— ГЕОХИМИЯ —

УДК 550.42:552.3:551.248.1(571.53/.55)

РАСПРЕДЕЛЕНИЕ РЗЭ В КАРБОНАТНЫХ ОТЛОЖЕНИЯХ РАЗЛИЧНЫХ ГЕОДИНАМИЧЕСКИХ ТИПОВ (НА ПРИМЕРЕ ЮЖНОГО СКЛАДЧАТОГО ОБРАМЛЕНИЯ СИБИРСКОЙ ПЛАТФОРМЫ)

© 2003 г. Е. Ф. Летникова

Представлено академиком В.И. Коваленко 29.05.2003 г.

Поступило 05.06.2003 г.

В результате региональных геохимических исследований метаморфизованных и неизмененных карбонатных отложений южного складчатого обрамления Сибирской платформы были выделены три различных геодинамических типа обстановок карбонатонакопления - субплатформенные, задуговых бассейнов и океанических островов [1]. Это стало свидетельством того, что вещественные характеристики карбонатных отложений являются информативными для использования их при корреляциях и геодинамических реконструкциях, наравне с магматическими и терригенными породами. На основе изучения распределения ряда редких и рассеянных элементов (Ti, Mn, Zr, Sr, Ba, Cr, Ni, Co, V, Cu, Sc, Nb, Be, Y, Zn, Sn и др.) показано, что при различных физико-химических и геодинамических особенностях седиментогенеза существует определенный набор индикаторных геохимических показателей, являющийся типоморфным для конкретной обстановки осадконакопления. Следующим шагом в исследованиях геохимических характеристик карбонатных отложений стало изучение распределения РЗЭ в трех выделенных типах. В настоящий момент эти элементы являются ведущими при геохимических исследованиях магматических образований и практически не используются при изучении осадочных. Существуют единичные работы о поведении РЗЭ в современных и древних карбонатах [2-7]. В них показано, что содержание РЗЭ, характер распределения, Еu- и Сеаномалии в карбонатных отложениях несут информацию об обстановках накопления и зависят от

Объединенный институт геологии, геофизики и минералогии Сибирского отделения Российской Академии наук,

Сибирского отоеления Госсийской Акибемии наук, Новосибирск

Институт земной коры

Сибирского отделения

Российской Академии наук, Иркутск

двух факторов – состава и количества нерастворимого остатка и концентрации РЗЭ в морской воде.

Распределение РЗЭ изучено в следующих осадочных комплексах различных геодинамических обстановок южного складчатого обрамления Сибирской платформы: субплатформенных – иркутная свита (R_{2-3}), байкальская (R_{2-3} ?) и боксонская (V–€) серии; раннепалеозойских задуговых бассейнов – толтинская свита, слюдянская и икатская серии, карбонатные отложения Хайт-Тиссинского междуречья; океанических островов – хасуртинская свита Джидинской зоны. Содержания РЗЭ получены методами ICP-MS в Аналитическом центре Института земной коры СО РАН (аналитики Пантеева С.В., Маркова В.В.) и нейтронной активации в Аналитическом центре ОИГГМ СО РАН (аналитики В.С. Порхоменко и В.А. Бобров).

Среди изученных пород были как практически неизменные, так и метаморфизованные до амфиболитовой фации карбонатные отложения. Их характерной особенностью является незначительное количество нерастворимого остатка (не более 1-2%), основная часть которого представлена аутигенным или обломочным кварцем и в меньшей степени различными слюдами – мусковитом и хлоритом. В метаморфизованных карбонатных породах среди акцессорных минералов встречается флогопит. Для карбонатных отложений Хайт-Тиссинского междуречья отмечены зерна плагиоклаза, пироксена, эпидота, что находит свое отражение в повышенном содержании РЗЭ (табл. 1). Следует отметить, что присутствие углистого вещества в породах, а также в некоторых случаях единичных мелких зерен цирконов значительно не повлияло ни на общее содержание РЗЭ, ни на изменение концентрации какоголибо из редкоземельных элементов.

В отличие от глинистых и терригенных пород карбонатные отложения в большинстве случаев не наследуют редкоземельную специфику питающих провинций и не отражают состав верхней ча-

Таблица 1. Со	держание РЗЭ (г/т)	в карбонал	THLIX OT	ложения	онжоі хі	го склај	цчатого	обрамл) кинэг	Сибирск	ой пл	атфор	MbI				
Обстановки накопления	Серии и свиты	ş	La	Ce	Pr	PN	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	Mn
	Иркутная (R ₂₋₃)	K1\69	0.45	0.61	0.08	0.25	0.04	0.01	0.06	0.01	0.05	0.01	0.04	0.01 (0.05	0.01	160
		K1\85	2.29	3.46	0.41	1.59	0.3	0.08	0.38	0.06	0.37	0.08	0.28	0.04 (0.27	0.04	80
		K1\97	2.6	3.78	0.45	1.64	0.28	0.07	0.32	0.04	0.28	0.06	0.21	0.03 (0.19	0.03	110
Субплатфор-	Байкальская (R?)	BC01N4	3.24	10.59	0.81	3.41	0.82	0.21	0.87	0.13	0.72	0.13	0.35	0.04 (0.23	0.03	1300
менные		BC01/9	3.76	12.42	0.8	3.65	0.96	0.2	1.12	0.18	1.02	0.21	0.55	0.08 (0.41	0.05	2900
	Боксонская (V)	k5\166	4.1	7.9		3.9	0.847	0.197	0.85	0.139				<u> </u>	0.341	0.048	570
		k5N76	8.3	12		5.9	1.332	0.35	1.3	0.219				<u> </u>	0.435	0.058	1800
	Боксонская (Є)	k5\212	0.47	0.9		0.45	0.108	0.019	0.11	0.016				<u> </u>	0.038	0.005	110
		k5\214	0.4	0.68		0.3	0.062	0.0066	0.05	0.007				<u> </u>	0.138	0.0018	85
		k5\223	3.2	6.1		2.6	0.532	0.103	0.5	0.073				<u> </u>	0.172	0.024	74
	Среднее для Рус- ской платфм. [3]		6.640	12.600	6.020	1.110	0.260	1.050	0.160	0.490			0.54				400
	Среднее для Китай- ской платфм. [3]		9.410	17.990	8.310	1.630	0.310	1.360	0.210	0.550			0.71				
Задуговых	Толтинская	mg2\4	1.45	2.9		1.6	0.41	0.083	0.42	0.062				<u> </u>	D.14	0.018	162
бассейнов (РД.)		k4\209	3.5	8.1		5.7	1.74	0.432	2.1	0.385					1.36	0.194	1781
		gx120/94	0.21	0.45		0.23	0.054	0.011	0.06	0.0095				<u> </u>	0.023	0.0033	54
		gx101/94	1.46	2.8		1.5	0.333	0.062	0.32	0.053				<u> </u>	0.132	0.019	77
	Слюдянская	K456	3.9	6.8		4.1	0.98	0.17	1.1	0.16				<u> </u>	0.51	0.74	
	Хайт-Тисса	C15/0	6.7	11.63	1.36	5.42	1.16	0.34	1.3	0.2	1.24	0.28	0.91	0.14 (0.95	0.15	230
		C40/0	5.13	6.54	0.95	3.75	0.87	0.2	0.94	0.15	0.85	0.18	0.49	0.08 (0.49	0.07	176
	Икатская	K01\26	2.34	1.84	0.38	1.64	0.32	0.08	0.46	0.07	0.39	0.1	0.27	0.04 (0.23	0.04	320
Океанических	Хасуртинская	KSV57	3.08	6.31	0.78	3.34	1.01	0.42	1.32	0.24	1.72	0.37	1.16	0.19	1.04	0.14	590
островов		K5/37	13.47	27.51	3.42	15.13	3.78	1.07	4.1	0.67	3.5	0.67	1.88	0.29	1.48	0.2	1200
	Среднее для островодужных [5]		17.300	32.000	17.000	3.100	0.820	2.100		0.700			0.805				
	Среднее для Вос- точно-Тихоокеан- ского поднятия [6]		62.400	54.600	70.000	15.700	3.900	17.000	2.240	7.200			2.2				2400
Мп-руда Под	икатского мест-ия	K34\01	12.57	65.74	3.44	14.64	3.27	0.95	3.44	0.53	3.38	0.68	1.97	0.34	2.11	0.34	18.41%

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 2 2003

236

Рис. 1. Распределение РЗЭ в карбонатных отложениях различных геодинамических типов в пределах южного складчатого обрамления Сибирской платформы.

1 – современные карбонатные илы Восточно-Тихоокеанского поднятия; 2 – карбонатные отложения икатской серии;

3 – карбонатные отложения хасуртинской свиты Джидинской зоны.

сти континентальной коры на определенных временных рубежах, как это показано Тейлором и Мак-Леннаном для тонкозернистых терригенных пород [8]. Тренды распределения РЗЭ в "чистых" карбонатных отложениях Русской и Китайской платформ [3], изученных карбонатных отложениях задуговых бассейнов и континентального шельфа южного обрамления Сибирской платформы имеют однотипный характер и представляют собой пологонаклонные кривые с небольшим обогащением LREE, относительно HREE (рис. 1). Такой же тип кривой распределения РЗЭ отмечен для карбонатных отложений Восточно-Тихоокеанского поднятия [6], палеозойских энсиматических дуг Южного Урала [5] и глубоководных карбонатных разностей хасуртинской свиты Джидинской зоны, где содержание терригенной примеси составляет более 10% (рис. 1). Совершенно идентичные графики распределения РЗЭ имеют практически чистые карбонатные отложения икатской серии, вмещающие гидротермально-осадочное месторождение Mn и терригенно-глинистые карбонатные илы Восточно-Тихоокеанского поднятия (рис. 1). Логично предположить, что основным источником поступления РЗЭ в обоих случаях являлись подводные гидротермы. Различие в содержании может быть обусловлено расстоянием от источника и более поздними диагенетическими изменениями осадков, при которых происходит перераспределение РЗЭ [9].

Другой характер распределения РЗЭ имеют мелководные карбонатные отложения океанических островов Джидинской зоны. Для них харак-

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 2 2003

терен плоский тип кривой (рис. 1), свойственный базитам [8].

Содержание РЗЭ в карбонатных породах южного складчатого обрамления Сибирской платформы колеблется в интервале от 2.5 до 70 г/т. Вариации в распределении и содержании РЗЭ не зависят от доломитового или кальцитового состава пород, а также их органогенного или хемогенного генезиса. Контролирующими факторами в данном случае являются глубина и скорость накопления карбонатных отложений. Считается, что на фоне снижающейся скорости осадконакопления в мелководной богатой кислородом среде происходит обогащение осадка РЗЭ путем осаждения их из морской воды на гидроксидах железа и марганца [4, 6, 9]. Среди изученных осадочных комплексов наиболее высокие значения концентраций РЗЭ отмечены для мелководных образований боксонской и байкальской серий, отличительной особенностью которых является присутствие рассеянных вкраплений и стяжений окислов железа и марганца, указывающих на повышенный окислительный потенциал среды накопления. Напротив, для глубоководных марганцевых руд Икатского месторождения, скорость накопления которых была достаточно высокой [10], аномально высокого содержания РЗЭ не отмечено (рис. 2). Таким образом, высокие концентрации редкоземельных элементов, а также марганца и железа в мелководных карбонатных отложениях с минимальным содержанием терригенной примеси могут свидетельствовать о низкой скорости седиментогенеза. В связи с этим несомненный интерес будут представлять исследования зависи-

Рис. 2. Распределение РЗЭ (г/т) и Mn (г/т) в карбонатных отложениях южного складчатого обрамления Сибирской платформы.

мости содержания РЗЭ и гидроксидов марганца и железа от скорости накопления осадков в современных океанах.

При изучении фосфоритов и вмещающих их карбонатных отложений боксонской серии отмечено, что при прочих равных условиях седиментогенеза и незначительной терригенной составляющей фосфориты содержат РЗЭ в среднем на порядок больше, чем вмещающие их карбонатные отложения (рис. 3), что указывает на повышенную сорбцию РЗЭ фосфатным веществом [7].

Рис. 3. Распределение РЗЭ в венд-раннекембрийских фосфоритах (1) и вмещающих карбонатных отложениях (2) боксонской серии (Восточный Саян).

Практически для всех изученных образцов характерен слабо выраженный Еи-минимум (рис. 1). Лишь для мелководных отложений океанических островов отмечается небольшая положительная аномалия ($Eu/Eu^* = 1.105$), которая, по-видимому, является унаследованной от пород питающей провинции [8]. В современных осадках установлена закономерность миграционных способностей европия от степени восстановленности среды седиментогенеза, а также его повышенная сорбция на фосфатном веществе [7]. Тем не менее для изученных шельфовых фосфоритов боксонской серии аномального обогащения Еи не отмечено (рис. 3). Это может быть связано с инертностью Еи в мелководных богатых кислородом обстановках [7]. Несмотря на подвижность Еи в восстановительных обстановках для Eu/Eu* отмечена четкая закономерность. В изученных породах Еи/Еи*-значения более 0.7 характерны для разновозрастных островодужных и докембрийских карбонатных отложений, а менее 0.7 – для раннепалеозойских карбонатных пород шельфа и задуговых бассейнов. Это можно интерпретировать как отражение эволюции континентальной коры в докембрии и фанерозое, т.е. мафические породы древних океанов и докембрийские питающие провинции не имели Еи-минимума или он был слабо выражен. Для пород, преобладающих в фанерозое среди источников сноса для карбонатных пород окраин континентов, характерно наличие Еи-минимума.

Другим элементом, способным переходить в раствор, является Се. Для него свойственно окисление до четырехвалентного состояния и перераспределение из осадка в морскую воду. Для осадочных отложений характерной особенностью

ДОКЛАДЫ АКАДЕМИИ НАУК том 393 № 2 2003

является отрицательная Се-аномалия. Повышенное содержание Се типично только для восстановительных условий седиментогенеза [9]. При изучении распределения Се в карбонатных отложениях южного складчатого обрамления Сибирской платформы выявлены следующие закономерности. Для отложений икатской серии отмечен слабый Семинимум, близкий по своим значениям современным карбонатными илам Восточно-Тихоокеанского поднятия (Се/Се* соответственно 0.42 и 0.44) (рис. 1). Эту особенность С.В.Стрекопытов с соавторами [6] объясняют активной гидротермальной деятельностью. В результате этого процесса в бассейн седиментации в большом количестве поступают гидроксофосфаты Fe и оксид Mn, которые способствуют осаждению Се. Подобный механизм осаждения Се характерен и для древних карбонатных пород. Так, к карбонатным отложениям икатской серии приурочено гидротермально-осадочное Икатское месторождение Мп. По содержанию Се (65 г/т) в нем резко преобладает над всеми другими РЗЭ, а для вмещающих карбонатных пород свойственна отрицательная Сеаномалия (Če – 1.84 г/т).

Для карбонатных отложений байкальской серии характерно наличие Се-максимума (Се/Се^{*} – 1.62–1.68). Возможно, что здесь существует наложение нескольких факторов, влияющих на накопление столь высоких концентраций Се. Во-первых, повышенное содержание оксидов Мп, на которых активно осаждается этот элемент, во-вторых, присутствие среди обломочной части породы минерала-носителя Се – турмалина и, в третьих, застойные лагунные анаэробные обстановки седиментогенеза [11]. Для остальных карбонатных отложений южного складчатого обрамления Сибирской платформы Се-аномалии не выявлены. Отношение Се/Се* варьирует в пределах 1.05–0.8.

При стратиграфических корреляциях и восстановлении условий седиментогенеза терригенных отложений используется ряд отношений РЗЭ, в том числе La/Sm, Er/Nd, Gd/Yb, La/Yb [4, 6, 9 и др.]. Для изученных карбонатных отложений указанные отношения оказались не информативны. Наиболее пригодным при корреляции карбонатных комплексов является отношение La/Ce. Его значения в пределах одного стратиграфического подразделения очень близки. Для реконструкции условий седиментогенеза карбонатных пород, в которых терригенная примесь не превышает 1%, наиболее привлекательным является отношение LREE к HREE. С увеличением доли обломочного материала возрастает доля LREE, а с ее уменьшением падает общее содержание РЗЭ, но возрастает доля HREE [3]. Не последнюю роль здесь также играют подводные гидротермы, которые способствуют обеднению осадка LREE путем их осаждения на гидроксидах железа и марганца, а также фосфатном веществе. Таким образом вариации отношения

Рис. 4. Вариации отношения LREE/HREE для карбонатных отложений южного складчатого обрамления Сибирской платформы в зависимости от геодинамического типа седиментогенеза.

LREE к HREE отражают физико-химические и геодинамические особенности обстановок седиментогенеза. Так, отношение LREE/HREE в субплатформенных отложениях юга Сибири выше 4; для пород активной континентальной окраины значение LREE/HREE изменяется от 4 до 2, а для осадков океанических островов – менее 2 (рис. 4).

Таким образом, проведенный анализ распределения РЗЭ в карбонатных отложениях юга Сибири позволил установить следующие закономерности:

 – для карбонатных отложений океанических островов характерен плоский тренд распределения РЗЭ и слабовыраженный Еu-максимум;

 тренд распределения карбонатных отложений окраин континентов и микроконтинентов имеет слабонаклонные кривые с легким обогащением LREE относительно HREE;

– присутствие повышенного содержания Mn влечет за собой увеличение содержания РЗЭ только в том случае, если накопление происходит в мелководных окислительных обстановках при незначительной скорости накопления, а повышенные концентрации Р влияют на увеличение концентраций РЗЭ только в глубоководных условиях осадконакопления;

 – значение Eu/Eu* отношения может косвенным образом указывать на возраст и обстановку формирования карбонатных отложений;

 – La/Ce-отношения в пределах единых стратиграфических подразделений имеют очень близкие значения и могут быть индикаторными при корреляции;

– значения отношений LREE/HREE могут быть использованы при определении геодинамических обстановок седиментогенеза карбонатных отложений.

В целом полученные результаты свидетельствуют о целесообразности использования РЗЭ в карбонатных отложениях при корреляциях и геодинамических реконструкциях.

Работа выполнена при финансовой поддержке РФФИ (грант 03–05–65030).

СПИСОК ЛИТЕРАТУРЫ

- 1. Летникова Е.Ф. // ДАН. 2002. Т. 385. № 5. С. 672– 676.
- 2. Peterson M.L., Tobler L., Wyttenbach A. // J. Radioanal. Nucl. Chem. Art. 1987. V. 112. № 2. P. 515–530.
- 3. Мигдисов А.А., Балашов Ю.А., Шарков И.В. и др. // Геохимия. 1994. № 6. С. 789–803.
- 4. Bellanca A., Masetti D., Neri R. // Chem. Geol. 1997. № 141. P. 141–152.

- 5. Чехович П.А., Живкович А.Е. // ДАН. 1991. Т. 316. № 3. С. 693–697.
- Стрекопытов С.В., Дубинин А.В., Волков И.И. // Литология и полез. ископаемые. 1999. № 2. С. 133– 145.
- 7. Батурин Г.Н., Люка Ж., Прево-Люка Л. // ДАН. 2001. Т. 379. № 5. С. 647–650.
- 8. *Тейлор С.Р., Мак-Леннан С.М.* Континентальная кора: ее состав и эволюция. М.: Мир, 1988. 384 с.
- Дубинин А.В. // Литология и полез. ископаемые. 1998. № 4. С. 346–354.
- 10. Гурвич Е.Г. Металлоносные осадки Мирового океана. М.: Науч. мир, 1998. 340 с.
- Станевич А.М., Летникова Е.Ф. В сб.: Материалы II Всероссийского литологического совещания. Сыктывкар: Геопринт, 2001. С. 87–88.