УДК 553.676.2 (470.5)

© В.И. Ефимов

ОСОБЕННОСТИ ПЕТРОГРАФИЧЕСКОГО СОСТАВА ПОРОД, ВМЕЩАЮЩИХ ЗОНЫ МИНЕРАЛИЗАЦИИ ЛОМКОГО ХРИЗОТИЛ-АСБЕСТА¹ БАЖЕНОВСКОГО МЕСТОРОЖДЕНИЯ

ОАО "Средне-Уральская геологоразведочная экспедиция", г. Асбест, 624260, ул. Сурикова, 81 (Представлена чл.-корр. РАН К.К.Золоевым)

© V.I. Efimov

SOME FEATURES OF ROCKS PETPROGRAPHIC COMPO-SITION, CONTAINS MINERAL ZONES OF THE BREAK-ABLE CHRYSOTILE-ASBESTOS IN BAZHENOVO DE-POSIT

Автореферат

Исследования показали, что основными типоморфными минералами синрудными ломкому хризотил-асбесту в его залежах и рудопроявлениях являются антигорит и вторичный оливин. Эта минеральная ассоциация служит прямым поисковым признаком на ломкий хризотил-асбест в месторождениях баженовского подтипа. В парагенезисе с антигоритом развиты наиболее высокотемпературные карбонаты: кальцит, доломит и маложелезистый магнезит.

Впервые петрографический состав гипербазитов Баженовского месторождения и продуктов их метаморфизма на современном уровне был изучен при детальном картировании массива [12]. Большое внимание для систематизации представлений о минеральном составе пород и руд имели исследования В.Р. Артемова [1, 2] и К.К. Золоева [10, 11], которые были использованы в 1975-1984 гг. при объемном картировании рудного поля Баженовского месторождения [4]. В результате по классификации К.К. Золоева были расчленены перидотиты на пироксеновые дуниты, дунит-гарцбургиты, гарцбургиты и верлиты. По степени серпентинизации выделены серпентинизированные ги-

¹ - в дальнейшем асбест

пербазиты (30-7% серпентиновых минералов) и серпентиниты (серпентина более 70%), а среди последних серпентиниты с реликтами первичных минералов (до 30%). Все серпентиниты разделены на лизардитовые, хризотиловые, антигоритовые и смешанного состава с различным соотношением серпентинитовых минералов в соответствии с петрографической классификацией В.Р. Артемова и В.Н. Кузнецовой [3], подразделивших лизардит, клинохризотил, ортохризотил и антигорит на минеральные (по макропризнакам) и петрографические (по генерациям) разновидности.

В настоящее время существует новая классификация породообразующих серпентинов и разновидностей в ультраосновных породах [5, 6]. Эта классификация является минералогопетрографической и отражает новый этап в познании серпентиновых минералов. Диагностика серпентинов под светооптическим микроскопом должна подтверждаться дифрактометрическими методами, только с помощью которых решается вопрос о политипной принадлежности минерала. Основными результатами этим работ [5, 6] являются выводы о самостоятельности только трех генетических типов серпентинизации (в порядке роста температур): α – лизардитизации, β – лизардитизации и антигоритизации.

При определении возрастных взаимоотношений различных метасоматитов и жильных комплексов на Баженовском месторождении [7] было установлено, что процессы высокотемпературного метаморфизма были проявлены здесь только в пострудный этап. Они имели на месторождении всеобщий характер развития по зонам разломов и сопровождались антигоритизацией, оталькованием и карбонатизацией гипербазитов и продуктов их более раннего авто- и аллометаморфизма. Пострудный этап формирования месторождения был длительным и заключался в контактово-термальном воздействии на него всех фаз формирования адуйского гранитного комплекса. Все это подтверждает, во-первых, самостоятельность и обособленность антигоритизации во времени, и, во-вторых, многообразие форм ее проявления в зависимости на какой субстрат она накладывается и в какой геолого-структурной обстановке проявлялась. В 48

то же время нельзя совсем исключить возможность локального образования антигорита в интрарудный этап формирования ме-

сторождения в серпентинитах, особенно на контакте с дайками диоритов каменского комплекса.

Учитывая детальную изученность минерального состава гипербазитов и продуктов их метаморфизма на месторождении, наши петрографические исследования ограничены пределами развития зон ломкой минерализации. Результаты их хорошо увязываются с вопросом о В – лизардитизации как самостоятельном процессе на месторождении и с представлениями о протрузивном перемещении пластины гипербазитов Баженовского массива в дорудный этап формирования месторождения [7, 8]. Тектоническое перемещение гипербазитов вызывает повторный разогрев пород, вследствие чего на Баженовском массиве гипербазитов проявилась аллометаморфическая серпентинизация и сопровождающий ее рудогенный процесс. В соответствии с представлениями А. С. Варлакова [6] эта серпентинизация относится к β – лизардитовому типу, в котором хризотилизация и возникновение других серпентинов является результатом эволюции физико-химических параметров-растворов, под действием гидротерм, поступавшим из корового сиалического очага по зонам разломов.

В связи с тем, что в пределах зон минерализации ломкого асбеста преимущественно развиты серпентинизации типа β – лизардитизации, мы не располагаем новыми данными по серпентинизации гипербазитов в дорудный этап, что не позволяет каких-либо обобщений по β – лизардитизации, как самостоятельном процессе.

Фактическим материалом для петрографических обобщений послужили результаты изучения 940 шлифов пород и руд вмещающих ломкий-полуломкий асбест, из которых 370 шлифов отобрано из зон разломов и 540 – из залежей асбеста.

В целях выяснения структурной принадлежности серпентиновых минералов были выполнены ренгеноструктурные анализы шлифов, дифрактограммы которых уменьшенные в 7 раз приведены на рис.1. При отборе на исследование шлифов мы стремились получить мономинеральные породы с содержанием одного серпентинового минерала на уровне 85-95 %. Как пока-49

зал опыт расшифровки дифрактограмм, ренгеноструктурный анализ в шлифе весьма надежно диагностирует все находящиеся там серпентиновые минералы. Ниже приводится краткая харак-

теристика одновременно изученных шлифов различных серпентинитов и дифрактограмм по ним.

Рис.1. Дифрактограммы минералов группы серпентинита (пояснение в тексте).

Дифрактограмма 1 (шл.183). По описанию шлифа это хризотиловый на 90-93 % серпентинит с включением хризотиласбеста (2-3 %) К – лизардита. По ренгеноструктурному анали-50

зу основная фаза соответствует клинохризотилу (табл.1), а дифракционные отражения 0,250; 0,215 и 0,150 свидетельствуют о наличии β – лизардита. Повышенная интенсивность отражения 0,250 согласуется с данными, полученными А. С. Варлаковым. Дифракционные отражения 0,234; 0,196; 0,179 и 0,150 характерны для δ - лизардита и ортохризотил, но четкость линий 0,179 и 0,150 говорит в пользу первого. В исследуемом материале выделен магнетит.

Таблица 1

Значения межплоскостных ра	асстояний клинохризотила
----------------------------	--------------------------

HK1	Номер 1	илифа	По А. С. Варлакову		
	183 d, нм	35 d, нм	d, HM		
002	0,730	0,730	0,730		
020	0,460	0,460	0,460		
004	0,365	0,365	0,365		
130	0,265	0,264	0,264		
201	0,259	0,259	0,259		
202	0,245	0,245	0,245		
204	0,209	0,209	0,209		
008	0,1826	0,1828	0,1828		
206	0,174	0,174	0,174		
060	0,154	0,154	0,154		
0010	0,146	0,146	0,146		

Дифрактограмма 2 (шл.35). Под микроскопом это хризотиловый на 85-87 % серпентинит с жилками хризотил-асбеста (4-5 %), акцессориями лизардита, антигорита, талька и карбонатов. По межплоскостным расстояниям основная фаза шлифа – клинохризотил (табл.2). Отражения 0,250; 0,179 характерны для β – лизардита, а 0,215; 0,216 – для антигорита. Тальк фиксируется отражениями 0,925; 0,468; 0,313; 0,185. В области углов 20 – 17+19° характер кривой показывает на наличие аморфной фазы, очевидно, стекла шлифа.

Дифрактограмма 3 (шл.328). По микроскопическому описанию это карбонатизированный антигоритовый серпентинит с баститом (5-7 %). Антигорит (91-93 %) представлен в основном листовато-пластинчатыми выделениями в ядрах петель параллельно-пластинчатых индивидов (по классификации В.Р. Артемова I генерации). Основная фаза – антигорит (табл.2). Присутствует энстатит: отражения 0,315: 0,296; 0,288; 0,246; 0,2109; 51

0,170 и оливин: 0,486; 0,348; 0,279; 0,235; 0,177. Есть магнетит.

Таблица 2

		Номера	шлифов		По В. Р. Арте-		По А. С. Варла-		
HK1	328	8	11	1	MOE	мову		кову	
	D, нм	J	d, нм	J	d, нм	J	d, нм	J	
001	0,730	10	0,730	10	0,731	10	0,730	-	
301	0,650	1	0,651	1	-	-	0,650	-	
-	0,610	1	-	-	0,610	6 ^{xx}	-	-	
020	0,460	2,5	0,460	5	0,462	6	0,460	-	
102, 102	0,363	10	0,361	10	0,361	10	0,362; 0,365	-	
16, 01	0,252	10	0,252	8	0,252	9	0,252	-	
003, 18.0	0,242	2	0,232		-	-	0,242	-	
832	0,216	2	0,215	3	0,216	5	0,216	-	
16, 01	0,215	2	0,215	3	-	-	0,215	-	
15,03	0,182	1	0,181	1	0,183	1	0,181	-	
24, 30	0,156	2	0,1556	3	0,156	3	0,156	-	
0, 60	0,154	2	0,1536	3	0,1537	9	0,1538	-	
-	0,153	1	-	-	-	-	0,152	-	
-	0,146	1	-	-	-	-	0,145	-	

Примечание: x – интенсивность по 10 бальной шкале (Артемов, 1967, табл. 50); xx – отражение, полученное Хессом (Артемов, 1967)

Дифрактограмма 4 (шл.111). Состав породы определен под микроскопом как антигоритовый на 90 % серпентин (I генерации) с жилками асбеста (2 %), β – лизардитом (4 %). Основная фаза дифрактограммы – антигорит (табл.3), присутствует β – лизардит, отражения: 0,1739; 0,150 и хризотил-асбест 0,2447; 0,209.

Дифрактограмма 5 (шл.157). Под микроскопом состав породы определен как β – лизардитовый (92 %) серпентинит по ортопироксеновому дуниту с 5-7 % бастита. Основная фаза- β – лизардит (табл.3) Есть магнетит.

Дифрактограмма 6 (шл.125) аналогична предыдущей, т. к. 52

порода по составу отвечает β – лизардитовому (95 %) серпентиниту (табл.4).

Таблица 3

Значения межплоскостные расстояния В - лизардита

			По А. С. Варла-					
HK1	15	57	12:	5	10	7	кову	/
	D, нм	J	d, нм	J	d, нм	J	d, нм	J
001	0,730	100	0,734	100	0,734	100	0,730	100
020	0,460	18	0,460	22	0,460	29	0,460	20
021	-	-	-	-	0,389	6	0,389	0-1
002	0,365	90	0,365	60	0,365	70	0,365	60
022	-	-	-	-	0,288	10	0,286	-5
200	0,265	6	0,266	5	0,265	3	0,265	5
203	-	-	-	-	-	-	0,262	-
201	0,250	60	0,250	70	0,250	80	0,250	60
003	0,243	15	0,243	1	0,245	?	0,243	3
209	-	-	-	-	-	-	0,234	-
202	0,215	20	0,215	15	0,215	17	0,215	15
20, 15	-	-	-	-	?	?	0,196	-
004	0,182	3	0,183	2	0,182	2	0,183	2
203	0,179	8	0,179	4	0,179	4	0,179	5
310	0,174	2	0,174	2	0,174	3	0,174	2
2021	-	-	-	-	0,164	2	0,164	-
060	0,154	24	0,154	25	0,154	30	0,154	25
204	0.150	18	0.150	11	0.150	15	0.150	15

Дифрактограмма 7 (шл.107). По описанию шлифа это β – лизардитовый серпентинит с небольшим количеством γ – лизардита (1 %). Основная фаза- β – лизардит (табл.4). Наличие отражений 021 (0,389); 022 (0,288); повышенные интенсивности 020 (0,460); 002 (0,365); 201 (0,250) говорят о присутствии γ - лизардита. Есть магнетит.

Таким образом, в приведенных примерах сопоставлений данных оптических определений под микроскопом и дифрактограммы рентгеноструктурного анализа показывает хорошую сходимость результатов определений.

53

Таблица 4

Минеральный состав рассланцованных серпентинитов, вмещающих просечки ломкого асбеста в зонах разломов

Участ- ки	30111	во оп- ний	Минеральный состав, %							
место- рож- дения	разломов	Количест ределе	α- лизар- дит	β — ли- зар- дит	хри- зотил	анти- горит	кар- бо- наты	та- льк		
G	II	2	-	98,6	-	-	1,6	-		
Север-	IV	35	8,0	79,0	2,3	8,8	1,0	0,7		
пын	среднее		7,4	80,2	2,4	8,3	1,1	0,5		
	Ι	1	-	98,6	-	-	1,4	-		
Цен-	II	8	-	83,7	14,4	2,2	0,6	-		
траль-	III	11	-	60,0	22,2	12,8	4,0	1,0		
ный	IV	25	25,8	45,2	1,5	25,6	1,1	0,9		
	среднее		15,2	57,1	9,8	15,1	1,8	0,8		
	Ι	6	19,6	37,6	0,6	37,6	4,8	-		
ю	II	11	-	74,1	2,7	16,2	5,6	1,6		
Юж- ный	III	53	-	74,6	2,7	20,0	3,0	-		
IIDIN	IV	7	-	86,2	1,6	8,2	4,1	-		
	среднее		1,5	72,4	2,6	19,9	3,4	0,4		
Глав-	Ι	67	16,7	46,4	0,5	32,0	4,0	-		
ное	II	21	-	80,0	7,2	8,7	3,2	0,8		
рудное	III	64	-	72,4	6,1	18,2	3,2	0,2		
поле	IV	67	14,2	66,8	1,9	14,9	1,3	0,6		

В связи с присутствием аналогичных материалов по α - лизардитам, была изучена их железистость имерсионнотеодолитным методом в шлифах, отобранных из зон разломов, где развиты оба минерала. Железистость α - лизардита по нашим измерениям колеблется в 71 определении в пределах 6,6-8 %, среднее 7,59 %, а в β – лизардита в пределах 4,9-5,4 %, среднее 5,25 %. Существенное различие железистости α и β – лизардитов отражает, как известно, различные условия их образования и дает основание надежно различать эти минералы по показателям преломления.

Следовательно, получен надежный материал для перехода на классификации серпентинитовых минералов по А.С. Варлако-54

ву. Такой переход обусловлен тем, что основные выводы автора по развитию процессов серпентинизации на Баженовском месторождении близки или сходны в целом с представлениями

этого исследователя, основанными на общеуральском материале.

В соответствии с принятой типизацией ломкого асбеста петрографический состав пород вмещающих его, рассматривается раздельно для зон разломов и в пределах залежей асбеста.

1. Серпентиниты зон разломов

Как отмечалось выше, при типизации проявлений ломкогополуломкого асбеста была проведена геометризация их, в том числе в пределах зон разломов, с выделением раздельно ломкой и полуломкой разновидностей. В пределах зон минерализации ломкого асбеста были выбраны отдельные скважины и пересечения для изучения минерального состава серпентинитов. В результате изучен и систематизирован минеральный состав рассланцованных серпентинитов, вмещающих просечки ломкого (табл.4), полуломкого (табл.5) и нормального асбеста (табл.6).

Анализ минерального состава рассланцованных серпентинитов, вмещающих просечки ломкого асбеста, показывает, что их основным породообразующим минералом является β – лизардит, составляющий от 37,6 до 98,6%. В четвертой зоне разломов Центрального участка и Первой Южного участка значительную долю: 26,2% и 19,6% составляет α - лизардит.

Содержание хризотила по Северному и Южному участкам составляет 2,3 % и 2,7 %, в то время как в некоторых зонах разломов Центрального участка – на порядок выше: 16,5% и 22,8%. Содержание антигорита в зонах разломов месторождений колеблется от 8,2 до 32,0% и увеличивается в направлении с севера на юг. В этом же направлении уменьшается мощность зон разломов.

Параллельно с увеличением содержания антигорита увеличивается содержание карбонатов до 4,1–5,6%. Парагенезис антигорита и карбонатов свидетельствует об их образовании в связи с высокотемпературным воздействием на ранее образованные минералы.

55

Таблица 5

Минеральный состав рассланцованных серпентинитов, вмещающих просечки полуломкого асбеста в зонах разломов

Участки		тво ний	Минеральный состав, %							
Место- рожде- ния	Зоны разломов	Количес определе	α - ли- зар- дит	β — ли- зар- дит	хри- зо- тил	анти- горит	кар- бо- наты	Та- льк		
	Ι	2	-	44,9	-	50,3	4,3	0,5		
Север-	II	7	-	97,6	-	1,0	0,2	1,4		
ный	IV	8	9,0	80,2	3,2	5,1	2,8	-		
	Среднее	10	4,1	83,1	1,4	9,3	1,9	0,4		
	Ι	10	49,0	49,0	-	1,1	1,1	-		
TT	II	7	13,8	54,7	1,4	26,6	0,1	3,6		
цент- ральный	III	11	12,8	70,0	2,9	12,3	2,1	-		
pullibilibili	IV		24,4	41,4	4,0	27,9	2,5	-		
	Среднее	6	17,6	51,9	3,6	20,4	3,8	1,1		
	II	23	-	70,5	4,8	21,8	1,4	1,6		
Южный	III		-	69,5	1,9	24,1	4,2	0,2		
	Среднее	12	-	68,7	2,6	24,1		0,6		
-	Ι	23	16,1	46,0	-	33,9	3,2	0,6		
Главное	II	30	5,6	73,0	1,9	17,0	1,1	0,9		
поле	III	19	3,6	69,2	2,2	21,1	3,8	0,1		
	IV		15,6	60,5	3,8	18,5	1,5	-		

Близкий к описанному минеральный состав характерен для серпентинитов, вмещающих волокно полуломкого асбеста. Основными породообразующими минералами являются β – лизардит и антигорит (табл.2). Без значительных колебаний содержится хризотил-1,4–4,8%. Содержание достигает 50,3%, но в таком количестве он развит только в одной зоне разлома, наиболее типично содержание 27,9%. Увеличение содержания антигорита в зонах локализации полуломкого асбеста сопровождается увеличением содержания карбонатов до 3,9-4,3%.

Для сравнения минерального состава серпентинитов, вмещающих ломкий и полуломкий асбест, в таблице 6 приведен минеральный состав серпентинитов из тех же зон разломов, но содержащих просечки нормального асбеста. Основными породообразующими минералами этих серпентинитов являются а и 56

 β – лизардиты, содержащиеся в количестве от 76 до 99,9%. Преобладает β – лизардит, и только на Центральном участке довольно широко развит α – лизардит – до 47,9%. Эта особенность характерна и для серпентинитов вмещающих ломкое и полуломкое вещество, что выделяет этот участок среди других. Содержание хризотил-асбеста колеблется от 0 до 38,4%, в среднем – 4,4-8,9%. Совершенно ограниченным распространением пользуются антигорит, карбонаты. Только в пределах Первой и Второй зон разломов Южного участка выявлено повышенное содержание карбоната (до 6,7%) и слабое оталькование в Третьей зоне разлома.

Таблица 6

Минеральный состав рассланцованных серпентинитов, вмещающих просечки нормального асбеста в зонах разломов

Участки	Зоны	гво оп- сний	Минеральный состав, %							
рожде- ния	разломов	Количес [.]	α - ли- зар- дит	β – лизар- дит	хризо- тил	анти- горит	кар- бо- наты	таль к		
	Ι	5	-	58,0	37,7	4,1	-	-		
Север-	II	1	-	99,9	-	-	-	-		
ный	IV	10	-	95,9	3,2	0,1	0,6	-		
	Среднее	16	-	83,1	14,6	1,5	0,5	-		
**	II	11	47,9	41,3	7,9	2,0	0,8	-		
Цен-	III	11	13,8	62,2	11,7	11,4	0,6	-		
траль- ный	IV	3	43,6	52,1	0,9	2,1	0,8	0,3		
	Среднее	25	32,1	52,2	8,9	6,2	0,7	-		
	Ι	11	12,7	76,8	5,0	2,7	2,6	-		
Южный	III	6	-	85,5	8,3	0,9	1,7	3,1		
южный	IV	1	-	95,7	4,4	-	-	-		
	Среднее	18	7,1	80,4	5,8	3,2	3,6	-		
-	Ι	16	7,6	62,4	14,1	2,8	1,6	-		
Главное	II	13	39,0	50,4	6,4	2,8	1,3	-		
поле	III	17	18,7	70,8	10,6	7,4	1,2	1,2		
	IV	14	9,2	86,5	2,8	0,5	0,6	0,1		

57

Сопоставление минерального состава серпентинитов вмещающих просечки нормального и ломкого-полуломкого асбеста показывает, что локализация последнего в зонах разломов сопровождается появлением новых характерных высокотемпературных минералов: антигорита, карбонатов и талька.

Таким образом, петрографическим критерием оценки локализаций ломкого-полуломкого асбеста в зонах разломов Баженовского месторождения является содержание во вмещающих серпентинитах антигорита в количестве на порядок выше, чем в серпентинитах, содержащих нормальный асбест; повышенное содержание карбонатов в среднем до 3-4% и уменьшением до полного исчезновения α – лизардита.

Полученные данные по минеральному составу серпентинитов зон разломов позволяют сопоставить минеральные ассоциации с этапами формирования месторождения и определить особенности их развития (табл.7). Исходными данными для этого является минеральный состав серпентинитов вмещающих просечки нормального асбеста, который изучен в серпентинитах, локализованных вблизи зон минерализации ломкого асбеста и поэтому претерпевшего незначительные пострудные изменения. На участках, не затронутых сильными пострудными процессами видно, что в дорудный и пострудный этапы протекали α и β – лизардитизации, причем условия для образования хризотила при β – лизардитизации в зонах разломов существовали только локально. Антигоритизация разреза серпентинитов осуществлялась за счет перекристаллизации α и β – лизардитов (рис.2-4).

2. Рудопроявления и залежи ломкого асбеста

Минеральный состав серпентинитов, вмещающих рудопроявления и залежи ломкого-полуломкого асбеста, изучен на примере залежей 16, 1, 8а, 33, представляющих все многообразие проявлений ломкого асбеста на Баженовском месторождении.

Исследования выполнены по зонам асбестоносности в каждой залежи, что позволяет систематизировать минеральный состав и в соответствии с существующими представлениями о последовательности процессов серпентинизации на месторож-58

Таблица 7

Сравнительная характеристика минерального состава серпентинитов зон разломов, вмещающих просечки нормального, полуломкого и ломкого асбеста в Главном рудном поле по этапам формирования месторождения

	Зо- ны	Дорудный этап	Интра Э	арудный тап	Пострудный этап			
Просечки	раз- ло- мов	α - лизар- дит	В - ли- зар- дит	хризо- тил	антиго- рит	карбо- наты	тальк	
Нормаль-	Ι	7,6	62,4	14,1	2,8	1,6	-	
ный ас-	Π	39,0	50,4	6,4	2,8	1,3	-	
бест	III	18,7	70,8	10,6	7,4	1,2	1,2	
	IV	9,2	86,5	2,8	0,5	0,6	0,6	
	Ι	16,1	46,0	-	33,9	3,2	0,6	
Полулом- кий асбест	II	5,6	73,0	1,9	17,0	1,1	0,9	
kin debeer	III	3,1	69,2	2,2	21,1	3,8	0,1	
	IV	15,6	60,5	3,8	18,5	1,5	-	
	Ι	16,7	46,4	0,5	32,0	4,0	-	
Ломкий	Π	-	80,0	7,2	8,7	3,2	0,8	
асбест	III	-	72,4	6,1	18,2	3,2	0,2	
	IV	14.2	66.8	19	14 9	13	0.6	

A)

Рис. 2. Характер развития антигорита в ассоциации с карбонатом в лизардитовых серпентинитах зон разломов, вмещающих просечки ломкого асбеста. Южный участок, Первая зона разломов, скв. 2831, гл. 343,4 м, увел. 90, с анализатором.

а – развитие игольчатого, лейстовидного и чешуйчатопластинчатого антигорита с карбонатом по лизардиту;

б-то же.

59

Рис. 3. Развитие сноповидно-игольчатых и пластинчатых агрегатов антигорита по β-лизардиту в аподунитовом лизардитовом серпентините. Северный участок, Первая зона разломов, скв. 3407, гл. 408 м, увел. 80, с анализатором

Рис. 4. Замещение ленточно-пластинчатого β-лизардита микро- и листовато-пластинчатым антигоритом в лизардитовом серпентините. Южный участок, Третья зона разломов, скв. 3415, гл. 216 м, увел. 80, с анализатором.

дении выделить минералы до-, интра- и пострудного этапов формирования месторождения. Исследования проводились по разведочным линиям, причем по каждой залежи получено 2-3 полных петрографических пересечения до границы выклинивания минерализации ломкого асбеста. Результаты изучения представлены в виде таблицы (табл.8).

Таблица 8

Минеральный состав серпентинитов из залежей, вмещающих ломкий-полуломкий асбест

Уча-	Зоны	гво оп- сний	Минеральный состав, %						
За- лежь	асбесто- носности	леделе Количест	бас- тит	β – ли- зар- дит	α – ли- зар- дит	хризо- тил	Анти- горит	кар- бо- наты	Тальк
Цен- траль-	1 ^x	13	7,26	6,24	12,0 9	47,07	27,35	0,37	0
ный,	2	34	4,45	7,26	2,47	80,26	4,45	0,71	0,09
За- лежь 16	3	16	5,73	11,5 8	4,95	67,94	8,89	0,93	0,04
Цен- траль-	1	10	7,63	16,2 4	0,49	60,02	14,76	0,92	0
ный,	2	17	9,03	5,19	0,27	68,0	13,66	2,62	0,92
За- лежь 1	3	3	5,07	51,4 8	1,58	35,1	6,63	0,48	0
Юж-	1	21	7,10	8,95	0	22,63	57,72	2,64	0,77
ный,	2	13	7,92	9,45	0,43	60,0	16,68	5,32	0
за- лежь 8а	3	18	11,2 3	13,1 5	0	22,74	46,28	3,26	1,31
Юж-	1	26	5,26	7,43	0	9,09	76,75	1,23	0
ный,	2	32	8,19	3,69	0,83	70,60	11,77	4,79	0,12
за- лежь 33	3	20	6,21	42,8 3	0,22	30,52	17,93	1,23	0,82

Примечание: x 1 - отороченные жилы; 2 – крупная сетка; 3 – мелкая сетка

Рис. 5. Уровень антигоритизации серпентинитов Баженовского месторождения в различных его частях

- I антигоритизация серпентинитов, вмещающих просечки полуломкого асбеста в зонах разломов
- II тоже, ломкого асбеста в зонах разломов

III – то же, в залежах ломкого асбеста

По содержанию бастита, изменяющемуся в пределах 4,45 – 11,23%, все залежи ломкого асбеста приурочены к серпентинитам, образовавшимся по ортопироксеновым дунитам. Максимальные содержания бастита составили: залежь 16 – 22,5%; залежь 1 – 15,5% и 24%; залежь 8а – 18,5%; залежь 33 – 20%. Из этого следует, что по первичной природе рассматриваемые объекты приурочены к ортопироксеновым дунитам с прослоями дунит-гарцбургитов. 62 По содержанию хризотила и антигорита выделяются залежи Центрального и Южного участков. В залежах 16 и 1 оторочки жил ломкого асбеста сложены, главным образом, серпентинитами антигорит-хризотилового состава, а в залежах 8а, 33 – серпентинитами хризотил-антигоритового состава. По соотношению породообразующих антигорита и хризотила руды в залежах 16 и 1 можно отнести к рудам существенно хризотилового, а залежи 8а, 33 – существенно антигоритового состава.

При удалении от перидотитового блока в зоне крупной сетки содержание антигорита резко падает, но это только внешний эффект, т. к. в зоне отороченных жил антигоритизация проявлена концентрировано в серпентинитовых оторочках, в то время как в зоне крупной сетки – по всей ее мощности. Минеральный состав серпентинитов из зоны крупной сетки характеризуется сравнительно стабильным содержанием хризотила (60-80%), β – лизардита в количестве 2,46-7,14% и антигорита от 4,18% до 10,67%.

Структурное положение зоны мелкой сетки, характеризующееся пространственной приуроченностью к краевой части разлома обуславливает широкий диапазон содержаний β – лизардита – 8,53-51,48% и хризотила – 22,74-67,94%, а также антигорита, особенно на залежах 8а, 33, где его содержание соответственно 46,28% и 17,93%.

Наличие данных по развитию антигорита в зонах разломов (табл.4, 5) и залежах ломкого асбеста (табл. 8) позволяет составить представление об его распространении в Главном рудном поле (рис. 6). Из графика видно, что: 1) уровень антигоритизации в зонах разломов выше, чем в залежах ломкого асбеста; 2) наиболее сильно антигоритизация разреза проявляется в южной части месторождения. Более высокий уровень антигоритизации разломов объясняется насыщенностью их дайками диоритов адуйского комплекса и сопряженными с ними тальккарбонатными породами.

В связи с этим интересно сопоставить уровень антигоритизации и pH среды в условиях зон разломов – 7,60-7,73 и залежей ломкого асбеста – 8,25-8,37. Из сравнения следует, что наиболее благоприятными для процессов антигоритизации были условия кислой среды зон разломов, чем залежей асбеста, которые ха-63 рактеризовались, кроме того повышенной проницаемостью пород и более высокой температурой гидротермальных растворов.

Антигорит в залежах ломкого асбеста образуется по всем предшествующим минералам, в том числе по асбесту (рис. 6) и баститу (рис. 7). Форма выделения антигорита и его избирательное развитие по различным серпентиновым минералам определяется в каждом конкретном случае исходным субстратом. В отличие от зон разломов, где он преимущественно развит по β – лизардиту, в залежах ломкого асбеста антигорит развит по оливину, хризотилу, β – лизардиту. Причем, преобладающими морфологическими разновидностями являются игольчатые, метельчатые и листоватые агрегаты, соответствующие по классификации В.Р. Артемова генерации антигорита I.

Рис. 6. Замещение асбеста антигоритом ассоциации с карбонатом.

Залежь 33, обр. 354, увел. 63, с анализатором.

Рис. 7. Развитие антигорита по баститу в антигоритизированном хризотиловом серпентините. Залежь 33, обр. 343, увел. 75, с анализатором.

Для правильного понимания масштабов и места антигоритизации в процессах аллометаморфизма недостаточно только изучения взаимоотношений минералов, т. к. взаимоотношения антигорита с другими минералами оказываются сложными и противоречивыми [4], а вопрос о порядке возникновения минералов решается неоднозначно. Наиболее дискуссионным в этом отношении является возраст серпентинизации этого типа в пределах тел перидотитов, который рассмотрен нами частично в начале главы. Отметим, что результаты глубинного изучения структуры месторождения подтверждают всеобщий характер проявления пострудного метаморфизма и наложении антигоритизации на все части геологического разреза по системе субмеридиональных и косоширотных разломов и оперяющих тектонических нарушений, в том числе на блоки перидотитов. Многообразие форм антигоритизации объясняется рядом причин, но, главным образом, длительностью этапа пострудного метаморфиза и широтой диапазона физико-химических

условий их протекания. Пострудному процессу предшествовала тектоническая подготовка, подновившая все ранее существовавшие системы трещиноватости. Особое значение для антигоритизации блоков перидотитов имели залегающие в них тела родингитов, плоскости контактов которых являлись путями проникновения метаморфизующих растворов, о чем свидетельствуют хорошо развитые антигоритовые оторочки и сопряженные с ними жилы ломкого асбеста (рис. 8). В связи с этим следует отметить, что если обособленно, без взаимосвязи с другими фактическими данными рассматривать приведенные материалы, то очень легко можно придти к ошибочному заключения о проявлении антигоритизации под действием жильного комплекса комагматичного габбро, в дальнейшем превращенного в родингиты. Поэтому особое значение для правильного понимания роли тел родингитов в пострудной антигоритизации блоков перидотитов и метаморфизма волокна асбеста имеет выявление [7] масштабов насыщенности ими геологического разреза, сопоставимой с проявлением асбестоносности. В условиях динамического растяжения пострудного этапа плоскости контактов тел родингитов совместно с блоковой трещиноватостью и открытой системой жил асбеста создали проницаемость, основные направления которой в современном разрезе фиксируются серпентинитами антигоритового состава в виде жильных обособлений (рис. 8, д) и жилами ломкого-полуломкого асбеста.

Для определения особенностей образования породообразующего антигорита в пределах различных частей залежи 16 ломкого асбеста и в сопряженной с ней Четвертой зоне разлома были выполнены массовые определения железистости антигоритов иммерсионно-теодолитным методом, результаты которых обработаны и изображены в виде графика (рис. 9). Железистость породообразующего антигорита, как видно, существенно различается только в крайних элементах неоднородностей строения: серпентинитах зоны разлома и серпентинизированных перидотитах блока перидотитов. В пределах собственно залежи ломкого асбеста, представленной зонами мелкой и крупной сетки, а также отороченных жил колебания средних значений железистости антигорита происходит в пределах 3,9-3,2 %.

65

Рис. 8. Характер проявления антигоритизации на контакте с апогаббровыми родингитами и взаимоотношения с ними жил ломкого асбеста

а, б – жилы хризотил-асбеста пересекают тело родингитов, антигоритизация проявлена на контакте с родингитами; в – жилы хризотил-асбеста доходят до родингита и выклинвают-ся на контакте с ним; г – от жил хризотил-асбеста отходят просечки к контакту родингитов, по которым осуществлялся метаморфизм жил хризотил-асбеста в пострудный этап формирования месторождения; д – жилы серпофита пересекают тело родингитов, нижняя зона антигоритизации фиксирует основное направление трещиноватости, приоткрытие в пострудный этап формирования месторождения; е – характер связи между пострудной антигоритизацией и образованием ломкого хризотил-асбеста не устанавливается.

Содержание условных обозначений: 1 – ортопироксеновые дуниты; 2 – серпентиновые оторочки жил хризотил-асбеста; 3-5 – жилы хризотил-асбеста: 3 – поперечноволокнистые, 4 – косо- и продольноволокнис-тые, 5 – просечки; 6 – жилы серпофита; 7 – зоны антигоритизации; 8 – родингиты; 9 – ме-тасоматически проработанные жилы хризотил-асбеста в теле родингитов с сохранившейся волокнистой структурой. Постепенный характер снижения железистости антигорита в направлении от зон разлома к блоку перидотитов происходит на фоне выявленного нами повышения концентрации водородных ионов (pH среды) с 7,60-7,73 в зонах разломов до 8,37, в пределах залежи ломкого асбеста. Если учесть, что pH среды измерялась в волокне ломкого асбеста, формирование которого при метаморфизме происходило одновременно с образованием антигорита, то выявленные обратные связи между химизмом среды и железистостью антигорита можно рассматривать как эмпирическую закономерность. Таким образом, удалось влияние химического состава среды на железистость антигорита, образовавшегося, что показывает выявленная закономерность, в пострудный этап формирования месторождения.

Карбонаты среди серпентинитов распространены неравномерно (табл. 8). Преимущественно они развиты в виде зерен, скоплений, пятен и псевдоморфоз по баститу (табл. 9). На участках, где карбонатизация проявилась в меньшей степени видно, что карбонаты развиты по серпентинитовым шнурам, ядрам серпентинитовых петель, асбесту и в ассоциации с магнетитом. Содержание карбонатов связано прямой зависимостью с количеством антигорита в серпентините: с его увеличением растет содержание карбоната. Наиболее сильно карбонатизация проявилась на Южном участке, а на нем – в зоне крупной сетки (5,32%- -залежь 8а; 4,79% - залежь 33).

Учитывая, что карбонаты являются характерным минералом в серпентинитах вмещающих ломкий асбест, проведены исследования по диагностике их теодолитно-иммерсионным методом в шлифах по залежи 16. В результате было определено четыре вида карбонатов: магнезит, брейнерит, доломит, кальцит. Результаты исследований карбонатов вынесены на геологические разрезы (рис. 10; 11).

Изучение состава карбонатов по линии 258 показывает, что в пределах зоны крупной сетки развиты доломит-магнезит, кальцит и магнезит, а в зоне разлома – исключительно магнезит. На линии 261 в пределах залежи ломкого асбеста карбонаты представлены магнезитом с железистостью 1,70-4,17% и магнезит-доломитом с железистостью 3,25%. Карбонаты ассоциируют с антигоритом, железистость которого изменяется в пределах 3,1-68

Форма нахождения и развития карбонатов в породах залежей 16, 33, 1, 8а ломкого асбеста

			Haxe	ождение и	развити	е карбон	атов		
Залежи ломкого асбеста	Кол- во изу- чен- ных шли- фов	по бас- титу	в виде зе- рен, ско- пле- ний, пя- тен	по ядрам сер- пенти- нито- вых петель	по сер- пен- тини то- вым шну- рам	по тре- щи- нам	по хри- зо- тил- ас- бес- ту	в ассо- циа- ции с руд- ным	Число выде- лений карбо- натов
Залежь 16	58	35	30	6	28	7	5	4	115
Залежь 33	54	37	27	3	26	7	4	3	107
Залежь 1	7	7	2	-	2	1	1	-	13
Залежь 8а	73	44	31	3	31	5	10	1	125
Всего по зале- жам 16, 33, 1, 8а	192	123	90	12	87	20	20	8	360
Соотно- шение форм выделения карбона- тов по зале- жам 16, 33, 1, 8а	-	34	25	4	24	5,5	5,5	2	100

3,4%. Из этого следует, что описываемые карбонаты и антигорит образовались близко одновременно в сходных физикохимических условиях. В то же время в пределах зоны разлома развит магнезит с высокой железистостью 13,0-15,25%, косвенно указывающей на образование этих карбонатов при снижении температуры гидротермального раствора, т. е. на заключительных этапах гидротермального процесса.

69

Рис. 9. График зависимости железистости породообразующего антигорита от структурно-тектонической позиции геологического разреза различных частей залежи 16 ломкого асбеста.

Таким образом, в пределах залежей ломкого асбеста образование карбонатов и антигорита происходило в начальную более высокотемпературную стадию гидротермального процесса, а в зоне разломов при снижении температуры, о чем свидетельствует высокая железистость карбонатов.

Тальк в серпентинитах, слагающих залежи ломкого асбеста, преимущественно развит по баститу, в меньшей степени: по асбесту (вдоль жил), по β – лизардиту (лизардитовым шнурам), по хризотилу. В шлифах он образует довольно крупные скопления. Масштабы его развития показывает таблица 9, из которой видно, что его содержание редко достигает 1% и только в зоне мелкой сетки по залежи 8а он содержится в количестве 1,31%.

70

железистость антигорита,%

Рис. 10. Геологический разрез по линии 258, результаты определения карбонатов и ассоциирующих с ними минералов 1 – перидотиты, неасбестоносные; 2 – перидотиты с бедными отороченными жилами хри-зотил-асбеста; 3 – перидотиты с отороченными жилами хризотил-асбеста; 4 – серпентини-ты, перидотиты с асбестоносностью крупная сетка; 5 – серпентиниты с асбестоносностью мелкая сетка; 6 – серпентиниты с просечками поперечноволокнистого хризотил-асбеста; 7 – серпентиниты с просечками продольноволокнистого хризотил-асбеста; 8 – зона минера-лизации ломкого хризотиласбеста; 9 – серпентиниты неасбестоносные; 10 – серпентинкарбонатные породы; 11 – тальк-карбонатные породы; 12 – диориты; 13 – пироксениты; 14 – родингиты; 15 – границы зон разломов; 16 – глубина отбора шлифов на определение карбонатов – название карбоната – количество % сидеритовой составляющей; 17 – магнезит; 18 – брейнерит; 19 – доломит; 20 – кальцит.

71

Рис. 11. Геологический разрез по линии 261 с резуьтатами определения карбонатов, условные обозначения на рис. 10.

Вторичный оливин выявлен при детальном геологическом картировании залежей 16 и 32 ломкого асбеста. На обеих залежах он развит, главным образом, в серпентинизированных ортопироксеновых дунитах и дунит-гарцбургитах из зоны отороченных жил по баститу и ортопироксену. Содержание его составляет 0,7-1,4%. Распространение вторичного оливина приурочено к зонам развития ломкого асбеста и является формой проявления пострудного метаморфизма. О масштабах проявления вторичной оливинизации бастита и ортопироксена в залежах 16 и 33 можно судить по тому, что она выявлена в 63 шлифах из 485.

72

Раньше новообразованные оливины были описаны А.Н. Мардиросьяном [4, с. 58-59, рис. 11). В серпентинитах смешанного состава, где они слагают гранобластовые агрегаты, которые преимущественно псевдоморфозно замещают лизардит,

сохраняя зональное строение его шнуров. В результате изучения этих участков удалось геометризовать тела с оливинизированными породами и установить, что они имеют мощность 10-20 м, длину по простиранию до 300 м и тяготеют к западному эндоконтакту массива, ширина – 150 м. Выяснение нами качества волокна асбеста из этих пород показало, что оно относится к ломкой-полуломкой разновидности.

Таким образом, характер проявления вторичной оливинизации, зависит от интенсивности пострудных процессов и особенностей строения асбестоносных гипербазитов. В зонах отороченных жил (залежи 16, 33), где вмещающие их гипербазиты имеют незавершенную степень серпентинизации, вторичная оливинизация ограничивается преимущественно баститом и ортопироксеном, а в серпентинитах смешанного состава развитие оливина идет более широко по серпентиновым минералам.

Выполнено также изучение и сопоставление содержаний магнетита в рудах с нормальным и ломким асбестом по типам асбестоносности [9], которое показало, что в зонах минерализации ломкого асбеста происходит снижение содержаний магнетита в результате его растворения и переотложения под действием гидротермальных растворов в пострудный этап. Общее снижение содержаний магнетита происходит там, где магнетит сформировался в интрарудный этап. В зоне отороченных жил, где степень серпентинизации была неполной и соответствовала по А.С. Варлакову В – лизардитизации, антигоритизация прошла по частично серпентинизированным оливинам и сопровождалась выделением магнетита одновременно с частичным растворением и выносом ранее образовавшегося магнетита из серпентинита оторочек жил асбеста. Процессы растворения ранее образованного магнетита и образование нового при антигоритизации оливинов в количественном отношении были сбалансированы, о чем свидетельствуют близкие содержания магнетита в серпентинитах, вмещающих нормальный (3,60%) и ломкий (3,66%) асбест и в волокие асбеста соответственно 1,95% и 1,98%. 73

Выводы

Исследования петрографического состава пород зон минерализации ломкого асбеста с учетом результатов изучения структурно-тектонических условий месторождений в до-, интра - и пострудный этапы позволяют сделать следующие основные выводы.

1. β – лизардитизация гипербазитов и связанная с ней в едином процессе хризотилизация и рудогенез являются результатом тектонического перемещения гипербазитов (корового диапира) и гидротермальной проработки их растворами сиалического происхождения в зоне глубинного Сусанского разлома.

2. Основными типоморфными минералами синрудными ломкому асбесту являются антигорит и вторичный оливин. Этот минеральный парагенезис служит прямым поисковым признаком на ломкий асбест в месторождениях баженовского подтипа.

3. Развитие различных морфологических разновидностей антигорита в зонах минерализации ломкого асбеста определяется, главным образом, степенью серпентинизации исходного субстрата, подвергшегося пострудному прогрессивному метаморфизму. При наложении метаморфизма на слабо серпентинизированные блоки ортопироксеновых дунит-гарцбургитов, вмещающих зоны отороченных жил асбеста, развивается антигорит пластинчатой, брусчатой и игольчатой форм по оливину. В остальных случаях происходит метасоматическая перекристаллизация ранее сформировавшихся серпентиновых минералов.

4. Наиболее высокотемпературные карбонаты – кальцит, доломит и маложелезистый магнезит развиты в парагенезисе с антигоритом в пределах залежей ломкого асбеста, в то время как для зон минерализации ломкого асбеста в разломах характерен магнезит с железистостью равной 13,0-15,25%.

5. Вторичная оливинизация проявлена, главным образом, в пределах залежей ломкого асбеста. Там, где вмещающие гипербазиты слабо серпентинизированы, вторичный оливин развит по баститу и ортопироксену, а в серпентинитах – по серпентинитовым минералам, метасоматически их замещая.

74

6. Идентичность минерального состава серпентинитов, вмещающих ломкий и полуломкий асбест, является критерием безтехнологической оценки руд последнего в соответствии с классификацией института ВНИИпроекасбест и отнесения их в группу с пониженными технологическими показателями обогащения.

Литература

1. **Артемов В.Р.** Минералогия месторождений хризотил-асбеста. Описание разновидностей серпентина. В кн.: Месторождения хризотил-асбеста СССР. М.: Недра, 1967, с. 355-396.

2. **Артемов В.Р.** Серпентины и их генезис. Автореферат диссертации на соиск. д. г. - м. н. Ленинград, 1969, 40 с.

3. **Артемов В.Р., Кузнецова В.Н.** Петрография месторождений хризотил-асбеста. В кн.: Месторождения хризотил-асбеста СССР. М.: Недра, 1967, с. 403-453.

4. Баженовское месторождение хризотил-асбеста. Под ред. К.К. Золоева, Б.А. Попова. М.: Недра, 1985, 270 с.

5. Варлаков А.С. Породообразующие минералы группы серпентина и условия их формирования в гипербазитах и месторождениях асбеста (на примере Урала). Автореферат диссертации на соиск. д. г. - м. н. М., 1986, 52 с.

6. Варлаков А.С. Петрология процессов серпентинизации гипербазитов складчатых областей. АН СССР УНЦ, Свердловск, 1986, 187 с.

7. Ефимов В.И. Роль метасоматитов при определении этапности формирования Баженовского месторождения хризотил-асбеста. - В кн.: Рудоносные метасоматические формации Урала. Свердловск: АН СССР УНЦ, 1986, с. 23-24.

8. Ефимов В.И., Барабанов В.П. Условия формирования структуры Баженовского месторождения хризотил-асбеста и закономерности в размещении природных и промышленных типов руд. СПб. Записки С.-П. гос. горного института им. Г.В. Плеханова, т. 143, 1997, с. 63-69.

9. Ефимов В.И. Распределение магнетита в волокне и рудах хризотиласбеста Баженовского месторождения. Екатеринбург. Урал. геол. журнал. 2001, № 1 (19), с. 141-144.

10. Золоев К.К. Количественная минералогическая классификация ультраосновных пород. В кн.: Проблемы минералогии и петрологии. Л., 1972, с. 158-166.

11. Золоев К.К. Серпентинизация и асбестообразование. В кн.: асбесты СССР. Вып. 1. М., 1974, с. 33-40.

12. Мардиросьян А.Н. К вопросу о зональности Баженовского асбестоносного пояса. В кн.: Вопросы геологии и магматизма Урала. Свердловск, 1970, с. 252-258.

75

76