— ГЕОЛОГИЯ —

УДК 550.42:551.72:552.54

Рb-Рb-ИЗОХРОННЫЙ ВОЗРАСТ И Sr-ИЗОТОПНАЯ ХАРАКТЕРИСТИКА ВЕРХНЕЮДОМСКИХ КАРБОНАТНЫХ ОТЛОЖЕНИЙ (ВЕНД ЮДОМО-МАЙСКОГО ПРОГИБА, ВОСТОЧНАЯ СИБИРЬ)

© 2003 г. Академик М. А. Семихатов, Г. В. Овчинникова, И. М. Горохов, А. Б. Кузнецов, О. К. Каурова, П. Ю. Петров

Поступило 10.07.2003 г.

Юдомская серия Учуро-Майского региона входит в число наиболее известных и широко распространенных литостратиграфических единиц сибирского верхнего докембрия. Она завершает его разрез в обеих палеоструктурах этого обширного региона, разделенных Нельканским надвигом, - на Учуро-Майской плите и в Юдомо-Майском прогибе [1], и несогласно залегает на разновозрастных образованиях, начиная от дорифейского фундамента Сибирской платформы и кончая ультраосновными интрузиями, прорывающими все рифейские отложения. Верхним ограничением серии является основание (зона N. sunnaginicus) пестроцветной свиты томмотского яруса нижнего кембрия [1–3], которая предваряется региональным размывом, а местами и небольшим угловым несогласием. Структурная самостоятельность и специфика палеонтологической характеристики юдомской серии породили стремление считать ее типом хроностратиграфической единицы – юдомского комплекса или юдомия [1, 2, 4], эквивалентного венду Восточно-Европейской платформы. Хотя эта точка зрения получила широкое распространение и закреплена в стратиграфической шкале докембрия нашей страны в 1990 г., ее нельзя считать строго обоснованной, так как имеющиеся палеонтологические данные не доказывают синхронность границ юдомия и венда, а надежных определений изотопного возраста юдомской серии нет.

Значения U–Pb-возраста доюдомских ультраосновных интрузий резко дискордантны, получены по различным минералам с высоким содержанием обычного Pb и в разные годы одними и теми же авторами трактовались как определяющие

Геологический институт

Российской Академии наук, Москва

возраст интрузий от 600 ± 100 до 650 ± 40 млн. лет (см. [1, 5]). К-Аг-изотопные системы биотита из экзоконтакта интрузий и флогопита из ассоциированных карбонатитов явно нарушены, о чем свидетельствует большой разброс (586-740 млн. лет) полученных по ним значений возраста (см. [5]). То же самое можно сказать о минералогически не изученных глауконитах из юдомской серии и основания пестроцветной свиты, К-Аг-датировки которых, полученные Г.А. Казаковым и К.Г. Кнорре, варьируют в диапазонах 560-660 и 510-610 млн. лет соответственно [1, 5]. Более того есть основания полагать, что материал, служивший для определения возраста, включал примесь аллотигенных К-содержащих минералов, так как мономинеральные фракции Аl-глауконита из основания пестроцветной свиты имеют К-Аг-возраст 459-476 млн. лет [6]. Не решает проблему и полученная А.А. Краснобаевым, Ю.Л. Ронкиным и О.П. Лепихиной эрохронная Rb-Sr-датировка тонкой (<1 мкм) глинистой фракции верхнеюдомских (по современным данным) аргиллитов, равная 639 ± 30 млн. лет [5], ибо подобные фракции обычно включают разновозрастные глинистые минералы, сохраняющие изотопную память о разных событиях литогенеза. Привлечение же для ограничения возраста юдомской серии U-Pb-датировок единичных зерен вулканогенных цирконов из сопоставимых отложений севера Сибирской платформы [7] наталкивается на неоднозначную детальную корреляцию разрезов, а иногда и на различную трактовку стратиграфического положения датированных вулканитов [3].

Учитывая все сказанное, мы применили для изучения карбонатных пород верхней усть-юдомской свиты юдомской серии подход, основанный на совместном изучении U–Pb- и Rb–Sr-систематики одних и тех же образцов [8]. Он позволяет, во-первых, выбрать для Pb–Pb-датирования наименее измененные образцы и тем самым повысить надежность полученных результатов, а

Институт геологии и геохронологии докембрия Российской Академии наук, Санкт-Петербург

во-вторых, получить дополнительные хемостратиграфические данные о возрасте изученной последовательности, если во время ее накопления (как, например, в венде) градиент изменения отношения ⁸⁷Sr/⁸⁶Sr был достаточно высок. Выбор же в качестве объекта исследования усть-юдомской свиты объясняется тем, что эта свита, в отличие от нижней аимской свиты юдомской серии, содержит характерную фауну, которая дает дополнительный критерий оценки достоверности полученного значения изотопного возраста.

В большей верхней части усть-юдомской свиты на Учуро-Майской плите содержится мелкораковинная фауна зон A. trisulcatus и P. antiqua, coставляющих терминальный, немакит-далдынский ярус венда, а в меньшей нижней части свиты известны редкие эдиакарские бесскелетные метазоа Medusinites и Cyclomedusa ex gr. plana наряду с эндемичными Suvorovella и Majaella неясной биологической принадлежности [2]. Первая из этих форм, по устному сообщению М.А. Федонкина, имеет широкий диапазон вертикального распространения в слоях с эдиакарской фауной, а типичные Cyclomedusa plana развиты только в их верхней части, которая в разрезах Беломорья лежит выше туфогенного горизонта с цирконами, имеющими U–Pb-возраст 555.3 ± 0.3 млн. лет [9]. Определение юдомской формы, как C. ex gr. plana, естественно, снижает стратиграфическое значение этой находки.

В изученном нами разрезе усть-юдомской свиты по р. Юдома у устья р. Улахан-Ыатыгы эта свита срезает аимскую и несогласно залегает на аргиллитах верхнерифейской усть-кирбинской свиты. В составе усть-юдомской свиты выше базальной 16-метровой пачки песчаников и гравелитов (пачка I) здесь залегает мощная (340–370 м) последовательность четырех карбонатных пачек (пачки II-V), которые несогласно перекрыты палеонтологически охарактеризованными отложениями нижней части томмотского яруса [1]. Пачка II (38-40 м) представлена пестроцветными, а в верхней части серыми низкомагнезиальными (Mg/Ca = 0.421-0.607) долоспаритами и доломикритами, которые содержат значительную (5.6-13%) примесь глинистого и алеврит-песчаного материала, прослои карбонатных аргиллитов, а в верхних 22-23 м пласты окремененных доломикритов и рассеянные скопления мелких (<3 мм) кристаллов пирита. Доломитам свойственны высокие содержания Mn (160–340 мкг/г) и особенно Fe (2200-8240 мкг/г), которые обусловлены, вероятно, заимствованием этих элементов из силикокластической составляющей самой породы и/или привносом из подстилающих песчаников. Пачку III (30 м) слагают черные битуминозные (до 0.02% С_{орг}) микриты (Mg/Ca = 0.002-0.017). Породы обладают горизонтальной или пологой косой слоистостью, заключают тонкие прослои глинистых известняков, скопления онколитов, а у кровли – и неправильные тела флейкстоунов. Содержания Mn и Fe в карбонатной составляющей известняков невелики (соответственно 27-65 и 640–1195 мкг/г) и коррелированы с долей некарбонатной примеси (4.4-9.5%), представленной кварцем, глинистыми минералами и фрагментами пленок керогена. Пачка IV (200-220 м) в нижних 35-40 м представлена светло-серыми низкомагнезиальными долоспаритами (Mg/Ca = 0.560-0.596), которые вверх по разрезу переходят в крупнокристаллические сахаровидные доломиты (Mg/Ca = 0.577-0.605). Последние содержат обильные щелевидные пустоты, видимо, возникшие за счет растворения кристаллов гипса, а в верхней части – редкие прослои пластовых строматолитов и трещины усыхания. Пачка V (60–65 м) сложена доломитизированными известняками (Mg/Ca = 0.014-0.090), которые содержат остатки немакит-далдынских Anabarites trisulcatus. Породы пачек IV и V отличаются низкой долей (0.3-3.2%) силикокластической примеси и небольшими содержаниями Mn (60-220 мкг/г) и Fe (280-1310 мкг/г). Последние увеличиваются лишь в верхней части пачки V, соответственно до 930 и 2490 мкг/г.

Для изотопных исследований была отобрана пилотная коллекция известняков из пачки III и низкомагнезиальных доломитов из нижней части пачки IV (рис. 1). Отложения пачки III накопились в умеренно глубоководных обстановках сублиторали при высоком положении уровня моря, а пачки IV - в условиях постепенного обмеления бассейна и начала его эвапоритизации. Для изучения U-Pb- и Rb-Sr-систематики были выбраны 11 внешне наиболее однородных образцов (7 известняков и 4 доломита), которые лишены трещиноватости, в разрезе удалены от терригенных пачек и отличаются низкими содержаниями Mn, Fe и силикокластической примеси. Эти образцы изучались методом ступенчатого растворения. Преимущества такой процедуры, направленной на обогащение образцов первичным карбонатным материалом, были продемонстрированы ранее при изучении карбонатных пород рифея (см., например, [8]).

Навеска образца обрабатывалась 0.1 *N* HBr при комнатной температуре. Раствор этой ступени обозначался как фракция L-1. Остаток последовательно обрабатывался пятью порциями 0.5 *N* HBr до полного растворения карбонатной составляющей, а полученные растворы обозначались как фракции L-2–L-6. Rb–Sr-систематика всех образцов изучалась во фракции L-1 и объединенной фракции L-2–L-6. При изучении U–Pb-систематики в образце известняков 6027 анализировались объединенные фракции L-2–L-3, L-4–L-6 и в параллельном опыте фракции L-2–L-6, а в остальных образцах – только фракции L-2–L-6 (табл. 1).

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 1 2003

Детали химического выделения и изотопного анализа Rb, Sr, U и Pb описаны ранее [8, 10]. При вычислении параметров Pb–Pb-изохроны погрешности изотопных отношений ²⁰⁶Pb/²⁰⁴Pb и ²⁰⁷Pb/²⁰⁴Pb принимались равными соответственно ±0.10 и ±0.15% (опибки воспроизводимости). Среднее значение отношения ⁸⁷Sr/⁸⁶Sr в стандарте NIST SRM-987 в период работы составило 0.71025 ± 0.00001 ($2\sigma_{cp.}$, n = 3).

Известняки пачки III характеризуются значительным содержанием Sr (950–1960 мкг/г), указывающим, вероятно, на присутствие арагонита в первичном карбонатном осадке. Вверх по разрезу, по мере приближения к пачке IV это содержание уменьшается. Низкие величины отношений Mn/Sr (0.02–0.05) и Fe/Sr (0.35–0.80) в известняках пачки III свидетельствуют о хорошей сохранности этих пород и позволяют считать их пригодными как для U-Pb-датирования, так и для оценки изотопного состава Sr в среде седиментации. В отличие от этого отсутствие первичных седиментационных текстур, высокая степень кавернозности и геохимические характеристики доломитов пачки IV (Sr 66.4–70.9 мкг/г, Mn/Sr = 0.85–1.30, Fe/Sr = 4.0–13.4) указывают на интенсивную перекристаллизацию этих пород под влиянием метеорного флюида, вероятно, во время предкембрийского перерыва. Очевидно, что эти доломиты не пригодны для U-Pb-датирования, а измеренные в них отношения ⁸⁷Sr/⁸⁶Sr (0.70922–0.70965) не могут служить основой для Sr-изотопной характеристики морской воды юдомского времени.

Доля фракции L-1, представляющей поверхностные слои карбонатных зерен, в известняках пачки III составляет 4.2-4.9%, а в доломитах пачки IV 2.2-2.8%. В известняках эта фракция по сравнению с последующими объединенными фракциями L-2-L-6 обогащена Rb более чем в 10 раз, но содержит близкое с ними количество Sr (табл. 1). В доломитах фракция L-1 содержит столько же Rb, сколько и последующие фракции, но в сравнении с ними обеднена Sr в среднем в 4.5 раза. Измеренное отношение ⁸⁷Sr/⁸⁶Sr во фракции L-1 известняков несколько выше, чем в объединенных фракциях L-2–L-6 (<0.0002), а в доломитах это различие достигает 0.0005-0.0011. Ясно, что удаление фракции L-1 в значительной степени освобождает образцы известняков и доломитов от вторичных карбонатов и обогащает последующие фракции первичным карбонатным материалом.

В координатах ²⁰⁷Pb/²⁰⁴Pb–²⁰⁶Pb/²⁰⁴Pb фигуративные точки этих последующих фракций всех проанализированных образцов лежат на прямой линии. Поскольку в координатах ²⁰⁸Pb/²⁰⁴Pb– ²⁰⁶Pb/²⁰⁴Pb и ²⁰⁶Pb/²⁰⁴Pb–1/²⁰⁴Pb линейные зависимости для изученных фракций отсутствуют, прямая на рис. 2 не представляет собой линию смеше-

Рис. 1. Стратиграфическая колонка усть-юдомской свиты, расположение изученных образцов и отношение ⁸⁷Sr/⁸⁶Sr в них. 1 – известняки; 2 – глинистые известняки; 3 – доломиты; 4 – глинистые доломиты; 5 – аргиллиты; 6 – алевропесчаники; 7 – стратиграфические несогласия; 8 – известняки; 9 – доломиты; 10 – номера образцов. Сокращения: Пестр. – пестроцветная, Уст.-кир. – усть-кирбинская.

ния, а имеет геохронологический смысл. Вычисленный по 9 точкам возраст равен 553 ± 23 (2 σ) млн. лет (СКВО = 0.8). По аналогии с ранее иссле-

Nº oбp.	Уровень отбора обр., м	Порода	Карбо- натная фракция	Rb, мкг/г	Sr, мкг/г	$\frac{{}^{87}\text{Rb}}{{}^{86}\text{Sr}}$	$\left(\frac{{}^{87}\text{Rb}}{{}^{86}\text{Sr}}\right)_{\rm H3M}$	$ \begin{pmatrix} 87 \text{Rb} \\ 86 \text{Sr} \end{pmatrix}_{\text{перв}} $ (<i>T</i> = 550 млн. лет)	Рb, мкг/г	U, мкг/г	$\frac{^{238}\text{U}}{^{204}\text{Pb}}$	$\frac{{}^{206}\text{Pb}}{{}^{204}\text{Pb}}$	$\frac{{}^{207}\text{Pb}}{{}^{204}\text{Pb}}$	$\frac{{}^{208}\text{Pb}}{{}^{204}\text{Pb}}$
6064	170	Д	L-1	0.12	23.4	0.0149	0.70975	0.70963	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.
			L-2–L-6	0.13	70.2	0.0055	0.70922	0.70918	»	»	»	»	»	»
6040	100	Д	L-1	0.03	11.8	0.0079	0.71076	0.71070	»	»	»	»	»	»
			L-2–L-6	0.11	72.6	0.0042	0.70965	0.70962	»	»	»	»	»	»
6031	92	Д	L-2–L-6	0.52	68.5	0.0221	0.70930	0.70898	»	»	»	»	»	»
6029	88	Д	L-2–L-6	1.80	66.4	0.0794	0.70960	0.70913	»	»	»	»	»	»
6028	85	И	L-1	11.2	1060	0.0309	0.70863	0.70839	»	»	»	»	»	»
			L-2–L-6	0.56	903	0.0018	0.70845	0.70844	1.26	2.53	146	27.715	16.133	38.427
6027	82	И	L-2-L-3	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	0.27	Не опр.	Не опр.	53.494	17.662	40.300
			L-4–L-6	»	»	»	»	»	1.54	»	»	41.648	16.981	39.705
			L-2-L-6*	0.63	1190	0.0016	0.70843	0.70842	1.04	3.01	244	40.571	16.905	36.905
6026	77	И	L-1	4.22	1710	0.0072	0.70845	0.70839	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.
			L-2–L-6	0.57	1660	0.0010	0.70833	0.70832	0.64	1.23	149	32.166	16.413	39.407
6024	71	И	L-2–L-6	0.40	1490	0.0008	0.70838	0.70837	2.12	0.83	26.4	21.573	15.788	40.174
6022	64	И	L-1	0.51	2090	0.0007	0.70846	0.70845	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.
			L-2-L-6	0.15	1950	0.0002	0.70838	0.70838	5.02	1.46	18.8	19.925	15.709	38.360
6020	58	И	L-2-L-6	0.31	1290	0.0007	0.70830	0.70829	7.66	0.79	6.65	19.319	15.661	38.597
6018	56	И	L-1	1.90	1380	0.0040	0.70842	0.70839	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.	Не опр.
			L-2–L-6	0.10	1420	0.0002	0.70841	0.70841	5.35	1.53	18.5	19.842	15.690	38.199

Таблица 1. Rb–Sr- и U–Pb-характеристики растворимых карбонатных фракций в известняках и доломитах устьюдомской свиты

Примечание. Породы: И – известняк, Д – доломит; фракции: L-1 – карбонатная фракция, полученная путем однократной обработки образца 0.5 N раствором HBr, L-2–L-3 – объединенные карбонатные фракции, полученные на второй и третьей ступенях обработки, L-4–L-6 – объединенные карбонатные фракции четвертой, пятой и шестой ступеней. Звездочкой отмечено – результаты независимой обработки образца выщелачивающим агентом.

дованными карбонатными породами (см., например, [8]), это значение следует интерпретировать как определяющее время раннего диагенеза карбонатных осадков усть-юдомской свиты. Таким образом, впервые получена стратиграфически значимая Pb–Pb-изохронная датировка карбонатных пород венда. С учетом стратиграфического положения изученных образцов она хорошо согласуется, с одной стороны, с U–Pb-возрастом вулканогенных цирконов из средней части немакит-далдынского яруса Оленекского поднятия Северной Сибири (543.9 \pm 0.2 млн. лет [7]), а с другой, – с U–Pb-возрастом верхних горизонтов венда в Беломорье (менее 555.3 млн. лет [9]), со-держащих эдиакарскую Cyclomedusa plana.

Первичное отношение ⁸⁷Sr/⁸⁶Sr во фракциях L-2–L-6 известняков пачки III колеблется в пределах 0.70829–0.70844 (табл. 1) и характеризует среду седиментации усть-юдомских карбонатных осадков. Указанные значения попадают в интервал вариаций отношения ⁸⁷Sr/⁸⁶Sr, определенных для других морских карбонатных пород верхнего венда – эдиакария (рис. 3): серии Нама, Намибия ([11], 543-549 млн. лет), надсерии Хакф, Оман ([12], 544-554(562) млн. лет), надтиллитовой части надсерии Уиндермир, Северная Канада [13] и тинновской свиты, Южная Сибирь [10]. Все эти значения демонстрируют существенный рост от-⁸⁷Sr/⁸⁶Sr в поздневендском океане ношения (0.7080-0.7085) по сравнению с ранневендским (0.7067-0.7073 [11]). Такой рост был обусловлен развитием Пан-Африканской орогении, объединившей цепь геодинамических и тектонотермальных событий, которые привели около 600 млн. лет назад к аккреции основных континентальных частей Западной и Восточной Гондваны [14, 15]. Возникшие в результате аккреционные и колли-

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 1 2003

Рис. 2. Зависимость ²⁰⁷Pb/²⁰⁴Pb от ²⁰⁶Pb/²⁰⁴Pb в известняках усть-юдомской свиты. *1* – фракции L-2–L-6, 2 – фракция L-2–L-3 обр. 6027; *3* – фракция L-4–L-6 обр. 6027. *T* = 553 ± 23 млн. лет, СКВО = 0.8.

Рис. 3. Сравнение величин ⁸⁷Sr/⁸⁶Sr в карбонатных породах усть-юдомской свиты с кривой вариаций отношения ⁸⁷Sr/⁸⁶Sr в вендской и раннекембрийской морской воде [11]. *1* – известняки; 2 – доломиты.

зионные орогены вывели в область эрозии древние коровые породы, материал которых поставлял радиогенный ⁸⁷Sr в вендский океан. Таким образом, впервые в практике исследования верхнеюдомских карбонатных пород Восточной Сибири получено методически надежное значение их Pb–Pb-изохронного возраста, согласующееся со стратиграфическим положением усть-юдомской свиты, и определено первичное отношение ⁸⁷Sr/⁸⁶Sr в этих карбонатах, которое характеризует изотопный состав Sr в поздневендском океане.

Авторы благодарят Б.М. Гороховского, Н.Н. Мельникова и Э.П. Кутявина за помощь в проведении масс-спектрометрических измерений.

Работа выполнена в рамках фундаментальных исследований ОНЗ РАН по программам "Проблемы зарождения биосферы Земли и ее эволюции" и "Изотопная геология: геохронология и источники вещества", а также при финансовой поддержке РФФИ (проекты 02–05–64333, 02–05– 65241 и 00–05–72011) и Комиссии по делам молодежи РАН (проект 301).

СПИСОК ЛИТЕРАТУРЫ

- Семихатов М.А., Комар Вл.А., Серебряков С.Н. Юдомский комплекс стратотипической местности. М.: Наука, 1970. 207 с.
- Хоментовский В.В., Карлова Г.А. // Геология и геофизика. 1994. Т. 35. № 10. С. 3–13.
- 3. Хоментовский В.В., Карлова Г.А. // Стратиграфия. Геол. корреляция. 2002. Т. 10. № 3. С. 13–34.
- 4. Журавлева З.А., Комар В.А. // ДАН. 1962. Т. 144. № 1. С. 197–200.
- 5. *Keller B.M., Semikhatov M.A.* The Vendian System. V. 2. Regional Geology. B.: Springler, 1990. P. 184–190.
- Семихатов М.А., Горохов И.М., Ивановская Т.А. и др. // Литология и полез. ископаемые. 1987. № 5. С. 78–96.
- 7. Bowring S.A., Grotzinger J.P., Isachsen C.E. et al. // Science. 1993. V. 261. № 5126. P. 1293–1298.
- Овчинникова Г.В., Семихатов М.А., Васильева И.М. и др. // Стратиграфия. Геол. корреляция. 2001. Т. 9. № 6. С. 3–16.
- 9. Martin M.W., Grazhdankin D.V., Bowring S.A. et al. // Science. 2000. V. 288. № 5467. P. 841–845.
- Горохов И.М., Семихатов М.А., Баскаков А.В. и др. // Стратиграфия. Геол. корреляция. 1995. Т. 3. № 1. С. 3–33.
- 11. *Kaufman A.J., Jacobsen S.B., Knoll A.H.* // Earth and Planet. Sci. Lett. 1993. V. 120. № 3. P. 409–430.
- 12. Burns S.T., Haudenschild U., Matter A. // Chem. Geol. 1994. V. 111. № 1/4. P. 269–282.
- 13. James N.P., Narbonne G.M., Kyser T.K. // Can. J. Earth Sci. 2001. V. 38. № 12. P. 1229–1262.
- 14. *Trompette R.* // Precambr. Res. 1997. V. 82. № 1/2. P. 101–112.
- 15. Meert J.G. // Tectonophysics. 2003. V. 362. № 1/4. P. 1-40.

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 1 2003