== ГЕОЛОГИЯ =

УДК 621.039.86(571.53)

ГРАНИЦА ВЕНДА И КЕМБРИЯ: Rb–Sr-ИЗОХРОННЫЙ ВОЗРАСТ ЗАКЛЮЧИТЕЛЬНОГО СОБЫТИЯ ЩЕЛОЧНО-УЛЬТРАОСНОВНОГО МАГМАТИЗМА В ПРИСАЯНЬЕ

© 2003 г. Б. М. Владимиров, академик Н. А. Логачев, Г. А. Вайнер-Кротова, В. С. Лепин, А. В. Иванов, С. В. Рассказов

Поступило 17.01.2003 г.

Граница венда и кембрия – один из важнейших геологических рубежей в развитии жизни на Земле. Предполагается, что в это время в результате весьма мощной глобальной тектоно-термальной активности распадался короткоживущий суперконтинент Паннотия. Магматизм ярко проявился на периферии Западно-Африканского кратона, игравшего в позднем докембрии роль термоизоляционной покрышки. Высвобождение тепла в виде магматических продуктов привело к плавлению полярных ледниковых покровов, поднятию уровня Мирового океана, возникновению парникового и других эффектов, благоприятных для расцвета живых организмов [1]. Для обоснования этой гипотезы необходимы исследования позднедокембрийских магматических событий в периферических частях других кратонов. В настоящей работе выполнено Rb-Sr-изотопное датирование пород поздневендского щелочно-ультраосновного зиминского комплекса Присаянского выступа фундамента Сибирской платформы.

Геохронологические исследования пород зиминского комплекса проводились, начиная с 1962 г., исследователями из различных научных организаций. Сорок четыре К–Аг-определения возраста нефелинитов и карбонатитов показали широкий разброс датировок от 700 до 500 млн. лет (данные из работ [2–4] пересчитаны с константами радиоактивного распада ⁴⁰К [5]). По слюдам из кимберлитоподобных тел получены ⁴⁰Аг/³⁹Аг-датировки 666 ± 18 и 584 ± 6 млн. лет [6]. Для Большетагнинского и Белозиминского массивов приведена Rb– Sr-изотопная датировка 635 ± 18 млн. лет, измеренная по валовым составам нефелинсодержащих пород [7].

Опубликованные геохронологические материалы, однако, не дают надежного определения возраста становления зиминского комплекса. Так, К–Аг-датирование проводилось по валовым составам и минеральным фракциям из нефелиновых пород, содержащих канкринит, а также по амфиболам и слюдам из карбонатитов [2-4]. Полученные датировки явно завышены, поскольку канкринит содержит значительное количество избыточного аргона [8]. Вероятность присутствия избыточного аргона существует для амфиболов и слюд из карбонатитов в связи с существенным превышением ⁴⁰Ar/³⁶Ar-отношения (до 1000 и выше) по сравнению с атмосферным значением 295.5 [9]. Rb-Sr-датирование [7] проводилось по валовым составам пород, претерпевшим перекристаллизацию, поэтому разброс точек не удовлетворяет изохронной модели (получено большое значение среднего квадрата взвешенных отклонений от линии регрессии) (СКВО). Наиболее достоверны значения ⁴⁰Ar/³⁹Ar-возраста [6], но они были получены для кимберлитоподобных пород, имеющих неясные соотношения с типичными для зиминского комплекса телами карбонатитов и нефелинитов.

В истоках р. Белая Зима, в 3 км северо-западнее Верхнесаянского карбонатитового массива (рис. 1), обнаружена жила нефелинитов, не затронутых вторичными изменениями. Нефелиниты обычно сопровождали внедрение карбонатитов. Мощность жилы 1.5 м. Нефелиниты имеют зеленовато-серую окраску и спорадофировую структуру. Во вкрапленниках присутствуют нефелин, слюда, клинопироксен и магнетит. Под микроскопом выявляется пойкилитовая структура основной массы, сложенной на 80% нефелином и на 20% клинопироксеном.

Вкрапленники нефелина варьируют по величине от 2 до 10 мм. Нефелин частично замещен канкринитом. По данным микрозондового анализа (табл. 1, анализ 6-89/1) содержание кальсилитовой молекулы в нем не превышает 20–25%. Нефелин основной массы образует пойкилитовые сростки с клинопироксеном и не затронут вторичными процессами. По химическому составу он подобен нефелину вкрапленников (табл. 1, анализ 6-89/2).

Институт земной коры Сибирского отделения Российской Академии наук, Иркутск

Рис. 1. Местоположение датированной нефелинитовой дайки зиминского щелочно-ультраосновного комплекса. 1 – Нижнесаянский массив; 2 – Верхнесаянский массив; 3 – нефелинитовая дайка.

Слюда (биотит) присутствует только во вкрапленниках размером 2–5 мм. По соотношению железа и магния биотит из нефелинита (табл. 1, анализы 6-89/3 и 6-89/4) подобен биотиту из нефелинитовых интрузивных пород Верхнесаянского массива, отличаясь меньшей железистостью от

биотита Нижнесаянского массива (неопубликованные данные Б.М. Владимирова).

Клинопироксен обладает густо-зеленым цветом с синеватым оттенком и по химическому составу относится к эгирин-авгиту (табл. 1, обр. 6-89/5, 6-89/6). Редкие вкрапленники магнетита в значительной степени замещены мартитом.

Для датирования отобраны мономинеральные фракции вкрапленников пироксена, слюды и нефелина. Использовался также нефелин из основной массы. Разложение проб осуществлялось концентрированными плавиковой и азотной кислотами во фторопластовых бомбах под давлением. Стронций выделялся на хроматографических колонках, заполненных смолой Dowex 50 × 8. Измерения концентраций стронция и рубидия, изотопного состава стронция проводились на масс-спектрометре МИ-1201 с приставкой ПРМ-2. Методика измерения охарактеризована в [11]. Результаты приведены в табл. 2. Расчеты возраста и начальных изотопных отношений стронция осуществлялись по методу линейной регрессии [10] с использованием программы ISOPLOT [12] и по методу пар, учитывающему вероятностную функцию распределения измеренных значений возраста для каждой пары точек [13]. Для расчетов возраста принималась константа распада ⁸⁷Rb: $1.42 \cdot 10^{-11}$ rog⁻¹ [5].

Наклон линии регрессии по всем минералам показал возраст 547.0 \pm 8.3 млн. лет ($\pm 2\sigma$) при (87 Sr/ 86 Sr)₀ = 0.70308 \pm 0.00019 (СКВО = 3.17), а по слюде и двум фракциям нефелина – 546.1 \pm \pm 2.2 млн. лет ($\pm 2\sigma$) при (87 Sr/ 86 Sr)₀ = 0.70359 \pm \pm 0.00074 (СКВО = 0.93) (рис. 2). Оба значения возраста определяются высоким Rb/Sr-отношением в слюде и согласуются между собой в преде-

Рис. 2. Rb–Sr-изохронная диаграмма для минералов нефелинита. Расчеты выполнены по методу Йорка [10]. КП – клинопироксен, Hф.о.м. – нефелин основной массы, Hф.вкр. – нефелин вкрапленников, Бт – биотит. *I* – без клинопироксена: CKBO = 0.93, $t = 546.1 \pm 2.2$ млн. лет, $({}^{87}\text{Sr}/{}^{86}\text{Sr})_0 = 0.70359 \pm 0.00074$; *II* – все точки: CKBO = 3.17, $t = 547.0 \pm \pm 8.3$ млн. лет, $({}^{87}\text{Sr}/{}^{86}\text{Sr})_0 = 0.70308 \pm 0.00019$.

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 № 6 2003

Компонент	Обр. 6-89	Обр. 6-89/1	Обр. 6-89/2	Обр. 6-89/3	Обр. 6-89/4	Обр. 6-89/5	Обр. 6-89/6
SiO ₂	47.14	45.27	44.35	36.65	37.87	50.20	50.70
TiO ₂	0.86			3.07	3.84	0.47	0.41
Al_2O_3	17.65	32.80	32.78	13.10	12.65	1.55	1.46
Fe ₂ O ₃	5.38	0.88	1.03			11.82	11.36
FeO	3.31			19.70	18.75	8.69	9.29
MnO	0.35			0.64	0.54	0.62	0.65
MgO	1.25			11.91	11.34	6.14	6.04
CaO	7.76	0.12	0.11	0.022		16.34	16.17
Na ₂ O	8.34	15.00	16.11	0.48	0.45	4.15	4.22
K ₂ O	3.43	5.88	5.99	9.34	9.73		
P_2O_5	0.53						
H_2O^-	0.20			3.88	3.91		
П.п.п.	2.53						
CO ₂	1.32						
Сумма	100.0	99.95	100.37	99.07	99.13	99.98	100.30

Таблица 1. Химический состав нефелинита и слагающих его минералов, мас. %

Примечание. Состав породы (обр. 6-89) проанализирован методом классической "мокрой химии" (аналитик Г.В. Бондарева). Составы минералов (обр. 6-89/1 – нефелин вкрапленников, 6-89/2 – нефелин основной массы, 6-89/3 и 6-89/4 – биотиты из вкрапленников, 6-89/5 – клинопироксен вкрапленников, 6-89/6 – клинопироксен основной массы) определены на микроанализаторе MS-46 "Сатеса" (аналитики В.И. Липская, В.Г. Баранкевич). В биотите 6-89/4 и клинопироксене 6-89/5 измерены концентрации ВаО 0.26 и 0.04 мас. % соответственно.

лах погрешности. Низкие начальные изотопные отношения стронция указывают на происхождение нефелинитов из слабо обедненного мантийного источника.

Функция распределения возрастов по методу пар [13] близка к нормальному (гауссовскому) (рис. 3). Измеренный возраст в пределах 95% доверительного интервала попадает в диапазон от 544 до 550 млн. лет, с наиболее вероятным значением 546.7 млн. лет. Среднеквадратическое отклонение возрастов в 3.2 раза превышает теоретическое значение, вытекающее из величины ошибок измерений.

Низкие значения СКВО при использовании метода линейной регрессии [10] и распределение возрастов, близкое к нормальному, в методе пар [13] позволяют принимать полученную Rb–Sr-изотопную датировку 546–547 млн. лет в качестве возраста нефелинитовой жилы. Все рассчитанные значения возраста в пределах погрешностей совпадают с венд-кембрийским рубежом 544 млн. лет, установленным U–Pb-методом по циркону из пирокластической брекчии основания немакит-далдынского (Manykaian formation) яруса [14]. Стратотип яруса расположен на северо-восточном краю Сибирской платформы, а датированная нами нефелинитовая жила зиминского комплекса – на ее противоположном юго-западном краю.

Датированные события в интервале 547– 546 млн. лет назад свидетельствуют о магматиче-

ДОКЛАДЫ АКАДЕМИИ НАУК том 389 № 6 2003

ском высвобождении глубинного тепла на рубеже докембрия и кембрия не только на Западно-Африканском, но и на Сибирском континенте, хотя масштабы проявления магматизма последнего континента пока не ясны. Нужно отметить близкие по времени (~551 млн. лет назад) излияния траппов Волынской провинции (подобной по объему траппам Декана), пространственно свя-

Рис. 3. Плотность распределения возрастов минеральных пар. Расчеты выполнены по методу пар [11]. Параметр p(t) выражен в относительных единицах.

Проба	Rb, мкг · г ⁻¹	Sr, мкг \cdot Γ^{-1}	⁸⁷ Rb/ ⁸⁶ Sr	±σ	⁸⁷ Sr/ ⁸⁶ Sr	±σ
Биотит	618.0	28.12	66.636	0.0045	1.22235	0.00097
Клинопироксен	40.81	249.0	0.4730	0.0011	0.70569	0.00057
Нефелин основной массы	172.0	392.6	1.2659	0.0015	0.71312	0.00050
Нефелин вкрапленников	135.9	840.0	0.4671	0.0013	0.70762	0.00055

Таблица 2. Результаты масс-спектрометрических измерений изотопных отношений стронция и концентраций рубидия и стронция

занной с образованием неудавшегося Срединно-Балтийского рифта и отделением Балтики от Амазонии [15 и ссылки в этой работе]. Дальнейшие геохронологические исследования должны показать, насколько широко был распространен магматизм венд-кембрийского рубежа на Сибирском и других континентах.

Работа выполнена по проектам РФФИ (гранты 00–05–64628 и 00–15–98574).

СПИСОК ЛИТЕРАТУРЫ

- Doblas M., López-Ruiz J., Cebriá J.-M. et al. // Geol. Soc. Amer. Bull. 2002. V. 30. № 9. P. 839–842.
- Кононова В.А., Шанин М.М., Аракелянц М.М. // Изв. АН СССР. Сер. геол. 1973. № 5. С. 25–37.
- Конев А.А., Черненко А.И., Фефелов Н.Н. и др. // Геология и геофизика. 1975. № 4. С. 141–146.
- Багдасаров Ю.А., Вороновский С.Н., Овчинникова Д.В. и др. // ДАН. 1980. Т. 254. С. 171–175.
- 5. Steiger R.H., Jäger E. // Earth and Planet. Sci. Lett. 1977. V. 36. P. 359–362.

- Travin A.V., Aschepkov I.V., Udin D. et al. // J. Conf. Abs. Goldshmidt. 2002. P. 305.
- 7. Чернышева Е.А., Сандимирова Г.П., Пахольченко Ю.А. и др. // ДАН. 1992. Т. 323. № 4. С. 942–948.
- York D., Macintyre R.M., Gittins J. // Earth and Planet. Sci. Lett. 1969. V. 7. P. 25–28.
- Нивин В.А., Икорский С.В., Каменский И.Л. В сб.: Щелочной магматизм и проблемы мантийных источников. Иркутск: Изд-во ИрГТУ, 2001. С. 129– 142.
- 10. York D. // Can. J. Phys. 1966. V. 44. P. 1079-1086.
- Давыдов И.А., Корольков А.В., Лепин В.С. Способ масс-спектрометрического изотопного анализа рубидия и стронция. А.с. № 1615823 // Бюл. изобр., 1990. № 47.
- 12. Ludwig K.R. USGS Open-File Report. 1990. P. 88–557.
- 13. Макагон В.М., Лепин В.С., Брандт С.Б. // Геология и геофизика. 2000. Т. 41. С. 1783–1789.
- 14. Bowring S.A., Grotzinger J.P., Isachsen C.E. et al. // Science. 1993. V. 261. P. 1293–1298.
- 15. Hartz E.H., Torsvik T.H. // Geology. 2002. V. 30. № 3. P. 255–258.