= геохимия =

УДК 549.211:550.89

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ВЗАИМОДЕЙСТВИЯ РАСПЛАВА ПЕНТЛАНДИТА С УГЛЕРОДОМ ПРИ МАНТИЙНЫХ *РТ*-ПАРАМЕТРАХ: УСЛОВИЯ КРИСТАЛЛИЗАЦИИ АЛМАЗА И ГРАФИТА

© 2003 г. Ю. Н. Пальянов, Ю. М. Борздов, И. Ю. Овчинников, академик Н. В. Соболев

Поступило 21.05.2003 г.

Сульфидные минералы встречаются довольно часто среди включений в природных алмазах, при этом состав большинства из них относится к системе Fe-Ni-S [1-3]. Широкая распространенность сульфидов в качестве включений и их относительно невысокие температуры плавления послужили предпосылками для обоснования "сульфидной модели" генезиса алмаза. Например, в качестве возможного механизма алмазообразования предполагается реакция $2\text{FeS} + \text{CO}_2 = 2\text{FeO} + \text{S}_2 + \text{CO}_2 = 2\text{FeO} + \text{S}_2 + \text{CO}_2 = 2\text{FeO} + 2\text{CO}_2 = 2\text$ + С [4]. В работе [5] допускается кристаллизация алмаза из сульфидного расплава, насыщенного углеродом, а сера рассмотрена как возможный катализатор в верхней мантии, реагирующий с водородом и углеродом с образованием летучих типа H₂S, COS или CS₂. Детальное исследование сульфидов в алмазах и глубинных ксенолитах позволило авторам работы [2] предположить, что поведение сульфидных расплавов было подобно металлам-катализаторам в известном процессе промышленного синтеза алмазов, при этом сульфиды также могли быть затравками для гетерогенной нуклеации алмаза. Недавно возможная роль сульфидов рассмотрена при обсуждении генезиса метаморфогенных алмазов [6].

Несмотря на широкое обсуждение "сульфидной модели" генезиса алмаза, экспериментальные данные по исследованию взаимодействия сульфидных расплавов с графитом при высоких *PT*-параметрах весьма ограниченны и противоречивы. Так, по данным [7], сульфидные расплавы были отнесены к графитпродуцирующим растворителям углерода на основании результатов экспериментов с использованием Cu₂S, ZnS и FeS при 6 ГПа в интервале температур 1400–1600°С. Позднее в работе [8] при 3.0–5.5 ГПа в интервале температур 1200–1500°С показано, что реакцион-

Институт минералогии и петрографии Сибирского отделения

Российской Академии наук, Новосибирск

ная способность металлического расплава при взаимодействии с алмазом и графитом резко снижается при добавлении серы и непосредственно в сульфидном расплаве синтез алмаза не зафиксирован. При 6 ГПа и 900°С исследование фазовых взаимоотношений сульфидных минералов железа и никеля проведено в графитовых ампулах, однако взаимодействия сульфидов с углеродом не установлено [9]. Лишь в 2001 г. появились первые экспериментальные данные по кристаллизации алмаза в системе S–С при $P \ge 7$ ГПа и T > 1600°С [10, 11] и по синтезу алмаза в сульфид-углеродных системах при 6–8 ГПа и 1450–1500°С [12].

С учетом доказанного присутствия сульфидов в мантийной среде кристаллизации алмаза и противоречивости данных предшествующих экспериментов очевидна необходимость дальнейшего исследования взаимодействия сульфидных расплавов с углеродом для определения их возможной роли в процессах генезиса алмазов. Так как в современных моделях допускается весьма значительный диапазон *PT*-параметров природного алмазообразования, особую актуальность приобретают экспериментальные данные по определению граничных условий алмазообразующих процессов в средах различного состава.

Эксперименты по взаимодействию сульфидного расплава с графитом длительностью от 8.5 до 65 ч проведены на беспрессовой аппаратуре высокого давления "разрезная сфера" при давлении 6.3, 7 и 7.5 ГПа в интервале температур 1450-1800°С. Значительная длительность экспериментов в отличие от предшествующих исследований была необходима для насыщения сульфидного расплава углеродом и достижения условий устойчивой кристаллизации углеродных фаз. На завершающей стадии эксперимента снижение температуры в ячейке высокого давления проводили со скоростью 150 град/с. Измерения температуры осуществляли во всех экспериментах с помощью термопары PtRh 30/6, предварительно откалиброванной по плавлению реперных металлов. Дета-

		1					Mamaama
№ эксп.	<i>Р</i> , ГПа	T, °C	Время, ч	Нуклеация алмаза	Рост алмаза		петастаоильный
					<i>h</i> {111}, мкм	<i>h</i> {100}, мкм	(размер. мкм)
MS-1	6.3	1450	12	_	_	-	+ (5–7)
MS-2	6.3	1450	65	-	3	8	+ (20–25)
MS-3	7.0	1550	20	_	2	6	+ (10–15)
MS-4	7.0	1550	41	_	4	15	+ (50–70)
MS-5	7.0	1600	12	_	4	6	+ (10)
MS-6	7.0	1650	46	_	14	25	+ (30–40)
MS-7	7.0	1700	8.5	_	?	7	+ (20)
MS-8	7.0	1800	15	_	2	10	+ (15–20)
MS-9	7.5	1550	18	_	4	8	+ (10–15)
MS-10	7.5	1600	15	+	*	*	-
MS-11	7.5	1750	15.5	+	*	*	_
MS-12	7.5	1800	12	+	*	*	_

Таблица 1. Параметры и результаты экспериментов в системе (Fe, Ni)₉S₈-С

Примечание. Звездочкой отмечено: рост алмаза установлен, но замеры не производили из-за большого количества спонтанных кристаллов алмаза.

ли методики определения *PT*-параметров наиболее подробно изложены в [13]. Калибровка ячейки по давлению до 7 ГПа проведена с учетом изменения давления при разогреве ячейки, оцененном по линии равновесия графит–алмаз. Давление 7.5 ГПа определено исходя из нагрузочной кривой.

В качестве исходного вещества в экспериментах использовали мономинеральный пентландит из ликвационных руд месторождения Талнах состава, мас. %: Fe 32.4; Ni 33.9; S 33.1; Cu 0.1; Co 0.5. Пентландит с кубооктаэдрическими затравочными кристаллами синтетического алмаза размером 0.5 мм помещали в графитовую ампулу с внешним диаметром 7 мм, высотой 7 мм и толщиной стенок 1.5 мм. Графитовую ампулу изолировали от нагревателя втулкой из смеси MgO и CsCl. После экспериментов образцы изучены с помощью оптических микроскопов и электронного сканирующего микроскопа LEO 420. Фазовый состав проанализирован на дифрактометре ДРОН-3 (Си K_{α} -излучение), химический состав сульфидов определен с помощью рентгеновского микроанализатора "Camebax-micro".

Результаты экспериментов по взаимодействию сульфидного расплава пентландитового состава с графитом представлены в табл. 1. По изменению положения затравочных кристаллов в ампулах (подъем алмазов в верхнюю часть ампулы) плавление сульфида однозначно установлено во всех экспериментах. Основной фазой в закалочных образцах является моносульфидный твердый раствор (mss) со структурой пирротина. В небольших количествах постоянно присутствует другой mss со структурой виоларита (Fe,Ni)₃S₄.

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 3 2003

Эксперименты при 1450°С и 6.3 ГПа показали, что при данных параметрах реакция взаимодействия сульфидного расплава с графитом протекает достаточно медленно. При длительности 12 ч (опыт MS-1) установлен только метастабильный графит с размером кристаллов порядка 5–7 мкм. Лишь в эксперименте MS-2 длительностью 65 ч наряду с образованием кристаллов метастабильного графита зафиксировано появление весьма незначительных слоев роста алмаза на гранях {100} и {111} затравочных кристаллов. Примерные оценки значений скоростей роста без учета времени, необходимого для насыщения расплава углеродом, составили 0.046 и 0.12 мкм/ч соответственно для граней {111} и {100}.

При 7 ГПа исследования проведены в интервале температур 1550-1800°С. Во всех экспериментах этой серии нуклеация алмаза не установлена. Метастабильный графит в форме гексагональных кристаллов расположен в "холодных" частях ампул, образуя друзовые агрегаты, что свидетельствует о насыщении углеродом всего объема расплава. С увеличением температуры и длительности экспериментов размер кристаллов графита и особенно их количество увеличиваются (см. табл. 1). Рост алмаза на затравках зафиксирован во всех случаях. Общая тенденция заключается в незначительном повышении скорости роста алмаза по [111] и [100] при увеличении температуры. Однако даже в опыте MS-8 при 1800°С максимальная скорость роста алмаза на грани {100} составила 0.66 мкм/ч. Следует отметить, что грани {100} затравочных кристаллов регенерируют с образованием вершинников, сформированных микрогранями {111} с незначительно развитыми

Рис. 1. Морфология алмазов, полученных из раствора углерода в расплаве пентландита: а – ростовая поверхность грани {100} затравочного кристалла алмаза, сформированная микрогранями {111} и {100} (эксп. MS-6); б – октаэдрические кристаллы алмаза, образованные на границе сульфидного расплава и графита (эксп. MS-10).

{100} (рис. 1а). Особенности регенерации определяют соотношение скоростей роста алмаза на гранях {100} и {111} таким образом, что v_{100} обычно в 2–3 раза превышает значения v_{111} . Растворение затравочных кристаллов алмаза не установлено ни в одном из экспериментов – это означает, что насыщение сульфидного расплава углеродом осуществлялось исключительно за счет метастабильной фазы – графита ампулы.

При 7.5 ГПа и 1550°С в эксперименте MS-9 также установлена кристаллизация метастабильного графита и незначительный рост алмаза на затравочных кристаллах. При температуре 1600°С метастабильный графит отсутствует, а на границе сульфидного расплава и графита ампулы установлены октаэдрические кристаллы алмаза размером до 10 мкм (рис. 1б), которые отделены от графита тонкой пленкой сульфида. В экспериментах при 1750 и 1800°С соизмеримой длительности установлены только сульфид и алмаз. Следовательно, при 7.5 ГПа и 1600°С зафиксированы начальная стадия спонтанной нуклеации алмаза в сульфидном расплаве и прекращение образования метастабильного графита. Дальнейшее повышение температуры (эксперименты MS-11 и MS-12) привело к массовой спонтанной кристаллизации алмаза, обеспечившей полную трансформацию графита ампулы в алмаз. Алмаз черного или серого цвета с большим количеством микровключений представлен сплошным поликристаллическим агрегатом октаэдрических кристаллов. Новообразованный метастабильный графит не обнаружен.

Таким образом, сульфидный расплав (Fe,Ni)₉S₈, соответствующий по составу включениям в алмазах перидотитового парагенезиса [1–3], при взаимодействии с графитом в интервале температур 1450–1800°С и давлениях до 7 ГПа способен обес-

печить растворение и транспорт углерода. Однако в указанном диапазоне РТ-параметров из раствора углерода в расплаве (Fe,Ni)₉S₈ образуется преимущественно метастабильный графит и лишь незначительная часть углерода кристаллизуется в виде алмаза только на затравочных кристаллах. Аналогичная ситуация установлена и при 7.5 ГПа и 1550°С. Лишь при давлении 7.5 ГПа в интервале температур 1600–1800°С сульфидный расплав обеспечивает спонтанную нуклеацию алмаза на границе раздела расплав-графит, при этом рост метастабильного графита не реализуется. Поскольку химический и фазовый составы закалочных сульфидов в экспериментах с синтезом алмаза и без него не отличаются, можно предположить существенное изменение структурных свойств сульфидного расплава, способного при "пониженных" РТ-параметрах обеспечивать кристаллизацию углерода преимущественно в *sp*²-состоянии, а при "повышенных" – в *sp*³-состоянии. Сравнение результатов экспериментов при одинаковой температуре и длительности, но при различном давлении однозначно свидетельствует о том, что определяющим фактором при нуклеации алмаза в исследованной системе является давление. Полученный экспериментальный материал не позволяет рассматривать метастабильный графит как промежуточную фазу углерода, предшествующую образованию алмаза, а также требует большой осторожности при интерпретации РТ-условий образования алмазов с включениями сульфидов и графита. Такой графит, вероятнее всего, является метастабильной фазой, захваченной вместе с сульфидным расплавом при росте алмаза в области его термодинамической стабильности. Другой вариант образования графита может реализоваться непосредственно внутри сульфидного включения за счет растворения углерода алмаза и кристаллизации

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 3 2003

метастабильного графита в закрытой системе в постростовом процессе при мантийном отжиге. И в том, и в другом случае находки графита не могут быть показателями РТ-условий, соответствующих линии равновесия графит-алмаз. Принципиально можно рассмотреть и образование графита за счет сброса растворенного в сульфидном расплаве углерода при закалке (такая схема регулярно реализуется в металл-углеродных системах при росте алмаза). Однако в серии проведенных экспериментов с расплавом пентландита мы не наблюдали графита или графитоподобных фаз, образованных таким способом. Вероятно, это обусловлено весьма низкой растворимостью углерода в сульфидном расплаве по сравнению с расплавами переходных металлов.

Сопоставление полученных результатов с ранее опубликованными данными по кристаллизации алмаза в карбонатных [13], флюидных [14] и карбонат-силикат-флюидных системах [15] свидетельствует о том, что сульфидные расплавы наименее эффективны в качестве возможной алмазообразующей среды при мантийных условиях. Достаточно отметить, что минимальные РТ-параметры нуклеации алмаза, установленные для щелочных карбонатных флюидов, составили 5.7 ГПа и 1150°С [14]. Сравнение указанных параметров с минимальными РТ-условиями нуклеации алмаза в системе (Fe,Ni)₉S₈-С, равными 7.5 ГПа и 1600°С, показывает, насколько существенно различна способность этих систем к алмазообразованию и какова может быть их потенциальная роль в процессах генезиса природного алмаза.

Таким образом, с позиции полученных экспериментальных данных нуклеация алмаза непосредственно из пересыщенного углеродом сульфидного расплава, предполагаемая в рамках "сульфидной модели", при параметрах образования большинства природных алмазов (5–6 ГПа, 900–1400°С) представляется маловероятной. Широкая распространенность сульфидных минеральных включений в природных алмазах, вероятно, является результатом избирательного захвата сульфидного расплава, как это предполагалось ранее в [1]. Экспериментально определенные *РТ*-параметры нуклеации алмаза при взаимодействии расплава пентландита с графитом, составляющие не менее 1600° при давлениях порядка 7.5 ГПа и выше, допускаются для некоторых алмазов с включениями сверхглубинных минеральных ассоциаций, однако включения сульфидов в таких алмазах не обнаружены.

Работа выполнена при финансовой поддержке CRDF (грант RG1–2387–NO–02) и РФФИ (грант HIII–93.2003.5).

СПИСОК ЛИТЕРАТУРЫ

- Ефимова Э.С., Соболев Н.В., Поспелова Л.Н. // Зап. ВМО. 1983. № 3. С. 300–310.
- Буланова Г.П., Специус З.В., Лескова Н.В. Сульфиды в алмазах и ксенолитах из кимберлитовых трубок Якутии. Новосибирск: Наука, 1990. 118 с.
- 3. Sobolev N.V., Kaminsky F.N., Griffin W.L. et al. // Lithos. 1997. V. 39. № 3/4. P. 135–157.
- 4. Marx P.C. // Min. Mag. 1972. V. 38. P. 636-638.
- 5. Haggerty S.E. // Nature. 1986. V. 320. P. 34-38.
- 6. *Hwang S.L., Shen P., Yui T.F., Chu H.T. //* Eur. J. Miner. 2003. V. 15. № 3. P. 503–511.
- Wentorf R.H. // Adv. High Pressure Rec. 1974. V. 4. P. 249–281.
- 8. *Чепуров А.И.* // Геология и геофизика.1988. № 8. С. 119–124.
- Леонтьевский К.В., Киркинский В.А., Федорова Ж.Н. // Геология и геофизика. 1992. № 11. С. 88–95.
- 10. Sato K., Katsura T. // J. Cryst. Growth. 2001. V. 223. P. 189–194.
- 11. *Pal'yanov Yu.N., Borzdov Yu.M., Kupriyanov I.N. et al.* // Diam. and Relat. Mater. 2001. V. 10. № 12. P. 2145–2152.
- 12. Литвин Ю.А., Бутвина В.Г., Бобров А.В., Жариков В.А. // ДАН. 2002. Т. 382. № 1. С. 106–109.
- 13. Pal' yanov Yu.N., Sokol A.G., Borzdov Yu.M., Khokhryakov A.F. // Lithos. 2002. V. 60. № 3/4. P. 145–159.
- 14. Pal' yanov Yu.N., Sokol A.G., Borzdov Yu.M. et al. // Nature. 1999. V. 400. P. 417–418.
- 15. Pal'yanov Yu.N., Sokol A.G., Borzdov Yu.M. et al. // Amer. Miner. 2002. V. 87. № 7. P. 1009–1013.