—— ГЕОФИЗИКА ——

УДК 550.93+550.89

ДИФФУЗИЯ КИСЛОРОДА И ДИФФУЗИОННАЯ ВЯЗКОСТЬ НЕКОТОРЫХ СИЛИКАТОВ

© 2003 г. А. С. Батырмурзаев, А. А. Бекиева, З. А. Абдуллаева

Представлено академиком М.Ч. Залихановым 18.02.2003 г.

Поступило 05.03.2003 г.

Явления диффузии ионов в силикатах представляют существенный интерес не только для геофизиков, но и при решении геохимических и космохимических задач. Для выяснения условий в мантии Земли должны быть поняты механизмы, контролирующие свойства мантийных минералов. Доминирующими процессами, определяющими неупругие свойства среды, являются процессы диффузии и самодиффузии. Так как рассматривается в основном верхняя мантия, то диффузия в силикатах обеспечивается механизмами пластического течения – фазовыми переходами в мантии. С другой стороны, оливины распространены обширно в изверженных породах и каменных метеоритах. Следует заметить, что взаимодействие течений вещества в мантии с корой определяется в первую очередь вязкостью верхних частей мантии. Реологическое поведение твердых тел при высоких температурах подобно поведению вязкой жидкости. Такая вязкость называется диффузионной η, так как перенос вещества осуществляется за счет самодиффузии [1, 2].

Определение из данных эксперимента параметров диффузии и на их основе оценки диффузионной вязкости важны при интерпретации зональной структуры дискордантных возрастов и (или) термальной истории горных пород и минералов [3]. Согласно Я. Френкелю [4], "носители" диффузии, т.е. возбуждения, осуществляющие элементарные акты диффузии, являются одновременно "носителями" и вязкости жидкостей и аморфных тел.

Задача формулируется следующим образом: определить диффузионную вязкость η минералов (или горных пород) для случая, когда минералы обладают идеальной кристаллической структурой. Из выражения для высокотемпературной диффузии [1] находим

$$\eta = \frac{AkTr^2}{a^3 D_0} \exp \frac{E}{RT},$$
(1)

где $A \sim 0.033$ – константа, $k = 1.38 \cdot 10^{-23}$ Дж/К – постоянная Больцмана; a – постоянная кристаллической решетки; r – средний радиус (размер) зерен минерала ($r \sim 10^{-3}$ м); E – энергия активации диффузии (ккал/моль); T – температура (K). Величину a^3 можно определить по формуле [5]:

$$a^{3} = \frac{V}{Nn} = 9.5 \cdot 10^{-30} \text{ m}^{3},$$
 (2)

где V – молярный объем типичных минералов мантийного вещества; N – число Авогадро; n – число ионов в молекуле минерала (в среднем n = 7). Ввиду того, что плотность упаковки ионов в решетках мантийных минералов различается незначительно, молярный объем оливина (около $4 \cdot 10^{-5}$ м³/моль [5]) меняется пропорционально количеству ионов.

В конечном итоге расчет диффузионной вязкости производится по формуле [5, 6]

$$\eta = \frac{5 \cdot 10^{-2} T}{D_0} \exp \frac{E}{RT}.$$
(3)

Известно [2], что катионы не могут обусловливать диффузионную вязкость, так как они располагаются лишь в некоторых пустотах в почти плотнейшей упаковке из больших кислородных анионов. Поэтому здесь, как и в работе [6], для оценки η использованы именно параметры диффузии кислорода, полученные различными исследователями [8–13]. В табл. 1 приведены основные параметры диффузии кислорода (коэффициенты диффузии D_0 , энергии активации диффузии E_D ; диффузионные вязкости η_D и энергии активации процесса диффузионной вязкости E_{η}) для рассмотренных силикатов. На рис. 1 представлены

Институт проблем геотермии Дагестанского научного центра Российской Академии наук, Махачкала

№	Образец	$\begin{array}{c} D_0, \\ \mathbf{M}^2 \cdot \mathbf{c}^{-1} \end{array}$	η ₀ , Па · с	η _{373 К} , Па · с	Интервал температур, °С	<i>Е_D</i> , ккал/моль	<i>Е</i> _η , ккал/моль	Данные
1	Форстерит-1	$3.5 \cdot 10^{-7}$	$2.0\cdot 10^4$	$7.0\cdot 10^{43}$	1275–1700	88.9	83.0	[8]
2	Форстерит-2	10 ⁻⁸	$5.0\cdot 10^4$	$2.0\cdot 10^{37}$	1150–1600	76.5	72.9	[8]
3	Магнезиальный ортоклаз	1.2 · 10 ⁻⁹	$2.0 \cdot 10^{3}$	10 ³⁵	1300–1600	69.3	66.0	[8]
4	Роговая обманка	10-11	$2.0\cdot 10^0$	$2.0\cdot10^{24}$	650-800	41.0	39.0	[9]
5	Тремолит	$2.0\cdot10^{-12}$	$7.0\cdot 10^3$	$2.0\cdot 10^{22}$	650-800	39.0	38.4	[9]
6	Рихтерит	$3.8 \cdot 10^{-11}$	$2.0\cdot 10^2$	$2.0\cdot10^{29}$	650-800	57.0	54.0	[9]
7	Микроклин (Or ₁₀₀)	$2.5\cdot10^{-13}$	$5.4\cdot10^1$	$2.0\cdot 10^{15}$	450–700	29.6	28.0	[10]
8	Адуляр (Or ₁₀₀)	$2.0\cdot10^{-13}$	$3.0\cdot 10^2$	$1.5\cdot 10^{16}$	450-700	29.6	28.0	[10]
9	Ортоклаз	$2.5\cdot10^{-13}$	$3.4\cdot 10^2$	$3.0\cdot10^{17}$	500-1000	32.2	30.2	[11]
10	Альбит	$7.0 \cdot 10^{-13}$	$2.5\cdot 10^2$	$3.3\cdot10^{19}$	500-1000	36.8	35.1	[11]
11	Оливин	$1.8 \cdot 10^{-13}$	$2.6 \cdot 10^{8}$	$4.0 \cdot 10^{32}$	1130–1530	54.0	51.5	[12]

Таблица 1. Параметры диффузии кислорода в различных силикатах и расчет диффузионной вязкости

графические зависимости диффузионной вязкости η от температуры $\left(\ln \eta = f\left(\frac{10^4}{T}\right)\right)$ для этих же силикатов. Как зависимости $\ln D = f\left(\frac{10^4}{T}\right)$, так и $\ln \eta = f\left(\frac{10^4}{T}\right)$ для изученных образцов описываются соотношениями Аррениуса

$$D = D_0 \exp \frac{E_D}{RT}, \ \eta = \eta_0 \exp \frac{E_{\eta}}{RT},$$

Рис. 1. Зависимости диффузионной вязкости η от температуры: l – форстерит-1; 2 – форстерит-2; 3 – магнезиальный ортоклаз; 4 – роговая обманка; 5 – тремолит; 6 – рихтерит; 7 – микроклин (Or₁₀₀); 8 – адуляр (Or₁₀₀); 9 – ортоклаз; 10 – альбит; 11 – оливин.

что в конечном итоге позволяет путем экстраполяции оценить величины D_0 и η_0 (табл. 1). Величины диффузионных вязкостей, экстраполированные к T = 373 К, колеблются в пределах: $\eta_{373 \text{ K}} \sim 10^{15} - 10^{43}$ Па · с, а $\eta_0 \sim 2.5 \cdot 10^0 - 5 \cdot 10^4$ Па · с, в то время как величина η_D при 473 К, рассчитанная теоретически для пород из первичных очагов вулканов В.Н. Жарковым [1], составляет $\eta_{473 \text{ K}} \sim 10^{33}$ Па · с. Величины диффузионных вязкостей, полученные нами, удовлетворительно согласуются со значениями, полученными в [4] для платформенных ($10^{29}-10^{26}$ Па · с) и геосинклинальных ($10^{16}-10^{25}$ Па · с) областей верхней мантии и астеносферы ($h \sim 50-40$ км).

Приводя оцененные нами по параметрам диффузии кислорода диффузионные вязкости изученных силикатов, отметим также "компенсационный эффект". Анализ приведенных экспериментальных параметров диффузии кислорода D_0 и Е (табл. 1) в разных минералах [8-13] показывает, что указанные параметры не являются независимыми, а связаны так называемым компенсационным законом. Этот закон, как показано в [14], характерен для разнообразных физических зависимостей аррениусовского типа и заключается в том, что изменение энергии активации отчасти компенсируется обратным ходом предэкспоненциального множителя (D_0 и η_0), так что свойство в целом меняется незначительно. Оказалось, что компенсационный закон применим не только к диффузионным процессам, но и к вязкостному процессу. Зависимости $\ln D_0$ и $\ln \eta_0$ для изученных силикатов от энергий активации представлены на рис. 2. Аппроксимация экспериментальных дан-

ДОКЛАДЫ АКАДЕМИИ НАУК том 392 № 4 2003

Рис. 2. Зависимости предэкспоненциальных множителей D_0 и η_0 в законах Аррениуса для изученных силикатов от энергий активации (номера у точек соответствуют порядковым номерам образцов в табл. 1).

ных (табл. 1) методом наименьших квадратов привела к следующим аналитическим зависимостям:

$$\ln D_0 = -35.88 + 0.22E,$$

$$\ln \eta_0 = 6.12 + 1.06E.$$
(4)

Расчетные значения энергий активаций (табл. 1), полученные по (4), в пределах погрешности совпадают с экспериментально полученными значениями и свидетельствуют о том, что процессы диффузионного течения, как и процессы диффузии кислорода, во многих силикатных системах подчиняются одинаковым физическим закономерностям.

Таким образом, наличие компенсационного закона для процессов диффузионной подвижности и вязкого течения позволяет расчетными методами оценить как диффузионные, так и вязкостные параметры, что крайне важно для решения реологических задач. Более того, компенсационные законы применительно к ряду свойств, где соблюдаются аррениусовские зависимости, позволяют рассчитывать соответствующие показатели, предсказывать свойства с приемлемой точностью [7] при ограниченном количестве экспериментальных данных, что очень важно для описания глубинных процессов, мало поддающихся экспериментальному моделированию.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 03–05–64602).

СПИСОК ЛИТЕРАТУРЫ

- 1. Жарков В.Н., Трубицын В.П. Физика планетных недр. М.: Наука, 1980. 448 с.
- Магницкий В.А. Внутреннее строение и физика Земли. М.: Недра, 1965. 379 с.
- 3. Летников Ф.А. // ДАН. 2001. Т. 378. № 3. С. 387– 389.
- Френкель Я.И. Кинетическая теория жидкостей. М.: Наука, 1975. 592 с.
- Гордиенко В.В., Стадниченко В.Н. В сб.: Астеносфера по комплексу геофизических методов. Киев: Наук. думка, 1988. С. 183–188.
- Батырмурзаев А.С., Гаджиев С.З. // ДАН. 1997. Т. 356. № 2. С. 251–253.
- Чехмир А.С., Симакин А.Г., Эпельбаум М.Б. Цинамические явления во флюидно-магматических системах. М.: Наука, 1991. 141 с.
- Marioka M., Nagasava H. In.: Diffusion Atomic Ordering and Mass transport // Adv. Phys. Geochem. 1991. V. 8. P. 176–197.
- Farver J.R., Giletti B.J. // Geochim. et cosmochim acta. 1985. V. 46. № 6. P. 1403–1411.
- Yund R.A., Anderson T.F. In.: Geochemical Transport and Kinetics. Wash. (D.C.): Carnegie Inst. 1974. P. 99– 105.
- Виар Ж., Сабатье Г. В кн.: Очерки физико-химической петрографии. М.: Наука, 1969. Т. 1. С. 12– 21.
- Farver J.R. // Earth and Planet. Sci. Lett. 1984. V. 92. P. 386–396.
- Fortier S.M., Giletti B.J. // Science. 1989. V. 245. P. 1481–1484.
- 14. *Winchell P.* // High Temperature Sci. 1969. V. 45. № 3. P. 200–215.