионовSi 2.83 2.76 2.93 2.93 Al^{IV} 1.17 1.24 1.07 1.07 $Cymma$ 4.00 4.00 4.00 4.00 4.00 Mg 1.79 1.78 2.23 1.63 $Fe_{ofm.}$ 0.92 0.95 0.53 0.89 Al^{VI} 0.21 0.21 0.18 0.35 Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.01 0.01 V $ 0.01$ 0.01 0.01 Ni $ 0.01$ $-$ Cymma 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca $ 0.03$	Na ₂ O	0.21	0.35	0.43	1.74
H_2O^* 3.453.362.212.742F=O0.530.461.630.36Сумма101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.762.932.93 Al^{IV} 1.171.241.071.07Сумма4.004.004.004.00Mg1.791.782.231.63Feodul0.920.950.530.89 Al^{VI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.010.01Ni0.01-Cymma3.003.003.003.00K0.820.820.860.72Na0.030.050.060.25Ca0.03Cymma0.850.870.921.00	F	1.26	1.10	3.87	0.85
2F=00.530.461.630.36Сумма101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.762.932.93 Al^{IV} 1.171.241.071.07Сумма4.004.004.004.004.00Mg1.791.782.231.63Fe _{ofm.} 0.920.950.530.89 Al^{VI} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.020.01V-0.010.010.01Ni0.01K0.820.820.86Na0.030.050.06Ca0.03Cymma0.850.870.92	H_2O^*	3.45	3.36	2.21	2.74
Сумма101.0199.0099.4199.71Формульные единицы в расчете на 7 катионовSi2.832.762.932.93 Al^{IV} 1.171.241.071.07Сумма4.004.004.004.00Mg1.791.782.231.63Fe _{общ} 0.920.950.530.89 Al^{V1} 0.210.210.180.35Ti0.070.040.020.07Mn0.010.010.020.01V-0.010.010.01Ni0.01-Cymma3.003.003.003.00K0.820.820.860.72Na0.030.050.060.25Ca0.030.92Cymma0.850.870.921.00	2F=O	0.53	0.46	1.63	0.36
Формульные единицы в расчете на 7 катионов Si 2.83 2.76 2.93 2.93 Al ^{IV} 1.17 1.24 1.07 1.07 Cymma 4.00 4.00 4.00 4.00 4.00 Mg 1.79 1.78 2.23 1.63 Fe _{oбш.} 0.92 0.95 0.53 0.89 Al ^{VI} 0.21 0.21 0.18 0.35 Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.02 0.01 V - 0.01 0.01 0.01 Ni - - 0.01 0.01 Ni - - 0.01 - Cymma 3.00 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 0.03	Сумма	101.01	99.00	99.41	99.71
Si 2.83 2.76 2.93 2.93 Al^{IV} 1.17 1.24 1.07 1.07 Cymma 4.00 4.00 4.00 4.00 4.00 Mg 1.79 1.78 2.23 1.63 Fe _{ofmennet} 0.92 0.95 0.53 0.89 Al^{VI} 0.21 0.21 0.18 0.35 Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.02 0.01 Cr - - 0.01 0.01 Ni - - 0.01 0.01 Ni - - 0.01 - Cymma 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 0.05 Cymma 0.85 0.87 0.92 1.00	Фо	рмульные един	ицы в расче	ете на 7 катио	нов
Al^{IV} 1.17 1.24 1.07 1.07 C_{YMMa} 4.00 4.00 4.00 4.00 4.00 Mg 1.79 1.78 2.23 1.63 Fe_{o5m} 0.92 0.95 0.53 0.89 Al^{VI} 0.21 0.21 0.18 0.35 Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.02 0.01 V - - 0.01 0.01 Ni - - 0.01 0.01 Ni - - 0.01 - Cymma 3.00 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 0.05 0.06 0.25 Ca - - 0.03 0.92 1.00	Si	2.83	2.76	2.93	2.93
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Al^{IV}	1.17	1.24	1.07	1.07
Mg 1.79 1.78 2.23 1.63 Fe _{oom} 0.92 0.95 0.53 0.89 Al ^{VI} 0.21 0.21 0.18 0.35 Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.02 0.01 Cr - - 0.01 0.01 0.01 V - 0.01 0.01 0.01 0.01 Ni - - 0.01 0.01 0.01 Ni - - 0.01 0.01 0.01 Ni - - 0.01 0.01 $-$ Cymma 3.00 3.00 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 0.03 0.25 0.03 Ca - $ 0.03$ 0.25 0.03 0.92 1.00	Сумма	4.00	4.00	4.00	4.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg	1.79	1.78	2.23	1.63
Al ^{VI} 0.21 0.21 0.18 0.35 Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.02 0.01 Cr - - 0.01 0.01 V - 0.01 0.01 0.01 Ni - - 0.01 - Cymma 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 0.05 0.02	Fe _{общ.}	0.92	0.95	0.53	0.89
Ti 0.07 0.04 0.02 0.07 Mn 0.01 0.01 0.02 0.01 Cr - - 0.01 0.01 0.01 V - 0.01 0.01 0.01 0.01 Ni - - 0.01 0.01 - Cymma 3.00 3.00 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - - 0.03 0.05 0.02 1.00	Al^{VI}	0.21	0.21	0.18	0.35
Mn 0.01 0.01 0.02 0.01 Cr - - 0.01 0.01 0.01 V - 0.01 0.01 0.01 0.01 Ni - - 0.01 - - Cymma 3.00 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - - 0.03 Cymma 0.85 0.87 0.92 1.00	Ti	0.07	0.04	0.02	0.07
Cr - - 0.01 V - 0.01 0.01 0.01 Ni - - 0.01 - Cymma 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 Cymma 0.85 0.87 0.92 1.00	Mn	0.01	0.01	0.02	0.01
V - 0.01 0.01 0.01 Ni - - 0.01 - Cymma 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 Cymma 0.85 0.87 0.92 1.00	Cr	-	-	-	0.01
Ni - 0.01 - Cymma 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 0.92 1.00 Cymma 0.85 0.87 0.92 1.00	V	-	0.01	0.01	0.01
Cymma 3.00 3.00 3.00 3.00 3.00 K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 Cymma 0.85 0.87 0.92 1.00	Ni	-	-	0.01	-
K 0.82 0.82 0.86 0.72 Na 0.03 0.05 0.06 0.25 Ca - - 0.03 Cymma 0.85 0.87 0.92 1.00	Сумма	3.00	3.00	3.00	3.00
Na 0.03 0.05 0.06 0.25 Ca - - - 0.03 Cymma 0.85 0.87 0.92 1.00	K	0.82	0.82	0.86	0.72
Ca - - 0.03 Сумма 0.85 0.87 0.92 1.00	Na	0.03	0.05	0.06	0.25
Сумма 0.85 0.87 0.92 1.00	Ca	-	-	-	0.03
5	Сумма	0.85	0.87	0.92	1.00

Продолжение таблицы 1

Комп.	1	2	3	4
OH	1.68	1.67	1.03	1.40
F-	0.29	0.26	0.89	0.20
O ²⁻	0.03	-	0.08	0.40
Сумма	2.00	1.93	2.00	2.00
Al_{Σ}	1.38	1.45	1.25	1.42
f.%	33.9	34.8	19.2	35.2

Примечание * - рассчитано по стехиометрии. f=Fe*100%/(Fe++Mg).

Таблица 2

Химический состав (мас.%) плагиоклаза

Компон.	1	2	3	4
SiO ₂	57.07	63.33	67.54	64.87
TiO ₂	0.30	0.00	0.02	0.05
Al_2O_3	26.98	22.91	20.18	21.47
CaO	7.79	3.20	0.02	1.89
K ₂ O	0.03	0.04	2.19	0.04
Na ₂ O	7.91	10.51	10.57	10.77
Сумма	99.97	99.99	100.52	99.09
Формул	ьные ед	иницы в	расчете н	а 5 катионов
Si	2.53	2.77	2.94	2.86
Al	1.41	1.18	1.04	1.12
Ti	0.01	-	-	-
Na	0.68	0.89	0.89	0.92
Ca	0.37	0.15	0.00	0.09
K	-	-	0.12	-

Примечание. 1-3 – тремолит-турмалин-флогопитовые метасоматиты, 4 – кварц-турмалин-флогопит-плагиоклазовое гнездо в слюдитах.

Рис. 1. Включения плагиоклаза и флогопита в турмалине из тремолит-турмалин-флогопитовых метасоматитов. Без анализатора. Ширина поля зрения 0.96 мм.

Таблица 3

плагиоклаз-флогопитовых метасоматитов										
Компон.	1	2ц	3 к	4 ц	5 к	6	7ц	8 к	9ц	10 к
SiO ₂	37.85	35.43	35.65	34.95	35.10	36.30	34.62	34.89	34.76	33.81
TiO ₂	0.47	0.61	0.53	0.46	0.49	0.47	0.75	0.70	0.86	0.75
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.02	0.00
V_2O_3	0.09	0.11	0.00	0.00	0.07	0.02	0.07	0.07	0.02	0.02
Al_2O_3	33.13	32.81	32.53	32.68	32.46	33.87	32.93	32.15	32.18	32.36
NiO	0.00	0.05	0.05	0.00	0.03	0.00	0.02	0.02	0.09	0.00
FeO _{общ.}	3.78	3.90	4.04	3.88	3.39	5.63	5.53	5.61	5.54	5.38
MnO	0.00	0.03	0.02	0.07	0.03	0.07	0.03	0.00	0.00	0.00
MgO	9.79	9.98	9.95	9.71	9.73	8.15	8.24	8.54	8.67	8.73
CaO	0.80	1.35	1.52	1.28	1.44	1.02	1.70	1.76	1.82	1.83
K ₂ O	0.00	0.00	0.00	0.00	0.02	0.04	0.03	0.04	0.00	0.00
Na ₂ O	2.19	2.14	2.06	2.16	1.99	2.19	2.04	2.14	1.86	1.84

Химический состав (мас.%) турмалина турмалин-тремолитплагиоклаз-флогопитовых метасоматитов

Компон.	1	2ц	3 к	4ц	ЭК	6	/Ц	δк	9ц	10 K
F	0.00	0.00	0.04	0.00	0.10	0.37	0.24	0.53	0.49	0.46
2F=O	0.00	0.00	0.02	0.00	0.04	0.16	0.10	0.22	0.21	0.20
Сумма	88.10	86.42	86.36	85.20	84.84	87.98	86.10	86.22	86.09	84.99
	Форм	иульні	ые еди	ницы в	в расче	те на 1	5 кати	онов		
Si	5.97	5.72	5.77	5.72	5.77	5.82	5.71	5.76	5.73	5.63
Al _T	0.03	0.28	0.23	0.28	0.23	0.18	0.29	0.24	0.27	0.37
Сумма Т	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Alz	6.00	5.97	5.98	6.00	6.00	6.00	6.00	6.02	5.98	5.99
Fez	-	0.03	0.02	-	-	-	-	-	0.02	0.01
Сумма Z	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Mg	2.30	2.40	2.40	2.37	2.39	1.95	2.02	2.10	2.13	2.17
Fey	0.50	0.50	0.53	0.53	0.47	0.76	0.76	0.77	0.75	0.74
Al_Y	0.13	-	-	0.03	0.07	0.23	0.10	0.02	-	-
Ti	0.06	0.07	0.06	0.06	0.06	0.06	0.09	0.09	0.11	0.09
V	0.01	0.01	-	-	0.01	-	0.01	0.01	-	-
Ni	-	0.01	0.01	-	-	-	-	-	0.01	-
Mn	-	-	-	0.01	-	0.01	-	-	-	-
Cr	-	-	-	-	0.01	-	-	-	-	-
Сумма Ү	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Na	0.67	0.67	0.65	0.69	0.63	0.68	0.65	0.69	0.59	0.59
Ca	0.14	0.23	0.26	0.22	0.25	0.18	0.30	0.31	0.32	0.33
Вакансия	0.19	0.10	0.09	0.09	0.12	0.14	0.04	-	0.09	0.08
Κ	-	-	-	-	-	0.01	0.01	-	-	-
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
OH ⁻ v	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
OH-W	0.84	0.99	0.93	0.99	0.83	0.61	0.61	0.44	0.58	0.70
F_W	-	-	0.02	-	0.05	0.19	0.13	0.28	0.26	0.24
$O^{2-}W$	0.16	0.00	0.05	0.01	0.12	0.21	0.26	0.28	0.17	0.06
Сумма W	1.00	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Al_{Σ}	6.16	6.25	6.21	6.31	6.29	6.40	6.40	6.26	6.25	6.35
Fe_{Σ}	0.50	0.53	0.55	0.53	0.47	0.76	0.76	0.77	0.76	0.75
f, %	17.8	18.0	18.6	18.3	16.4	27.9	27.4	26.9	26.4	25.7
<i>Ca</i> , %	16.8	25.8	29.0	24.7	28.6	20.5	31.5	31.2	35.1	35.5

Примечание ц – центр кристалла, п – промежуточная зона, к – край кристалла. f=Fe*100%/ (Fe+ +Mg). *Ca*=Ca*100%/(Ca+Na). 10

Контуром обозначено поле химических составов турмалинов VI – щелочные турмалины. Поля нанесены – центр кристалла, 5 – край - гидро-- тремолит-турмалин-флогопитовые метасоматиты; 2-6 - турмалин-флогопитовые мета-– турмалин-III; 7 - кварц-турмалин-флогопит-плагиоклазовые гнезда; 8 - турмалин-флюоритовые прожил-- ОН-в позиции W; Б – фтор-турмалины; III - центр кристалла, 3 - край кристалла), 4-5 - турмалин-II (4 анионов О²⁻ окси-турмалины, II соотношение - кальциевые турмалины; других типов метасоматитов Уральских Изумрудных Копей. Поля: 1 ксил-турмалины; IV - вакансионные турмалины; V - кальциевые ту турмалинов слюдитов. соотношение 2. Химический состав в соответствии с работой [11]. 1 соматиты: 2-3 – турмалин-I (2 соотношение Fe-Al-Mg. В Рис. кристалла), 6 КИ.

Проведение ЯГР-исследований двух усредненных проб показало, что большая часть железа в исследуемом турмалине находится в двухвалентной форме. Отношение ${\rm Fe}^{3+}/{\rm Fe}_{\rm oбщ}$ составляет 0.08-0.14.

Турмалин-флогопитовые метасоматиты

<u>Флогопит</u> слагает чешуйки преимущественно темно-бурого цвета размером от долей мм до 1 см. Можно выделить, по крайней мере, две генерации флогопита. На пластинках флогопита-I развиты индукционные поверхности совместного роста с турмалином, флогопит-II цементирует его брекчированные кристаллы (рис. 3). По данным микрозондовых исследований флогопит-I содержит повышенные концентрации фтора (0.74-0.90 ф.е.). Содержания титана низкие и составляют 0.02-0.03 ф.е., железистость колеблется в пределах 24.2-25.3% (табл. 4). Флогопит-II содержит меньше F (0.61-0.66 ф.е.), однако величина f и концентрации титана такие же как во флогопите-I.

<u>Турмалин</u> обычно слагает кристаллы длиной от нескольких мм до 3 см и в поперечнике до 1 см темно-бурого до черного цвета, а также их сростки, состоящие из 3-6 кристаллов. Выделения турмалина, как правило, ориентированы по сланцеватости слюдитов. Иногда минерал образует параллельные, сноповидные и радиально-лучистые агрегаты диаметром до 25 см. Кристаллы турмалина имеют индукционные поверхности совместного роста с флогопитом-I. Зачастую индивиды изогнуты и разбиты поперечными трещинами. Обломки могут цементироваться флогопитом-II, а также агрегатом тонкозернистого кварца, плагиоклаза, рутила и сульфидов (рис. 4). Наблюдения в шлифах свидетельствуют, что в некоторых зернах проявлен слабый плеохроизм от желтого до желто-коричневого цвета.

Данные микрозондовых исследований позволяют выделить среди турмалинов этого типа слюдитов три группы кристаллов. Кристаллы первой группы характеризуются низким содержанием фтора (0-0.12 ф.е.), отмечается некоторое увеличение f и содержания Ti от центральных частей кристаллов к краевым от 17.1-18.6% до 18.0-19.0% и от 0.12-0.13 до 0.14-0.18 ф.е., соответственно (табл.5, ан. 1-5, рис. 2а). Величина *Ca* составляет 24.6-26.1% и ее распределение имеет осциляционный характер в пределах одного кристалла (табл. 5, ан. 1-5).

Таблица 4

Рис. 3. Флогопит второй генерации в турмалин-флогопитовых метасоматитах, цементирующий брекчирован-ные кристаллы турмалина. Николи скрещены. Ширина поля зрения 0.96 мм.

			-					
SiO ₂	39.68	40.66	40.67	40.25	40.25	39.62	40.52	39.62
TiO ₂	0.36	0.55	0.37	0.36	0.37	0.37	0.37	0.36
Cr ₂ O ₃	0.00	0.03	0.00	0.17	0.17	0.17	0.00	0.17
V_2O_3	0.03	0.00	0.02	0.17	0.00	0.17	0.07	0.00
Al ₂ O ₃	14.92	14.38	15.21	15.21	14.68	15.29	15.50	15.25
NiO	0.00	0.05	0.00	0.00	0.00	0.00	0.03	0.00
FeO _{общ.}	11.41	11.04	11.21	10.80	10.84	11.52	11.33	11.56
MnO	0.16	0.33	0.33	0.16	0.32	0.16	0.16	0.16
MgO	18.94	19.42	18.78	18.74	19.36	19.02	18.43	18.45
CaO	0.13	0.13	0.13	0.13	0.02	0.00	0.00	0.13
K ₂ O	9.62	8.75	9.08	8.91	9.26	9.17	9.04	9.18
Na ₂ O	0.21	0.36	0.36	0.28	0.28	0.21	0.28	0.28
F	3.54	3.22	3.57	3.90	3.30	2.65	2.74	2.84
H_2O^*	2.28	2.53	2.20	2.04	2.41	2.85	2.51	2.58
2F=O	1.49	1.36	1.50	1.64	1.39	1.12	1.15	1.20
Сумма	99.79	100.09	100.43	99.48	99.87	100.08	99.83	99.38
Si	2.91	2.95	2.95	2.94	2.93	2.88	2.95	2.91
Al ^{IV}	1.09	1.05	1.05	1.06	1.07	1.12	1.05	1.09
Сумма	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Mg	2.07	2.10	2.03	2.04	2.10	2.06	2.00	2.02
Fe	0.70	0.67	0.68	0.66	0.66	0.70	0.69	0.71
Al ^{VI}	0.20	0.18	0.25	0.25	0.19	0.19	0.28	0.23
Ti	0.02	0.03	0.02	0.02	0.02	0.02	0.02	0.02
Mn	0.01	0.02	0.02	0.01	0.02	0.01	0.01	0.01
Cr	-	-	-	0.01	0.01	0.01	-	0.01
V	-	-	-	0.01	-	0.01	-	-
Сумма	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00
К	0.90	0.81	0.84	0.83	0.86	0.85	0.84	0.86
Na	0.03	0.05	0.05	0.04	0.04	0.03	0.04	0.04
Ca	0.01	0.01	0.01	0.01	-	-	-	0.01
Сумма	0.94	0.87	0.90	0.88	0.90	0.88	0.88	0.91

Химический состав (мас.%) флогопита турмалин-флогопитовых метасоматитов

Комп.

Таблица 5

Комп.	1	2	3	4	5	6	7	8
OH	1.11	1.22	1.06	0.99	1.17	1.38	1.22	1.26
F-	0.82	0.74	0.82	0.90	0.76	0.61	0.63	0.66
O ²⁻	0.07	0.04	0.12	0.11	0.07	0.01	0.15	0.08
Сумма	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
Al_{Σ}	1.29	1.23	1.30	1.31	1.26	1.31	1.33	1.32
f.%	25.3	24.2	25.1	24.4	23.9	25.4	25.6	26.0

Продолжение таблицы 4

Примечание. * - рассчитано по стехиометрии. 1-5 – флогопит-I, 6-8 – флогопит-II.

Рис. 4. Агрегатом тонкозернистого кварца, плагиоклаза, рутила и суль-фидов в турмалин-флогопитовых метасоматитах, цементирующий брекчирован-ные кристаллы турмалина. Николи скрещены. Ширина поля зрения 0.96 мм.

Химический состав (мас.%) турмалина турмалин-флогопитовых
метасоматитов

Комп.	1ц	2к	3ц	4п	5к	6ц
SiO ₂	37.39	35.80	36.74	35.62	34.90	34.36
TiO ₂	1.06	1.16	0.97	1.13	1.48	0.45
Cr ₂ O ₃	0.04	0.00	0.13	0.10	0.00	0.00
V ₂ O ₃	0.07	0.07	0.02	0.03	0.03	0.00
Al_2O_3	32.65	32.26	34.13	33.70	32.32	33.33
NiO	0.00	0.00	0.00	0.03	0.00	0.00
FeO _{общ.}	3.38	3.69	3.76	3.78	4.01	3.95
MnO	0.16	0.00	0.06	0.06	0.02	0.00
MgO	9.17	9.43	9.23	9.13	9.53	9.43
CaO	1.25	1.32	1.26	1.21	1.32	0.89
Na ₂ O	2.09	2.07	2.00	2.05	2.16	2.12
F	0.24	0.00	0.00	0.01	0.00	0.18
2F=O	0.10	0.00	0.00	0.00	0.00	0.08
Сумма	87.40	85.80	88.31	86.86	85.79	84.65
	Формул	ьные едини	цы в расче	ете на 15 к	атионов	
Si _T	6.01	5.84	5.82	5.74	5.71	5.64
Al _T	0.00	0.16	0.18	0.26	0.29	0.36
Сумма Т	6.01	6.00	6.00	6.00	6.00	6.00
Alz	6.00	6.00	6.00	6.00	5.94	6.00
Fez	-	-	-	-	0.06	-
Сумма Z	6.00	6.00	6.00	6.00	6.00	6.00
Mg	2.20	2.29	2.18	2.19	2.33	2.31
Fey	0.45	0.50	0.50	0.51	0.49	0.54
Al _Y	0.18	0.05	0.18	0.13	-	0.09
Ti	0.13	0.14	0.12	0.14	0.18	0.06
Cr	0.01	-	0.02	0.01	-	-
V	0.01	0.01	0.00	-	-	-
Ni	-	-	-	-	-	-
Mn	0.02	-	0.01	0.01	-	-
Сумма Ү	2.99	3.00	3.00	3.00	3.00	3.00
Na	0.65	0.66	0.61	0.64	0.67	0.67
16						

Продолжение таблицы 5											
Комп.	1ц	2F	c		3ц	4п		5к	6ц		
Ca	0,22	0,2	3	(0,21	0,21		0,23	0,16		
Вакансия	0.13	0.1	1	(0.17	0.15		0.08	0.17		
Сумма Х	1.00	1.0	0		1.00	1.00)	1.00	1.00		
OH ⁻ v	3.00	3.0	0	,	3.00	3.00)	3.00	3.00		
OH- ^w	0.33	0.7	0	(0.71	0.77	'	0.83	0.74		
$O^{2-}W$	0.55	0.3	0	(0.29	0.22		0.17	0.00		
F_W	0.12	-			-	0.01		-	0.09		
Сумма W	1.00	1.0	0		1.00	1.00)	1.00	0.84		
Al_{Σ}	6.18	6.2	1	(6.37	6.40)	6.23	6.45		
Fe _Σ	0.45	0.5	0	(0.50	0.51		0.55	0.54		
f,%	17.1	18.	0		18.6	18.9)	19.1	19.0		
<i>Ca</i> .%	24.8	26.	1	,	25.8	24.6	,	25.2	18.8		
			Продолжение таблицы						аблицы 5		
Комп.	7к	8ц	9ĸ	:	10ц	11	к	12ц	13к		
SiO ₂	36.23	36.34	35.7	79	36.51	37.5	54	36.15	35.53		
TiO ₂	0.27	0.53	0.2	3	0.72	0.1	7	1.11	0.96		
Cr ₂ O ₃	0.03	0.09	0.0	6	0.05	0.0	3	0.00	0.00		
V ₂ O ₃	0.00	0.05	0.0	8	0.02	0.0	5	0.07	0.05		
Al ₂ O ₃	32.30	33.70	33.1	0	33.38	33.9	98	32.19	32.56		
NiO	0.00	0.05	0.0	6	0.04	0.0	0	0.00	0.00		
FeO _{общ.}	5.25	3.96	5.8	0	4.01	5.6	1	4.25	4.01		
MnO	0.00	0.02	0.0	5	0.02	0.0	3	0.05	0.02		
MgO	9.87	9.38	8.5	0	9.17	8.7	5	9.42	9.65		
CaO	1.45	1.02	0.7	4	1.28	0.9	1	1.38	1.64		
Na ₂ O	2.12	2.08	2.3	5	2.16	2.2	7	2.07	1.93		
F	0.69	0.15	0.7	4	0.00	0.4	0	0.08	0.09		
2F=O	0.29	0.06	0.3	1	0.00	0.1	7	0.03	0.04		
Сумма	87.95	87.32	87.2	21	87.36	89.5	58	86.76	86.40		
	Форму	льные е	дини	цы	в расче	те на 1	5 к	атионов			
Si _T	5.80	5.80	5.7	9	5.86	5.8	9	5.85	5.77		
Al _T	0.20	0.20	0.2	1	0.14	0.1	1	0.15	0.23		
Сумма Т	6.00	6.00	6.0	0	6.00	6.0	0	6.00	6.00		
Alz	5.90	6.00	6.0	0	6.00	6.0	0	5.99	5.99		
Fez	0.10	-	-		-	-		0.01	0.01		
Сумма Z	6.00	6.00	6.0	0	6.00	6.0	0	6.00	6.00		

Комп.	7к	8ц	9к	10ц	11к	12ц	13к
Mg	2.36	2.23	2.05	2.19	2.05	2.27	2.33
Fey	0.60	0.53	0.78	0.54	0.74	0.57	0.53
Al_{Y}	-	0.14	0.10	0.17	0.18	-	-
Ti	0.03	0.07	0.03	0.09	0.02	0.14	0.12
Cr	-	0.01	0.01	0.01	-	-	-
V	-	0.01	0.01	-	0.01	0.01	0.01
Ni	-	0.01	0.01	0.01	-	-	-
Mn	-	-	0.01	-	-	0.01	-
Сумма Ү	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Na	0.66	0.64	0.74	0.67	0.69	0.65	0.61
Ca	0,25	0,17	0,13	0,22	0,15	0,24	0,29
Вакансия	0.09	0.18	0.13	0.11	0.16	0.11	0.11
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00
OH	3.00	3.00	3.00	3.00	3.00	3.00	3.00
OH ⁻ w	0.55	0.83	0.59	0.68	0.68	0.70	0.77
$O^{2-}W$	0.00	0.09	0.00	0.32	0.12	0.26	0.18
F ⁻ w	0.35	0.08	0.38	-	0.20	0.04	0.05
Сумма W	0.90	1.00	0.97	1.00	1.00	1.00	1.00
Al_{Σ}	6.10	6.34	6.31	6.31	6.29	6.14	6.23
Fe_{Σ}	0.70	0.53	0.78	0.54	0.74	0.58	0.54
f,%	23.0	19.1	27.7	19.7	26.5	20.2	18.9
<i>Ca</i> .%	27.4	21.3	14.8	24.7	18.1	26.9	32.0
. <u></u>					Продо	лжение т	аблицы 5
Комп.	14ц	15п	16к	17	18ц	19п	20
SiO ₂	35.90	36.84	35.72	36.35	35.51	36.65	37.24
TiO ₂	1.21	1.09	1.26	1.34	1.06	0.85	0.77
Cr ₂ O ₃	0.00	0.00	0.00	0.05	0.07	0.03	0.02
V_2O_3	0.02	0.00	0.00	0.04	0.00	0.02	0.00
Al ₂ O ₃	32.52	32.21	32.18	31.60	32.19	32.55	33.62
NiO	0.00	0.03	0.00	0.00	0.00	0.00	0.00
FeO _{общ.}	4.23	3.89	4.42	3.88	4.55	4.31	4.30
MnO	0.00	0.07	0.10	0.02	0.07	0.02	0.03
MgO	9.96	9.56	9.56	9.55	9.59	9.54	9.05
CaO	1.76	1.54	1.50	1.36	1.80	2.02	1.01
10							

Комп.	21	22	23ц	24ц	25ц	26ц	27к
SiO ₂	36.64	36.96	36.41	36.69	36.93	33.72	35.51
TiO ₂	0.86	1.06	0.38	0.35	0.90	0.42	0.38
Cr ₂ O ₃	0.03	0.00	0.03	0.00	0.00	0.02	0.04
V_2O_3	0.04	0.00	0.00	0.00	0.00	0.10	0.07
Al ₂ O ₃	33.16	33.06	33.38	34.55	32.05	34.22	32.73
NiO	0.00	0.00	0.00	0.00	0.00	0.00	0.05
FeO _{общ.}	4.69	4.01	5.30	5.09	3.89	5.33	5.07
MnO	0.07	0.11	0.02	0.00	0.05	0.04	0.07
MgO	9.04	9.23	8.98	8.66	10.37	8.67	8.73
CaO	1.12	1.30	1.17	1.09	2.04	1.14	1.14
Na ₂ O	2.07	1.95	2.20	2.24	1.75	2.25	2.20
F	0.04	0.20	0.67	0.69	0.63	0.59	0.64
2F=O	0.02	0.08	0.28	0.29	0.27	0.25	0.27
Сумма	87.74	87.83	88.26	89.09	88.37	86.26	86.40
Si _T	5.85	5.90	5.82	5.80	5.88	5.50	5.80
Al _T	0.15	0.10	0.18	0.20	0.12	0.50	0.20
Сумма Т	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Alz	6.00	6.00	6.00	6.00	5.90	6.00	6.00
Fez	-	-	-	-	0.10	-	-
Сумма Z	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Mg	2.15	2.20	2.14	2.04	2.46	2.11	2.13
Fey	0.63	0.54	0.71	0.67	0.42	0.73	0.69
Al _Y	0.09	0.12	0.11	0.24	-	0.08	0.10
Ti	0.11	0.13	0.04	0.04	0.11	0.06	0.05
Cr	-	-	-	-	-	-	0.01
V	0.01	-	-	-	-	0.01	0.01
Ni	-	-	-	-	-	-	0.01
Mn	3.00	0.01	-	-	0.01	0.01	0.01
Сумма Ү	2.99	3.00	3.00	3.00	3.00	3.00	3.00
Na	0.64	0.60	0.68	0.69	0.54	0.71	0.70
Ca	0.19	0.22	0.20	0.18	0.35	0.20	0.20
Вакансия	0.17	0.17	0.12	0.12	0.11	0.09	0.10
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00
OH ⁻ v	3.00	3.00	3.00	3.00	3.00	3.00	3.00
20					•	J	

Продолжение таблицы 5

Комп.	14п	15п	16к	17	18u	19п	20
Na ₂ O	1.96	1.93	1.93	2.05	1.79	1.75	2.05
F	0.09	0.18	0.65	0.05	0.09	0.15	0.17
2F=O	0.04	0.08	0.27	0.02	0.04	0.06	0.07
Сумма	87.61	87.27	87.05	86.28	86.69	87.85	88.19
Si _T	5.76	5.93	5.78	5.91	5.76	5.88	5.91
Al _T	0.24	0.07	0.22	0.09	0.24	0.12	0.09
Сумма Т	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Alz	5.90	6.00	5.93	5.98	5.92	6.00	6.00
Fez	0.10	-	0.07	0.02	0.08	-	-
Сумма Z	6.00	6.00	6.00	6.00	6.00	6.00	6.00
Mg	2.38	2.29	2.31	2.32	2.32	2.28	2.14
Fey	0.47	0.52	0.53	0.51	0.54	0.58	0.57
Al _Y	-	0.04	-	-	-	0.03	0.20
Ti	0.15	0.13	0.15	0.16	0.13	0.10	0.09
Cr	-	-	-	0.01	0.01	-	-
V	-	-	-	0.01	-	-	-
Ni	-	-	-	-	-	-	-
Mn	-	0.01	0.01	-	0.01	-	-
Сумма Ү	3.00	3.00	3.00	3.00	3.00	3.00	3.00
Na	0.61	0.60	0.61	0.65	0.56	0.54	0.63
Ca	0.30	0.27	0.26	0.24	0.31	0.35	0.17
Вакансия	0.09	0.13	0.13	0.12	0.12	0.10	0.20
Сумма Х	1.00	1.00	1.00	1.00	1.00	1.00	1.00
OH	3.00	3.00	3.00	3.00	3.00	3.00	3.00
OH ⁻ w	0.79	0.54	0.52	0.62	0.82	0.56	0.66
$O^{2-}W$	0.17	0.37	0.14	0.35	0.13	0.36	0.26
Fw	0.05	0.09	0.33	0.03	0.05	0.08	0.09
Сумма W	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Al_{Σ}	6.15	6.11	6.14	6.06	6.16	6.15	6.29
Fe_{Σ}	0.57	0.52	0.60	0.53	0.62	0.58	0.57
f, %	19.2	18.6	20.6	18.6	21.0	20.2	21.0
Ca.%	33.2	30.6	30.0	26.8	35.7	38.9	21.4

Комп.	21	22	23ц	24ц	25ц	26ц	27к
OH- ^M	0.79	0.56	0.57	0.47	0.44	0.52	0.53
$O^{2-}W$	0.19	0.33	0.09	0.19	0.24	-	0.14
F _W	0.02	0.10	0.34	0.35	0.32	0.30	0.33
Сумма W	1.00	1.00	1.00	1.00	1.00	0.83	1.00
Al_{Σ}	6.24	6.22	6.29	6.44	6.02	6.58	6.30
Fe _Σ	0.63	0.54	0.71	0.67	0.52	0.73	0.69
f, %	22.5	19.6	24.9	24.8	17.4	25.6	24.5
<i>Ca</i> .%	23.0	26.9	22.7	21.2	39.2	21.9	22.2

См. примечание к табл. 3

Кристаллы турмалинов второй группы зональны по составу: от центральных частей к краевым увеличивается содержание фтора от 0-0.10 ф.е до 0.33-0.38 ф.е. (табл. 5, ан. 6-22, рис. 2а). У большинства изученных кристаллов этого типа в том же направлении несколько растет f и снижается содержание Ti от 19.0-19.7% до 20.6-26.5% и от 0.06-0.14 до 0.02-0.12 ф.е., соответственно (табл. 5). Вместе с тем необходимо отметить, что изменение величины f в пределах одного кристалла может носить осциляционный характер, составляя 19.2% в центральной части, снижаясь до 18.6% в промежуточной зоне и увеличиваясь до 20.6% в краевой (табл. 5, ан. 14-16). Величина *Са* варьирует в широких пределах от 18.8 до 38.9%, по отдельным зонам в пределах одного кристалла закономерности изменения этого параметра нет (табл. 5).

В кристаллах третьей группы центральные части значительно богаче фтором, чем в первой и второй, составляя 0.30-0.35 ф.е. (табл. 5, ан 23-27, рис. 2а) и являясь идентичными таковым для краевых зон кристаллов второй группы. Как и во второй группе в этих кристаллах наблюдается зональность в распределении содержания фтора. В одном из изученных кристаллов растут концентрации F от центральных частей к краевым 0.30 \rightarrow 0.33 ф.е. (табл. 5, ан. 26-27). Можно отметить, что кристаллы турмалинов этой группы по железистости, величине *Са* и содержанию Ti незональны. Эти параметры составляют, соответственно, 17.4-25.6%, 21.2-39.2% и 0.04-0.11 ф.е.

Таким образом, незначительные содержания фтора в центральных частях кристаллов турмалина первой группы позволяют предположить, что их формирование началось при низкой величине f_{F2} . Содержание фтора в центральных частях близки к дравитов ранних альбит-турмалинтаковым лля роговообманковых [1] и тремолит-турмалин-флогопитовых метасоматитов. Образование кристаллов турмалина второй группы началось при такой же низкой величине f_{F2} . Однако в процессе кристаллизации происходит повышение фугитивности фтора, и формирование турмалина завершается уже при высоких значениях этого параметра. Одновременно с образованием краевых зон кристаллов турмалина второй группы начинают кристаллизоваться турмалины третьей группы с повышенным содержанием фтора в центральных частях. Приведенные факты свидетельствуют, что, вероятно, можно выделить три зарождения турмалинов, кристаллизация которых проходила на фоне повышения f_{F2} .

Проведение ЯГР-исследований двух усредненных проб показало, что большая часть железа в исследуемом турмалине находится в двухвалентной форме. Отношение ${\rm Fe}^{3+}/{\rm Fe}_{\rm oбщ}$ составляет 0.05-0.07.

Кварц-турмалин-флогопит-плагиоклазовые гнезда

В слюдитах зачастую локализованы гнездообразные обособления кварц-турмалин-флогопит-плагиоклазового состава, которые, вероятно, представляют собой будинированные жилы того же состава. Возможно, что в других случаях в состав этих гнезд также входят берилл, маргарит и молибденит.

<u>Флогопит</u> слагает темно-бурые пластинки размером до нескольких см. По химическому составу это фтор-флогопит (1.08-1.12 ф.е. F), содержания Ті невысокие и составляют 0.02 ф.е., железистость варьирует в узких пределах от 19.8 до 20.5% (табл. 6 ан. 1-2).

<u>Плагиоклаз</u> слагает большую часть объема гнезд. По химическому составу это альбит (An₉) (табл. 2).

Таблица 6

Химический состав (мас.%) флогопита гнезд и прожилков в слюдитах

Комп.	1	2	3	4
SiO ₂	42.40	42.65	41.56	42.22
TiO ₂	0.37	0.37	0.37	0.37
Al_2O_3	17.52	17.97	14.44	14.42
Cr ₂ O ₃	0.17	0.18	0.00	0.05
V ₂ O ₃	0.04	0.00	0.08	0.00
NiO	0.17	0.17	0.04	0.00
FeO _{обш.}	7.74	7.95	8.51	8.50
MnO	0.16	0.16	0.16	0.16
MgO	17.55	17.28	21.15	20.66
CaO	0.00	0.02	0.04	0.04
K ₂ O	9.49	9.55	9.07	8.96
Na ₂ O	0.43	0.43	0.50	0.50
F	4.70	4.90	4.19	4.49
H ₂ O*	0.56	0.41	1.94	1.61
2F=O	1.98	2.06	1.76	1.89
Сумма	99.32	99.98	100.29	100.09
Форм	иульные ед	циницы в ра	счете на 7 к	атионов
Si	3.08	3.08	2.98	3.03
Al^{IV}	0.92	0.92	1.02	0.97
Сумма	4.00	4.00	4.00	4.00
Mg	1.90	1.86	2.26	2.21
Fe	0.47	0.48	0.51	0.51
Al^{VI}	0.58	0.61	0.20	0.25
Ti	0.02	0.02	0.02	0.02
Mn	0.01	0.01	0.01	0.01
Ni	0.01	0.01	-	
Cr	0.01	0.01	-	
V	-	-	-	_
Сумма	3.00	3.00	3.00	3.00
K	0.88	0.88	0.83	0.82
Na	0.06	0.06	0.07	0.07

Продолжение таблицы 6

Комп.	1	2	3	4
Ca	-	-	-	-
Сумма	0.94	0.94	0.90	0.89
F ⁻	1.08	1.12	0.95	1.02
O ²⁻	0.65	0.68	0.12	0.21
OH-	0.27	0.20	0.93	0.77
Al_{Σ}	1.50	1.53	1.22	1.22
f.%	19.8	20.5	18.4	18.8

См. примечание к табл. 1. Ан 1-2 - кварц-турмалинфлогопит-плагиоклазовые гнездо, 3-4 - турмалин-флюоритовый прожилок

<u>Турмалин</u> представлен кристаллами черного цвета длиной до нескольких см. По данным расчета кристаллохимических формул и согласно классификации [11] турмалин представлен фтор-дравитом (0.47-0.50 ф.е. F) (рис. 2) со средней железистостью, варьирующей от 26.6 до 30.3%. Содержание Ті не превышает 0.04 ф.е. Отношение Ca/(Ca+Na) изменяется от 14.8 до 18.6% (табл. 7, ан 1-3).

Турмалин-флюоритовые прожилки

В слюдитах локализованы тонкие прожилки турмалинфлюоритового состава.

<u>Флогопит</u> слагает мелкие чешуйки. По химическому составу – это фтор-флогопит (0.95-1.02 ф.е. F), содержания Ті невысокие и составляют 0.02 ф.е., железистость варьирует в узких пределах от 18.4 до 18.8% (табл. 6, ан 3-4).

<u>Турмалин</u> представлен тонкими черными кристаллами. По данным расчета кристаллохимических формул и согласно классификации [11] минерал отвечает гидроксил- или фтор-дравиту. Выделения турмалина зональны по составу: центральные части кристаллов сложены гидроксил-дравитом, а краевые – фтордравитом. От центра кристаллов к их краю растет железистость от 20.9% до 26.6%; величина *Ca* составляет 25.2-27.1% (табл. 7, ан. 4-5).

Таблица 7

Химический состав (мас.%) турмалина гнезд и прожилков в слюдитах

Компон.	1	2ц	3к	4ц	5к		
SiO ₂	35.81	35.74	36.38	35.29	37.36		
TiO ₂	0.28	0.32	0.32	0.35	0.51		
Cr ₂ O ₃	0.05	0.08	0.00	0.00	0.02		
V ₂ O ₃	0.03	0.02	0.04	0.03	0.11		
Al_2O_3	34.3	34.58	34.26	33.79	32.36		
NiO	0.00	0.11	0.09	0.00	0.06		
FeO	5.24	5.85	5.5	4.36	5.5		
MnO	0.08	0.02	0.03	0.02	0.07		
MgO	8.16	7.52	7.89	9.28	8.52		
CaO	0.76	0.73	0.94	1.46	1.33		
Na ₂ O	2.41	2.35	2.25	2.14	2.19		
F	0.93	0.96	0.98	0.44	1.02		
2F=O	0.39	0.40	0.41	0.19	0.43		
Сумма	87.66	87.88	88.27	86.97	88.62		
Фор	Формульные единицы в расчете на 15 катионов						
Si	5.77	5.76	5.84	5.70	6.00		
Al _T	0.23	0.24	0.16	0.30	-		
Сумма Т	6.00	6.00	6.00	6.00	6.00		
Al_Z	6.00	6.00	6.00	6.00	6.00		
Mg	1.96	1.81	1.89	2.23	2.04		
Fe	0.71	0.79	0.74	0.59	0.74		
Ti	0.03	0.04	0.04	0.04	0.06		
Al_Y	0.28	0.33	0.32	0.13	0.13		
Cr	0.01	0.01	-	-	-		
V	-	-	0.01	-	0.01		
Ni	-	0.02	0.01	0.01	0.01		
Mn	0.01	-	-	-	0.01		
Сумма Ү	3.00	3.00	3.00	3.00	3.00		
Na	0.75	0.73	0.70	0.67	0.68		
Ca	0.13	0.13	0.16	0.25	0.23		
Вакансия	0.12	0.14	0.14	0.08	0.09		

Компон.	1	2ц	3к	4ц	5к
Сумма	1.00	1.00	1.00	1.00	1.00
$OH^{-}v$	3.00	3.00	3.00	3.00	3.00
F_{W}	0.47	0.49	0.50	0.23	0.52
OH ⁻ W	0.40	0.34	0.21	0.69	0.08
$O^{2-}W$	0.13	0.17	0.29	0.23	0.40
Сумма W	1.00	1.00	1.00	1.00	1.00
Al_Σ	6.51	6.57	6.48	6.43	6.13
f,%	26.6	30.3	28.1	20.9	26.6
<i>Ca</i> ,%	14.8	15.1	18.6	27.1	25.2

См. примечание к табл. 3. Ан. 1-3 – турмалин-кварцфлогопит-плагиоклазовое гнездо; ан. 4-5 – турмалинфлюоритовый прожилок.

Возраст слюдитов

Результаты Rb-Sr и Sm-Nd изотопного анализа трех мономинеральных фракций из слюдитов Мариинского (Малышевского) месторождения представлены в таблице 8 и на рис. 5. На Sm-Nd изохронной диаграмме исследованные мономинеральные фракции образуют тренд с наклоном соответствующим возрасту 212 \pm 22 млн.лет и первичному изотопному составу неодима ε =+0.7. Относительно большая величина погрешности определения возраста (22 млн. лет) объясняется как ограниченным количеством проанализированных фракций, так и их относительной гомогенностью состава (небольшие вариации отношения Sm/Nd). На Rb-Sr изохронной диаграмме изученные монофракции также образуют тренд с возрастом 206.6±1.4 млн.лет (при CKBO=1.9), который в пределах погрешности совпадает с Sm-Nd возрастом.

Обсуждение

Флогопиты изученных метасоматитов в целом характеризуются различными содержаниями фтора и титана. Наиболее высокие концентрации Ті отмечены во флогопите включений в турмалине, а также во флогопите основной массы тремолит-26

Рис. 5. Rb-Sr (a) и Sm-Nd (б) изохроны для минералов слюдитов Мариинского месторождения.

турмалин-флогопитовых метасоматитов. Флогопиты метасоматитов остальных типов характеризуются существенно меньшими содержаниями титана. Уменьшение содержаний титана, вероятно, свидетельствует о снижении температуры образования метасоматитов. Это предположение подтверждается данными расчета температур формирования, которые приведены ниже. Для фтора наблюдается обратная картина: флогопиты тремолиттурмалин-флогопитовых метасоматитов в целом характеризуются наименьшим содержанием F, а наиболее высокие его концентрации отмечаются во флогопите из гнезд и прожилков в слюдитах. Флогопиты турмалин-флогопитовых слюдитов по содержанию F занимают промежуточное положение. Необходимо отметить, что при формировании тех или иных метасоматитов возможны колебания концентраций фтора во флюиде, что выражается в наличии флогопитов с существенно различным содержанием F в одном образце.

По данным расчета кристаллохимических формул и согласно классификации [11], турмалины тремолит-турмалинфлогопитовых метасоматитов относятся к низкофтористым гидроксил-дравитам, турмалин-флогопитовых - к низко- и высокофтористым гидроксил-дравитам, а гнезд и прожилков – к высокофтористым гидроксил-дравитам и фтор-дравитам со средней железистостью (рис. 2). Эти данные свидетельствуют, что отмеченная выше для флогопитов закономерность в поведении фтора также характерна и для турмалинов. Вместе с тем, для большинства изученных кристаллов турмалина вне зависимости от типа метасоматитов характерно зональное распределение фтора: центральные части кристаллов, как правило, содержат меньше F, чем краевые, что указывает на рост f_{F2} во время кристаллизации.

Слабый плеохроизм некоторых кристаллов турмалина указывает на существенное преобладание в его состава ионов железа одной из валетностей. Фигуративные точки составов турмалинов на треугольнике Fe-Al-Mg лежат выше линии шерлдравит (рис. 26), что косвенно указывает на незначительные количества Fe³⁺ в составе этих дравитов. Низкие концентрации Fe³⁺ подтверждаются данными спектроскопических исследований. Незначительные содержания ионов трехвалентного железа в минерале указывают на невысокий окислительный потенциал 28 среды минералообразования [14]. Положение фигуративных точек составов дравитов слюдитов (рис. 2б) и альбит-турмалинроговообманковых метасоматитов [1] идентично, что косвенно свидетельствует об одинаковом низком окислительном режиме кристаллизации.

Распределение железистости в пределах отдельных кристаллов турмалинов, как правило, носит осциляционный характер. Однако, поскольку вариации величины f в пределах индивидуальных кристаллов в целом небольшие, то можно предположить, что колебания флюидного режима были незначительными.

Подобно альбит-турмалин-роговообманковым метасоматитам турмалины слюдитов характеризуются высокой величиной отношения Ca/(Ca+Na) (рис. 2в), что может указывать с одной стороны на относительно высокую температуру формирования [3, 8], а с другой – на низкую f_{CO2} . Последнее подтверждается отсутствием карбонатов в данном типе метасоматитов.

Температура формирования турмалинов тремолиттурмалин-флогопитовых метасоматитов оцененная по биотиттурмалиновому геотермометру [7], составляет 490-460°С, турмалин-флогопитовых слюдитов, 420-410°С, гнезд и прожилков в слюдитах – 370-360°С. Полученные значения коррелируют с данными по температурам гомогенизации индивидуальных флюидных включений в бериллах из различных типов слюдитов (550-355°С) [4, 6].

Судя по опубликованным данным положение фигуративных точек составов турмалинов проявления изумрудов Regal Ridge (Канада) [9] и месторождения Mingora (Пакистан) [10], относящихся к «сланцевому типу, на треугольной диаграмме O²⁻ - F⁻ - OH⁻ (рис. 6а) в целом похоже на положение дравитов слюдитов Изумрудных копей. Это свидетельствует об одинаковом режиме фтора при кристаллизации турмалинов этих месторождений.

В отличие от Изумрудных копей и Mingora турмалины Regal Ridge в целом более железистые, и часть фигуративных точек составов на треугольной диаграмме Fe-Al-Mg лежит ниже линии шерл-дравит (рис. 6б). Эти факты могут могут указывать на влияние вмещающих пород – вулканиты основного состава и на более высокий окислительный режим кристаллизации турмалинов этого проявления. 29

Турмалины проявления Regal Ridge содержат больше увитового компонента до собственно увита (рис. 6в), по сравнению с Изумрудными копями и Mingora, что вероятно, также отражает состав вмещающих пород.

Величина первичного изотопного состава неодима минералов слюдитов Мариинского месторождения указывает на их формирование из источника, близкого по составу к хондритовому резервуару. Однако наиболее вероятным представляется происхождение такого источника, главным образом, за счет смешения вещества вмещающих метагипербазитов (с мантийными метками изотопного состава неодима) и метаморфических пород (с типично коровым изотопным составом Nd). Расчет модельных возрастов (табл. 8) исходя из двухстадийной модели развития изотопного состава изученного материала позволяет оценить возраст коровой составляющей как позднепротерозойский (рифейский) (900-1000 млн. лет). Первичный изотопный состав стронция (⁸⁷Sr/⁸⁶Sr=0.7096) скорее соответствует коровым величинам, чем отражает влияние мантийного резервуара, что обусловлено, вероятно, незначительными концентрациями стронция в метагипербазитах. Таким образом, результаты проведенного изотопно-геохимическое исследования минералов слюдитов Мариинского месторождения указывает на раннеюрское время их формирования и коровые источники флюида с изотопным составом, отвечающим смешению вещества вмещающих пород. Представленные нами возрастные оценки идентичны полученным В.С.Поповым и другими [5]. В тоже время, приводимые в других публикациях данные указывают на более древний возраст слюдитов [4, 12].

Выводы

1. Образование слюдитов происходило на фоне повышения $f_{\rm F2}$ при низких величинах $f_{\rm O2}$ и $f_{\rm CO2}$. Температура формирования этих метасоматитов составляля 490-360°С.

2. Возраст слюдитов на основании Sm-Nd и Rb-Sr изотопных исследований может быть оценен в 210 млн. лет. При этом протовещество метасоматитов прошло длительную коровую предысторию (модельный возраст 900-1000 млн. лет). При формировании метасоматитов частично заимствовалось и веще-31 ство вмещающих серпентинизированных гипербазитов, на что однозначно указывают повышенные значения ε_{Nd} .

Таблица 8

Образец	[Sm]	[Nd]	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	2σ	3	T(DM)	T(DM2)
М-113 хлорит	5.804	15.26	0.08042	0.512509	23	0.45	735	961
M-135 альбит	1.251	9.401	0.17629	0.512642	22	0.60	2072	949
М-8 флогопит	4.953	16.99	0.22989	0.512716	24	0.67	-	943

Результаты изотопных исследований минералов Малышевского месторождения (Средний Урал)

Продолжение таблицы 8

Образец	[Rb]	[Sr]	⁸⁷ Rb/ ⁸⁶ Sr	⁸⁷ Sr/ ⁸⁶ Sr	2σ	(⁸⁷ Sr/ ⁸⁶ Sr)t
М-113 хлорит	1983	91.06	64.34764	0.899612	46	0.716605
M-135 альбит	39.04	315.2	0.35840	0.710649	13	0.709630
М-8 флогопит	2012	66.95	89.27572	0.970642	44	0.716739

Примечание. Величина параметра є (210 млн. лет) вычислена относительно состава однородного хондритового резервуара (CHUR): ¹⁴⁷Sm/¹⁴⁴Nd=0.1967 ¹⁴³Nd/¹⁴⁴Nd=0.512638. Модельные возраста T(DM) и T(DM2) вычислены с использованием следующих характеристик обедненного мантийного резервуара (DM): ¹⁴⁷Sm/¹⁴⁴Nd=0.2136 ¹⁴³Nd/¹⁴⁴Nd=0.513151; а для континентальной коры принята величина: ¹⁴⁷Sm/¹⁴⁴Nd=0.12. (⁸⁷Sr/⁸⁶Sr)t - первичный изотопный состав Sr на время t=210 млн.лет.

Благодарности

Авторы признательны профессору Э.М.Спиридонову за ценные советы и замечания, высказанные при подготовке рукописи к печати.

Литература

1. Бакшеев И.А., Кудрявцева О.Е., Фирсова Н.П., Попов М.П. Турмалин-содержащие метасоматиты Уральских Изумрудных Копей. Статья І. Ранние альбит-турмалин-роговообманковые метасоматиты// Урал. геол. ж. 2002. N 4. C. 25-33

2. Беляцкий Б.В., Виноградова Л.Г., Крымский Р.Ш., Левский Л.К. Sm-Nd и Rb-Sr изотопное датирование вольфрамит-редкометального месторождения Забытое, Приморье// Петрология. 1994. Т. 2. № 3. С. 243–250.

3. Зарайский Г.П. Зональность и условия образования метасоматических пород. М.: Наука. 344с.

4. Куприянова И.И. О генезисе Малышевского бериллий-изумрудного месторождения (Средний Урал, Россия)// Геол. рудн. м-ний, 2002. Т. 44. N 4. С. 314-330.

5. Попов В.С., Богатов В.И., Петрова А.Ю., Беляцкий Б.В. Возраст и возможные источники гранитов Мурзинско-Адуйского блока, Средний Урал: Rb-Sr и Sm-Nd изотопные данные// Литосфера (в печати)

6. Устинов В.И., Чижик О.Е. Последовательность образования изумруда и александрита в общей схеме минералогенеза в месторождениях слюдитового типа // Геохимия, 1993. N 12. C. 1782-1785.

7. Colopietro M.R., Friberg L.M. Tourmaline0biotite as a potential geothrmometer for metapelites, Black Hills, South Dakota// GSA, 1987. Abstracts. N 140176.

8. Goerne von G., Franz G. Synthesis of Ca-tournaline in the system Ca-Mg-Al₂O₃-SiO₂-B₂O₃-H₂O-HCl// Min. Petrol. 2000. V. 69. P. 161-182.

9. Groat L. A., Marshall D.D., Giuliani G., Murphy D.C., Piercey S.j., Jambor J.L., Mortensen J.K., Ercit T.S., Gault R.a., Mattey D.P., Schwarz D., Maluski H., Wise M.A., Wengzynowski W., Eaton D.W. Mineralogical and geochemical study of the regal ridge emirald showing, Southeastern Ykon// Can. Min. 2002, V. 40. P. 1313-1338.

10. Hammarstrom J.M. Mineral chemistry of emeralds and some associated minerals from Pakistan: an electron microprobe study. In Emeralds of Pakistan-Geology, gemology and genesis. Van Nostrand, Reinhold, New York. 1989. P.125-149.

11. Hawthorne F.S., Henry D.J. Tourmaline classification// Eur. J. Min. 1999. V.11. N 2. P. 201-215.

12. Levin V., Laskovenkov A., Katkov A., Mormil S., Zolotukhin F., Fershtater G. Granitic rocks of the Adui pluton and related mineral deposits// The eroded Uralian Paleozoic ocean to continent transition zone: granitoids and related ore deposits. Excursion guidebook. 2000. P. 32–47.

13. Ludwig K.R. Isoplot/Ex, rev. 2.49. A geochronological toolkit for Microsoft Excel// Berkeley Geochronological Center Spec. Publ. 2001. No. 1a. 56 p.

14. Slack J.F. Tourmaline associations with hydrothermal ore deposits. In Boron: Mineralogy. Petrology, and Geochemistry (E.S.Grew, A.M.Anovitz, eds). Rev. Mineral. 1996. V. 33. P. 559-644.