— ГЕОФИЗИКА —

УДК 551.46

ПРОЦЕССЫ ПЕРЕМЕШИВАНИЯ В ПРИРОДНЫХ ВОДАХ В РЕЖИМЕ НАИБОЛЬШЕЙ УСТОЙЧИВОСТИ

© 2003 г. П. П. Шерстянкин, Л. Н. Куимова

Представлено академиком К.Я. Кондратьевым 18.02.2003 г.

Поступило 05.03.2003 г.

Явление наибольшей устойчивости в глубоких озерах было обнаружено Г. Еклундом [1], который дал математическое описание и экспериментальную проверку по температурным данным для Большого Медвежьего озера (Канада) с максимальными глубинами 427 м [2]. По Еклунду наибольшая устойчивость наступает при вертикальном градиенте

температуры $\frac{dT}{dP}$, равном половине градиента тем-

пературы максимальной плотности T_{md}:

$$\frac{dT}{dP} = \frac{1}{2} \frac{dT_{md}}{dP} \approx 0.11 \,^{\circ}\text{C/5ap}.$$

О.И. Мамаев [3] показал, что на больших глубинах на оз. Байкал условие термической устойчивости Еклунда не выполняется. Теория явления наибольшей устойчивости, не противоречащая имеющимся наблюдениям на оз. Байкал и в Мировом океане, дана в [4]. Анализ процессов перемешивания в природных водах при наличии и отсутствии режима наибольшей устойчивости и является целью настоящей работы.

Методика основана на теоретико-экспериментальных подходах.

КРАТКАЯ ТЕОРИЯ

Рассмотрим основные равновесные процессы, которые могут происходить в природных водах. Естественно, предпочтение нужно отдать самым крупным по энергетическим и пространственным масштабам процессам, хотя все они, скорее всего, должны иметь локальную турбулентную структуру. К таким процессам относятся явление и режим наибольшей устойчивости в глубоких озерах, открытые Еклундом [1]. Теоретическое обоснование и математическое выражение наибольшей устойчивости в природных водах дано нами ранее [4].

Лимнологический институт

В основе наибольшей устойчивости в водной среде лежит уникальное и еще недостаточно изученное свойство воды: эффект температуры максимальной плотности T_{md} и изменение ее в сторону уменьшения при увеличении гидростатического давления Р. Для понимания физики и термодинамики наибольшей устойчивости нужно представлять две стороны этого явления. Температура максимальной плотности связана с внутренними неотъемлемыми свойствами воды, свойствами ее молекулярных структур, определяющими эту температуру в зависимости от давления Р (см., например, [5]), которую мы обозначим $T_{mdw}(P)$, и ей соответствует как внешней среде температура $T_{md}(P)$. При этом, естественно, $T_{mdw}(P) \equiv T_{md}(P)$. Температуру воды при некотором давлении Р будем представлять в тождественной форме

$$(P) = T_{mdw}(P) + T(P) - T_{md}(P) = = T_{mdw}(P) + T^{M}(P),$$
(1)

где

Т

$$T^{M}(P) = T(P) - T_{md}(P)$$
 (2)

есть температурная шкала Д.И. Менделеева [4], учитывающая температуру максимальной плотности T_{md} и удаление от нее температуры T in situ.

Необходимым условием наибольшей устойчивости [4] является в дифференциальной форме

$$\frac{d(T_{mdw} + T^{\rm M})}{dP} = 0, \quad \frac{dT}{dP} = 0, \quad (3)$$

в интегральной форме

$$T_{mdw} + T^{\rm M} = \text{const}, \quad T = \text{const}.$$
 (4)

Отметим, если при описании явления наибольшей устойчивости Еклунд [1] ссылался на обязательную связь рассматриваемого явления к линии температур максимальной плотности, у нас это требование отсутствует, т.е. мы считаем, что явление наибольшей устойчивости может существовать при температурах, меньших, равных или как угодно далеких от линии T_{md} .

Сибирского отделения Российской Академии наук, Иркутск

ОБСУЖДЕНИЕ

Наибольший интерес имеет нахождение связи явления наибольшей устойчивости с процессами равновесия в природных водах. Термодинамическое равновесие конечного объема (системы) природной воды, находящейся в физическом поле (тяготения), может наступить при максимальности энтропии η и выполнении следующих законов сохранения: полного импульса; момента импульса и энергии (кинетической и потенциальной) системы; постоянство массы каждого компонента системы (собственно воды, растворенных и взвешенных веществ). Поле тяготения проявляется в уравнении гидростатики $P = \rho g Z$, где ρ – плотность воды, д – ускорение свободного падения, Z – глубина (ось Z направлена вниз). При отсутствии внешнего поля давление Р остается постоянным [6-8].

С учетом того, что сохранение массы компонентов системы можно выразить, в частности, как выполнение условий адиабатичности, изоэнтропичности и постоянства солености *S*, запишем

$$S = \text{const.}$$
 (5)

Совершенно ясно, что от выполнимости или невыполнимости условия (5) будут меняться условия перемешивания. В общих чертах это будет диктоваться плотностным соотношением

$$R_{\rho} = \frac{\beta \Delta S}{\alpha \Delta T},\tag{6}$$

где β – коэффициент соленостного сжатия, α – коэффициент термического расширения, ΔS и ΔT – перепады солености и температуры в интересующем нас слое. В общем случае $R_{\rho} = 1$ при безразличной стратификации, $R_{\rho} > 1$ при гидростатической устойчивости и $R_{\rho} < 1$ при гидростатической неустойчивости и $R_{\rho} < 1$ при гидростатической неустойчивости рассматриваемого слоя [9]. Если считать, что условия (4) и (5) выполнены, то наступает режим наибольшей устойчивости, плотностное соотношение становится близким к 1, $R_{\rho} \cong 1$. Коэффициенты вертикального турбулентного обмена теплом K_T и солью K_S при этом становятся примерно равными друг другу, $K_S/K_T \approx 1$. Это означает, что и тепло, и соль переносятся одними и теми же турбулентными вихрями.

Однако случаи равновесия, близкого к безразличному, когда выполняются или должны выполняться условия (4)–(6) и которые наблюдаются в глубинных слоях на оз. Байкал [12, 13] и в океанах [7], требуют более внимательного теоретического и экспериментального рассмотрения. Заметим, что при выполнении условия (6) возникает неопределенность типа 0/0, которая является следствием строгого выполнения условий (4) и (5), соответствующих экспериментам Хапперта и Тернера (цитируется по [9]), не вызывающим сомнений. Эта неопределенность вызвана тем, что условия

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 2 2003

(4) и (5) являются чрезмерно строгой идеализацией постоянства *T* и *S*, которые на самом деле являются приближенными. При этом для раскрытия этой неопределенности должно быть не только применимо правило Лопиталя, но ΔT и ΔS должны иметь относительно *Z* производные, дающие $R_{\rho} \approx 1$. Это говорит о том, что реальные изменения солености *S* и температуры *T* относительно *Z* малы и создают трудности для экспериментального определения.

Вызывают интерес некоторые теоретические положения о равновесном вертикальном градиенте солености *S*, который по расчетам В.М. Каменковича существенно отличается от наблюдаемой в океане величины [7].

По мере роста плотностного соотношения R_{ρ} $\frac{K_S}{K_T} \rightarrow \frac{k_S}{k_T}$, где k_S и k_T – коэффициенты молекуляр-

ной диффузии соли и тепла соответственно [9].

При $R_{\rho} \simeq 15$ $\frac{K_S}{K_T} \approx 10^{-2}$ и обмен через поверхности

раздела принимает чисто молекулярный характер. Все числовые характеристики основаны на тщательных и классических экспериментах и работах Хапперта и Тернера и описаны в [9]. При росте R_{ρ} перемешивание от развитой конвективной турбулентности при $R_{\rho} \approx 1$ постепенно затухает до молекулярного уровня. Детальный анализ зависимостей конвективных потоков тепла от величины R_{ρ} позволяет проследить формирование ступенчатых термохалинных структур [9]. Важно отметить, что с ростом R_{ρ} , особенно при $R_{\rho} > 2$ и более, растет влияние вкладов солевых потоков в перемешивание и условия (4) и (5) не выполняются и наибольшая стабильность нарушается.

Наибольшая стабильность по своей физической природе при выполнении условий (4) и (5) полностью совпадает с термобарической устойчивостью, описанной в [4], и устойчивостью или параметром устойчивости по [10]. При невыполнении условий (4) и (5) нарушаются условия наибольшей устойчивости, устойчивости по [10] и возникает термобарическая неустойчивость [4].

Рассмотрим, где, в каких водоемах земного шара или в каких частях этих водоемов они могут реально выполняться. Основное внимание будет обращено на выполнение условия (5).

ПЕРЕМЕШИВАНИЕ И ПРОЯВЛЕНИЕ НАИБОЛЬШЕЙ УСТОЙЧИВОСТИ В ГЛУБОКИХ СЛОЯХ ПРИРОДНЫХ ВОД

Озеро Байкал. Незначительные вертикальные градиенты температуры и солености (выполнение условий (4), (5)) наблюдаются в слоях от 700–900 до 1300 м в Южной, то 700–900 до 1500 м в Центральной и примерно от 700 до 800 м в Северной котловине (см. [11] и др.). От 300 м и до начала указанных выше слоев прослеживаются заметные градиенты температуры и солености или нейтральных индикаторов ([11] и др.), что указывает на невыполнение условий (4) и (5) и говорит о переходных стадиях формирования режима наибольшей устойчивости. В придонных слоях иногда наблюдаются резкие понижения температуры, что связывается с вентиляцией придонных слоев поверхностными слоями [11]. Вся глубинная (более 300 м) зона оз. Байкал характеризуется слабой устойчивостью, близкой к безразличному равновесию [12].

Мировой океан. В глубоких слоях океанических вод внешние активные тепловые потоки как положительные (нагрев), так и отрицательные (охлаждение) отсутствуют (выполнение условия (4)) и солевые потоки выравнены (выполнение условия (5)), и в этих слоях устанавливается режим наибольшей устойчивости. Так, на одной из самых глубоких станций в Тихом океане температура с учетом адиабатических изменений в слое 4-8.5 км изменяется от 1.26 до 1.22°С (практически постоянна), соленость равна 34.67‰, а на глубине 10 км температура достигает 1.16°С при неизменной солености 34.67% (Фофонов по [7]). Понижение температуры на глубине 10 км в желобе Кермадек Тихого океана указывает на существование вентиляции самых глубоких придонных вод поверхностными (как на Байкале [11]), что подтверждается и высоким содержанием в них кислорода (4.5 мл/л) и исключительным изобилием животных на фотографиях дна глубоководных желобов [14]. Глубинные морские и океанические воды имеют слабую устойчивость [7], что согласуется с режимом наибольшей устойчивости.

ПЕРЕМЕШИВАНИЕ И ПРОЯВЛЕНИЕ НАИБОЛЬШЕЙ УСТОЙЧИВОСТИ В ВЕРХНИХ СЛОЯХ ПРИРОДНЫХ ВОД

В поверхностных слоях природных вод в периоды экстремальных приходов солнечной энергии проявляются чрезвычайно активные процессы осенне-зимнего охлаждения (зимнее солнцестояние) и весеннего прогрева (летнее солнцестояние). В современный период на Байкале эти процессы, называемые осенней и весенней гомотермиями, сопровождаются переходами через температуру максимальной плотности осенью от температур, превышающих (больших) T_{md}, к меньшим температурам и весной – наоборот. В эти периоды толщины верхних слоев воды, достаточно перемешанных, доходят до 300-400 м с хорошо выровненными температурами (гомотермии, выполнение условия (4)), близкими к 4°С, и высокой прозрачностью воды (косвенный признак выполнения условия (5)) [13]. Охлаждение верхних слоев воды при осенней гомотермии сопровождается сильными штормами и ветрами, а весенняя гомотермия может проходить в штилевую погоду.

В верхних слоях Мирового океана процессы перемешивания типа осенней и весенней гомотермии с переходом через температуру максимальной плотности никогда не реализуются из-за того, что океанская вода замерзает до наступления T_{md} , но процессы сильного охлаждения при температурах, значительно превышающих T_{md} , бывают. Примером могут быть процессы средиземноморской конвекции MEDOC [15], протекающей в феврале при жесточайших ветрах и штормах и приводящей верхние слои воды толщиной 1400 м к высокой однородности температуры с учтенной адиабатической поправкой в 12.86–12.87°С (выполнение условия (4)) и солености в $38.450 \pm 0.004\%$ (выполнение условия (5)). Вынужденное установление режима наибольшей устойчивости требует большого расхода энергии на охлаждение и перемешивание верхнего слоя воды. MEDOC-конвекция отличается от осенней гомотермии на Байкале более высокими температурами поверхностных вод и их большей удаленностью от T_{md} (~42°С) примерно на 17°С, но в остальном это конвективные процессы перемешивания одного типа.

Механизм наибольшей устойчивости подключается к любым процессам конвективного перемешивания, которые приводят к постоянству температуры вод (выполнение условия (4)) и высокой однородности вод по растворенным и взвешенным веществам (выполнение условия (5)): суточная конвекция, сезонные гомотермии, глубинные однородности и т.п.

В заключение отметим следующее: перемениивание природных вод при режиме наибольшей устойчивости, когда температура воды T = const (условие (4)) и соленость S = const (условие (5)), происходит при развитой конвективной турбулентности, а плотностное соотношение R_{ρ} (6) при этом становится близким к 1; отношение коэффициентов вертикального турбулентного обмена теплом K_T и солью K_S становится близким к 1, так как тепло и соль переносятся одними и теми же вихрями; при росте плотностного соотношения R_{ρ} от 1 и выше условия (4) и (5) нарушаются, наибольшая стабильность не возникает, и при $R_{\rho} = 15$ перемешивание (обмен) приобретает чисто молекулярный характер;

в глубоких природных водах режим наибольшей устойчивости на Байкале устанавливается от глубин 700–900 м, а в глубочайших районах Мирового океана – от 4 км;

в поверхностных слоях природных вод режим наибольшей устойчивости, как правило вынужденный, на Байкале устанавливается при осенней

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 2 2003

и весенней гомотермиях в слоях воды до 400 м и немного более, а в районах Мирового океана средиземноморская конвекция MEDOC, аналогичная осенней гомотермии на Байкале, захватывает верхний слой воды до 1400 м;

глубинные природные воды защищаются от охлаждения не только из-за наличия у воды температуры максимальной плотности T_{md} , близкой для поверхностных пресных вод к 4°С, а главным образом за счет изменений T_{md} с ростом давления P в сторону уменьшения, порождающих механизм наибольшей устойчивости природных вод.

Авторы приносят благодарность А.К. Черкашину за доброжелательные, плодотворные дискуссии.

Работа поддержана грантами Российского фонда фундаментальных исследований, проекты 01–05–65097 и 02–05–65345.

СПИСОК ЛИТЕРАТУРЫ

- 1. Eklund H. // Science. 1965. V. 149. № 3684. P. 632–633.
- Johnson L. // Science. 1964. V. 144. № 3624. P. 1336– 1337.
- 3. Мамаев О.И. // ДАН. 1987. Т. 292. № 6. С. 1477–1481.
- 4. Шерстянкин П.П., Куимова Л.Н. // ДАН. 2002. Т. 385. № 2. С. 247–251.

- 5. Запецина Г.Н. Физические свойства и структура воды. М.: Изд-во МГУ, 1987. 172 с.
- Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Сер. Теоретическая физика. М.: Физматлит, 2001. Т. 5. Ч. 1. 616 с.
- 7. *Каменкович В.М.* Основы динамики океана. Л.: Гидрометеоиздат, 1973. 240 с.
- Монин А.С. Теоретические основы геофизической гидродинамики. Л.: Гидрометеоиздат, 1983. 424 с.
- 9. Федоров К.Н. Тонкая термохалинная структура вод океана. Л.: Гидрометеоиздат, 1976. 184 с.
- 10. Hesselberg Th. // Ann. Hydrograph. 1918. Bd. 57. S. 118–129.
- 11. Weiss R.F., Carmack E.C., Koropalov V.M. // Nature. 1991. V. 349. № 6311. P. 665–669.
- 12. Сокольников В.М. Течения и водообмен в Байкале. Элементы гидрометеорологического режима Байкала. Л.: Наука, 1964. С. 5–21.
- Шерстянкин П.П. Оптические структуры и фронты океанического типа на Байкале. Дис. ... д-ра физ.-мат. наук. В форме научного доклада. М.: Ин-т океанологии РАН, 1993. 37 с.
- 14. Океанографическая энциклопедия. Л.: Гидрометеоиздат, 1974. 632 с.
- MEDOC Group. Observation of Formation of Deep Water in the Mediterranean Sea. 1969 // Nature. 1970. V. 227. P. 1037–1040.