— ГЕОХИМИЯ —

УДК 549.211:548.4

ВКЛЮЧЕНИЯ НЕОБЫЧНЫХ ПОЗДНЕМАГМАТИЧЕСКИХ РАСПЛАВОВ В КВАРЦЕ ПЕГМАТИТОВОЙ ЖИЛЫ ОКТЯБРЬСКАЯ (МАЛХАНСКОЕ ПОЛЕ, ЦЕНТРАЛЬНОЕ ЗАБАЙКАЛЬЕ)

© 2003 г. С. З. Смирнов, И. С. Перетяжко, В. Е. Загорский, М. Ю. Михайлов Представлено академиком Н.В. Соболевым 21.03.2003 г.

Поступило 08.04.2003 г.

Первично-магматическая природа большинства гранитных пегматитов не вызывает сомнений. РТ-параметры магматического этапа наиболее детально изучены в хрусталеносных, субредкометальных топаз-берилловых [1, 2; др.] пегматитах и в пегматитах Sn-W месторождения Ehrenfriedersdorf в Саксонии [3]. Имеются также ограниченные данные об условиях магматической кристаллизации некоторых типов субредкометальных миароловых [1, 4] и редкометальных [5] пегматитов. Авторами настоящей работы начаты систематические исследования минералообразующих сред для выяснения роли летучих компонентов и редких элементов в процессах формирования различно специализированных гранитных пегматитов. В частности, ранее была установлена важная роль ортоборной кислоты при образовании миароловых пегматитов, не только богатых, но и бедных борной минерализацией [6, 7].

Ниже представлены новые данные, полученные при изучении позднемагматического этапа формирования жилы Октябрьская - одного из промышленных источников ювелирного и коллекционного турмалина в Малханском поле (Центральное Забайкалье) [8]. Это пологопадающее линзообразное тело длиной около 250 м и максимальной мощностью 17 м, залегающее в метадиоритах. Основу его составляют перемежающиеся графические, неяснографические кварцкалишпатовые и кварц-олигоклазовые минеральные комплексы с подчиненной, но возрастающей к центру тела ролью кварц-полевошпатовых участков пегматоидного сложения. В этом же направлении возрастает доля калишпата относительно олигоклаза. Для всех разновидностей

Институт минералогии и петрографии Сибирского отделения

Российской Академии наук, Новосибирск Институт геохимии им. А.П. Виноградова

институт геохимии им. Сибирского отделения пегматита характерна вкрапленность крупнокристаллического шерла, часто обильная, а также наличие миарол объемом от нескольких кубических сантиметров до первых кубометров. Основными минералами в составе друзовых комплексов миарол являются кварц, калишпат, клевеландит, лепидолит, цветной турмалин, данбурит, гамбергит. Для миарол характерны значительные различия в степени их заполнения друзовым материалом и его минералогического состава. Около многих миарол присутствуют прерывистые каймы (зоны) турмалин-лепидолит-альбитового комплекса. Для детальных исследований выбрана небольшая изометричная миарола (около 15 см в максимальном сечении), содержащая в составе друзового комплекса кристаллы дымчатого кварца со щетками белого клевеландита, несколько кристаллов калишпата и розового турмалина. В основании одного из кристаллов калишпата присутствуют зерна черного касситерита (до 5 × 3 мм). На стенке миаролы обнаружен также кристалл бледно-голубого апатита (1 × 0.3 см) в ассоциации с розовым турмалином (1 × 0.6 см), клевеландитом и дымчатым кварцем. Грани некоторых кристаллов кварца покрыты "коркой" мелкочешуйчатого лепидолита толщиной 2-3 мм. На стенках миаролы минералы друзового комплекса нарастают на зону крупнозернистого кварц-плагиоклазового (альбит+олигоклаз) пегматита шириной 1-2 см, который постепенно переходит в среднезернистый, участками графический каврц-олигоклазовый пегматит с редкими мелкими (2-3 мм) вкрапленниками шерла. Минералы вмещающего миаролу пегматита содержат включения циркона, топаза, берилла, апатита, не диагностированного редкоземельного фосфата, Та- и Nb-содержащего касситерита, колумбита, вольфрамита и Fe-Mn вольфрамо-тантало-ниобата, сходного по составу с вольфрамиксиолитом.

Характеристика расплавных и флюидных включений. Кварц из окружающего миаролу крупно- и среднезернистого пегматита содержит мелкие (1–10 мкм) расплавные включения (PB) и сопутствующие им первичные флюидные вклю-

Российской Академии наук, Иркутск

Рис. 1. Расплавные и флюидные включения в кварце из миаролового пегматита жилы Октябрьская. Включения до прогрева в автоклаве: а – раскристаллизованное расплавное включение, б – расплавное включение с большим содержанием флюидной фазы, в – флюидное включение, содержащее недиагностированную кристаллическую фазу. Включения после прогрева в автоклаве при 640°С и 2.5 кбар: г – расплавное включение, содержащее стекло и недоплавленные кристаллические фазы (мусковит), д – расплавное включение, содержащее стекло, небольшие газовые обособления и недоплавленные фазы (топаз и мусковит); е – негомогенизированное включение, содержащее стекло и флюидное обособление (водный раствор + газ + сассолин). кр – агрегат кристаллов смеси мусковит-лепидолит-нанпингит, топ – топаз, ст – стекло, р – водный раствор, г – газовый пузырек, сс – сассолин. Размер масштабной линейки 50 мкм.

чения (ФВ) размером 5–15 мкм, а также вторичные (до 20 мкм) ФВ. В кристаллах кварца свободного роста на стенках миаролы присутствуют РВ (30-50 мкм, иногда до 100 мкм и более) вместе с первичными (до 100 мкм и более) и вторичными ФВ. Основным критерием первичности включений в нашем случае выбрана принадлежность их к азональным группам. Флюидные включения, образующие с первичными РВ единые группы, рассматриваются как сингенетичные расплавным. В кварце из окружающих миаролу пегматитовых зон, а также в основаниях кристаллов кварца на стенках миаролы в РВ доминирует раскристаллизованный агрегат, в то время как флюидная фаза заполняет интерстиции в этом агрегате и плохо различима (рис. 1а). От ранних к поздним зонам кристаллов миаролового кварца доля флюидной фазы в PB заметно увеличивается. Появляются включения, во флюидных обособлениях которых хорошо различимы жидкость, кристаллы сассолина (Н₃ВО₃) и газовый пузырь. От ранних к промежуточным зонам роста количество РВ резко уменьшается, и доминируют ФВ. Некоторые из ФВ, помимо сассолина, содержат дочерние недиагностированные кристаллы (рис. 1в). В поздних зонах роста PB не обнаружены. Соотношение объемов, занимаемых кристаллическим агрегатом, раствором и газом, меняется значительно даже в расположенных рядом PB, что может быть следствием гетерогенного захвата минералом-хозяином сосуществующих расплава и флюида.

По данным спектроскопии комбинационного рассеяния (КР) раскристаллизованный агрегат в РВ из кристаллов миаролового кварца состоит преимущественно из слюдистых минералов со структурой мусковита и лепидолита. Составы слюд определены на электронном микроанализаторе в нескольких вскрытых РВ. Для слюд характерна высокая дисперсия содержаний F и особенно Cs (табл. 1). Концентрация Cs значительно возрастает (до 20–24 мас. %) к краевым зонам чешуек слюд. Судя по имеющимся аналитическим данным, слюдистый агрегат состоит из смеси мусковита, богатого Cs мусковита, нанпингита CsAl₂[AlSi₃O₁₀](OH,F)₂ и, вероятно, их богатых бором разновидностей, а также лепидолита. Помимо слюд, в кристаллическом агрегате многих

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 2 2003

лическом агрегате расплавных включений (мас. %)							
Компонент	1(5)	2(8)	3(2)	4(4)	5(7)		
SiO ₂	32.89	45.67	39.63	40.90	43.08		
Al_2O_3	56.30	31.40	26.05	19.66	16.02		
CaO	0.00	0.01	0.06	0.12	0.02		
FeO	0.00	0.00	0.00	0.00	0.00		
MnO	_	0.00	0.01	0.04	0.04		
Na ₂ O	0.01	0.45	0.99	0.77	0.22		
K ₂ O	0.00	10.33	5.95	3.56	1.76		
Rb ₂ O	0.00	0.21	0.23	0.23	0.26		
Cs ₂ O	0.01	0.18	5.71	15.06	22.66		
F	18.11	1.78	2.40	5.11	6.70		
$\Sigma(-O=F_2)$	99.69	89.28	80.01	83.18	87.94		

Таблица 1. Средние составы дочерних фаз в кристал-

Примечание. 1 – топаз, 2–5 – слюды ряда мусковит – нанпингит (вероятно, богатые бором). В скобках – число анализов (микрозонд Camebax-Micro, аналитик Л.Н. Поспелова, ИМП СО РАН, г. Новосибирск).

РВ по данным электронно-микрозондового анализа (ЕМРА) и сканирующей электронной микроскопии (SEM EDS) присутствуют топаз (табл. 1, ан. 1), кварц, калишпат, возможно, турмалин (по оптическим свойствам), а также ряд недиагностированных минералов. В КР-спектрах РВ без видимой фазы флюида всегда присутствует линия 880 мс⁻¹, что свидетельствует о наличии в инвестициях кристаллического агрегата раствора ортоборной кислоты и, вероятно, мелких кристаллов сассолина. Флюидные включения, сингенетичные расплавным, содержат борнокислый водный раствор, газовый пузырь и один или несколько дочерних кристаллов сассолина.

Поведение при нагревании мелких (1–2 мкм) РВ в кварце из крупнозернистого пегматита и в кристаллах кварца из миаролы изучено методом закалки в термокамере при атмосферном давлении по методике [9]. Плавление кристаллического агрегата в этих РВ начиналось в интервале 550–580°С, а гомогенизация большинства включений – при 600–610°С. Опыты по гомогенизации крупных РВ проведены под внешним водным давлением в автоклаве с холодным затвором. Плоскополированная пластинка кварца помещалась во вкладыш из меди объемом 1.5 см³. Пластинки выдерживались при температурах 500, 550, 600 и 650°С (± 10 °С) в течение 14–24 ч. В миароловом кварце плавление кристаллического агрегата начинается в интервале 500–550°С. Полное плавление последних силикатных фаз наблюдалось только в нескольких крупных РВ при температуре 615°С. Результаты микротермометрии ФВ и флюидных обособлений в РВ в миароловом кварце представлены в табл. 2. Здесь же приведены оценки концентрации H₃BO₃ и NaCl (экв.%) в гомогенных растворах включений, определенные по методике [6, 7].

После прогрева в автоклаве и быстрого охлаждения в пластинках из миаролового кварца обнаружены включения, содержащие стекло, кристаллы мусковита и топаза (рис. 1г, 1д), либо стекло, фазу раствора и газовый пузырь, окруженный плотной "короной" из кристаллов сассолина, в разных объемных соотношениях (рис. 1е). При отсутствии признаков разгерметизации рост температуры гомогенизации флюидного обособления в PB от 250–300 до 350°С свидетельствует об уменьшении плотности флюидной фазы, по всей видимости, за счет растворения воды в расплаве. После прогрева в автоклаве микротермометрические свойства флюида в РВ практически не изменились (табл. 2). Состав закалочных стекол в PB изучен методами EMPA и SIMS (табл. 3). Для стекол характерны необычно высокие концентрации Cs, F, B, H_2O при почти полном отсутствии фемических компонентов, Cl и P. Невысокие содержания Na (табл. 3, ан. 1–3) могут быть связаны с потерей этого элемента в ходе анализа водосодержащего алюмосиликатного стекла. В соответствии с рекомендациями [10] для уменьшения воздействия этого фактора стекло вблизи ранее изученного участка (табл. 3, ан. 3) анализировали широким пучком зонда (20 мкм) при возбуждающем токе 10 нА. Концентрация Na в анализе возросла в несколько раз и составила 1.41 мас. %. Методом SIMS установлено, что в стекле этого PB содержится также Li, Be, Ta и Nb. Однако даже с учетом данных SIMS по содержанию легких элементов и воды (5.67 мас. %) сумма анализа значительно ниже 100% (табл. 3, ан. 4).

Таблица 2. Микротермометрия флюидных включений и флюидных обособлений в расплавных включениях из миаролового кварца

Объект	$T_{_{\rm ЭВТ}},^{\rm o}{ m C}$	<i>Т</i> _{пл. льда} , °С	$T_{\rm cc}$, °C	$T_{\text{гом}}, ^{\circ}\text{C}$	$C_{\rm H_{3}BO_{3}}$, мас. %	С _{NaCl экв} , мас. %
Флюидные включения	-6.528	-2.96.5	59–88	220-360	12–20	4.6–9.4
Флюидные обособления	-9.5	-3.77.6	70–80	250-300	15-17	5.7–9
PB		-4.2*	72*	350-335*	15.4*	5.4*

Примечание. После прогрева и закаливания в автоклаве. Концентрации H₃BO₃ и C_{NaClэкв} определены по методике [6, 7].

7 ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 2 2003

Компо- нент	1	2	3	4	5	6
SiO ₂	58.26	58.81	57.55	58.21	56.9	60.07
Al_2O_3	12.59	13.06	12.64	12.62	11.4	17.85
CaO	0.08	0.03	0.16	0.16	0.03	0.04
FeO	н.п.	н.п.			0.24	0.17
MnO	н.п.	н.п.			0.04	0.02
BeO				0.12	0.30	0.08
Na ₂ O	0.51	0.27	0.61	1.41	2.04	4.97
K ₂ O	2.58	1.77	3.29	4.10	4.33	4.00
Rb ₂ O	0.10	0.10	0.05	0.14	1.10	0.44
Cs ₂ O	4.46	3.64	4.77	5.20	1.59	0.07
Li ₂ O				0.54	0.57	0.14
B_2O_3				2.51	3.70	0.08
Ta ₂ O ₅				0.57		
Nb_2O_5				0.10		0.01
P_2O_5				н.п.	1.14	0.00
F	1.94	2.36	2.63	2.73	2.45	5.11
Cl	н.п.	н.п.		н.п.	0.10	0.33
H_2O				5.67	16.2	6.48
$\Sigma(-O=F_2)$	79.7	79.05	80.59	92.93	100.98	99.86

Таблица 3. Состав закалочных стекол в расплавных включениях (мас. %)

Примечание. 1–4 – стекла PB, закаленные при 640°С и 2.5 кбар. Фазовый состав включений: 1.2 – стекло + недоплавленные кристаллы; 3, 4 – стекло + недоплавленные кристаллы + газ; 5 – стекло включений расплава A в кварце из пегматитов Саксонии [3]; 6 – средний состав гомогенных стекол в расплавных включениях в топазе из пегматитов Волыни [2]. Жирным шрифтом выделены результаты, полученные методом SIMS ("Сатеса" IMF-4f, аналитик С.А. Симакин, ИМЭ РАН, г. Ярославль), остальное – по данным электронного микрозонда ("Сатеbах-Місго", аналитик Л.Н. Поспелова, ИМП СО РАН, г. Новосибирск); н.п. – ниже предела обнаружения.

Наиболее вероятно, что недостаток суммы обусловлен потерей воды в ходе анализа стекла. По данным [11], при концентрации H_2O в стеклах более 5 мас. % ошибка определения методом SIMS значительно возрастает, по-видимому, за счет увеличения доли молекулярной H_2O . С учетом изложенного выше концентрация H_2O в стеклах PB может достигать 12–15 мас. %. Поскольку бор в подобных стеклах находится преимущественно в форме $B(OH)_3$ [12], можно предположить, что часть бора также теряется в силу высокой летучести ортоборной кислоты с парами воды. Таким образом, полученные методом SIMS концентрации B в стеклах PB, вероятнее всего, являются заниженными.

Данные о составе и условиях кристаллизации расплавов позднемагматического этапа в пегматитовом процессе весьма ограничены. Согласно [1, 2], поздние расплавы внутригранитных хрусталеносных и топаз-берилловых миароловых пегматитов являются продуктами глубокой кристаллизационной дифференциации гранитной магмы, достигшей насыщения летучими компонентами. Недавние экспериментальные исследования показали, что при определенных *PT*-условиях могут сосуществовать обогащенные F, B, P алюмосиликатные расплавы с пониженными (относительно гранита) содержаниями кремнезема, водные флюиды и водно-солевые расплавы (или высокотемпературные рассолы), которые фактически являются высоководными низкокремниевыми алюмо-боро-силикатными расплавами [12].

Наличие сингенетичных РВ и ФВ в кварце из олигоклазового пегматита, окружающего миаролу, и в корневых частях кристаллов кварца из друзового комплекса свидетельствует о том, что каврц-полевошпатовые агрегаты, слагающие стенки миаролы, а также ранние зоны кристаллов друзового комплекса кристаллизовались из гетерогенной минералообразующей среды, в которой соотношение расплав/флюид в ходе процесса постепенно менялось в пользу последнего. Завершение магматической кристаллизации и переход к гидротермальному этапу фиксируются по исчезновению РВ из ассоциаций с ФВ в средних и поздних зонах роста кристаллов миаролового кварца. Судя по результатам гомогенизации РВ, кристаллизация остаточного расплава протекала в интервале от не менее 615°С до 550-500°С. Экспериментальные данные и термодинамические расчеты *PVTX*-свойств борнокислых растворов [13] позволяют оценить флюидное давление в ходе кристаллизации содержимого РВ. Из расчетов следует, что для РВ с одновременно захваченным расплавом и флюидом снижение температуры в ликвидус-солидусном интервале 615-550°С могло привести к росту внутривакуольного давления на величину ΔP около 1.5 кбар за счет выделения части растворенного в расплаве флюида. Значение ΔP еще более возрастет, если учитывать в расчетах вероятную потерю стеклом некоторого количества раствора сразу после закаливания расплава. По аналогии с РВ раскристаллизация остаточных богатых бором и водой расплавов также должна приводить к росту флюидного давления в миароле. При этом величина ΔP будет зависеть от соотношения объемов флюида и остаточного расплава, а также от количества выделяющейся из него воды.

Анализы закалочных стекол, а также присутствие топаза и богатых Cs, F и, возможно, B слюд среди минералов в раскристаллизованном агрегате многих PB свидетельствуют о необычном составе этих расплавов, способных экстремально концентрировать H_2O , B, F и редкие гранитофильные элементы (Cs, Li, Be, Ta, Nb). Степень концентрирования указанных компонентов в поздних расплавах относительно валового состава

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 2 2003

пегматитов Малханского поля [8 14] составляет 1-2 порядка. Особенно высока она для Cs, с чем связано образование нанпингита – цезиевого аналога мусковита. Обнаруженный пока лишь в продуктах расристаллизации РВ, этот минерал, вероятно, может присутствовать и в некоторых околомиароловых комплексах в виде самостоятельных выделений либо поздних зон в кристаллах слюды. Составы полученных закалочных стекол в РВ близки по большинству компонентов некоторым стеклам РВ в кварце из борсодержащих пегматитов Саксонии [3] и отличаются от последних более высокими концентрациями Cs, Li и отсутствием Cl, P, Sn. Стекла PB из топазов, пегматитов Волыни [2] содержат больше Na, Al, Cl и F, но меньше Ве, Li и В (табл. 3). Представленные стекла включений поздних пегматитовых расплавов характеризуются пониженными по сравнению с гранитами концентрациями SiO₂ и повышенными концентрациями воды, что указывает на значительное увеличение растворимости последней в позднемагматических пегматитовых расплавах.

Несоответствие минерального состава друзового комплекса в миароле и в продуктах раскристаллизации остаточного расплава в РВ, вероятно, связано с тем, что ранние части друзового комплекса миарол кристаллизовались преимущественно из флюидной фазы, в то время как изученные нами расплавы присутствовали в подчиненном количестве. Особенно это заметно по минералам-концентраторам Cs, Sn и P. Благодаря преимущественному перераспределению Сѕ в фазу силикатного расплава его минералы не встречаются в миароловом комплексе, образованном из водного флюида. Присутствие касситерита в друзовом комплексе говорит о перераспределении олова преимущественно в водную фазу. Аналогичная ситуация, по-видимому, характерна и для фосфора, минералы которого встречаются как в друзовом, так и в околомиароловом комплексах. Вместе с тем в других частях пегматитового тела поздние расплавы могли накапливаться в количествах, достаточных для образования околомиароловых участков с редкометальной минерализацией, например, лепидолит-турмалин-альбитовых комплексов с поллуцитом, бериллом и разнообразными тантало-ниобатами. При просмотре нескольких сотен пластинок кварца и других минералов (турмалина, берилла, адуляра) из миарол и околомиароловых комплексов пегматитов Малханского поля, Борщовочного кряжа (Восточное Забайкалье), Среднего Урала, Центрального и Юго-Западного Памира, Намибии установлено, что подобные PB встречаются достаточно часто, особенно в корневых зонах кристаллов на стенках миарол. Большое разнообразие минералов, слагающих околомиароловые и друзовые комплексы, указывает на то, что составы участвующих в их образовании остаточных расплавов и флюидов могут значительно варьировать. Расплавы необычного состава, подобные описанным в настоящей работе, представляют исключительный интерес для реконструкции процессов минерало- и рудогенеза на завершающей стадии магматической кристаллизации в пегматитах и требуют дальнейших углубленных исследований.

Работа выполнена при поддержке РФФИ (проекты 01–05–64677, 03–05–64436).

СПИСОК ЛИТЕРАТУРЫ

- 1. Косухин О.Н., Бакуменко И.Т., Чупин В.П. Магматический этап формирования гранитных пегматитов. Новосибирск: наука, 1984. 136 с.
- Коваленко В.И., Царева Г.М., Наумов В.Б. и др. // Петрология. 1996. Т. 4. № 3. С. 295–309.
- 3. *Thomas R., Forster H.-J., Heinrech W. //* Contribs. Mineral. and Petrol. 2003. № 144. P. 457–472.
- Редкометальные пегматиты. Гранитные пегматиты. / Под ред. В.Е. Загорского, В.М. Макагона, Б.М. Шмакина и др. Новосибирск: Наука, 1997. Т. 2. 285 с.
- Бакуменко И.Т., Коноваленко С.И. В сб.: Термобарогеохимические исследования процессов минералообразования. Новосибирск: Наука, 1988. С. 123–135.
- Смирнов С.З., Перетяжко И.С., Прокофьев В.Ю. и др. // Геология и геофизика. 2000. Т. 41. № 2. С. 194–206.
- Перетяжко И.С., Загорский В.Е., Прокофьев В.Ю. и др. // Петрология. 200. Т. 8. № 3. С. 241–266.
- Загорский В.Е., Перемяжко И.С. Пегматиты с самоцветами Центрального Забайкалья. Новосибирск: Наука, 224 с.
- 9. *Чупин В.П., Косухин О.Н.* // Геология и геофизика. 1982. № 10. С. 66–73.
- 10. *Morgan G.B., London D.* // Amer. Miner. 1996. V. 81. № 9/10. P. 1176–1185.
- 11. *Ihinger P.D., Hervig R.L., McMillan P.F.* // Rev. Miner. 1994. V. 30. P. 67–121.
- 12. Veksler I.V., Thomas R., Schmidt C. // Amer. Miner. 2002. V. 87. P. 775–779.
- Перетяжко И.С., Загорский В.Е. // ДАН. 2002. Т. 383. № 6. С. 812–817.
- 14. Загорский В.Е., Перетяжко И.С. // Геология и геофизика. 1992. № 1. С. 87–97.