— ГЕОХИМИЯ —

УДК 548.4+552.323.6

ВТОРИЧНЫЕ ВКЛЮЧЕНИЯ РАСПЛАВА В ОЛИВИНЕ НЕИЗМЕНЕННЫХ КИМБЕРЛИТОВ ТРУБКИ УДАЧНАЯ-ВОСТОЧНАЯ, ЯКУТИЯ

© 2003 г. А. В. Головин, В. В. Шарыгин, Н. П. Похиленко, В. Г. Мальковец, Б. А. Колесов, академик Н. В. Соболев

Поступило 01.07.2002 г.

В центральной части трубки Удачная-Восточная, расположенной в Далдыно-Алакитском районе Якутской кимберлитовой провинции, на глубине 350-650 м вскрыты уникальные по сохранности кимберлитовые породы, характеризующиеся наличием огромного количества не затронутого серпентинизацией оливина. Эти кимберлиты можно рассматривать как эталон первичной породы, которая сохранила все черты глубинных выплавок [1]. Химический состав кимберлита, мас. %: SiO₂ 29.8; TiO₂ 1.55; Al₂O₃ 2.45; FeO_{обш} 8.5; MnO 0.16; MgO 32.0; CaO 10.8; Na₂O 0.3; K₂O 0.8; P₂O₅ 0.4; CO₂ 6.9; сумма 93.66. Сопоставление этих данных с результатами изучения состава различных типов кимберлитов Якутии, включая кимберлиты высокоалмазоносных трубок Удачная и Мир [2], подтверждает уникальный характер исследуемого неизмененного кимберлита. Текстура породы брекчиевая, структура порфировая, обусловленная вкрапленниками оливина двух генераций (оливин-1 1.0–2.5 мм, оливин-2 <0.5 мм) и редкими фенокристами флогопита [1]. Краевые зоны оливина-1, а также оливин-2 содержат кристаллиты Сг-шпинели, ортопироксена, магнетита, рутила, флогопита, перовскита, при этом рудные минералы часто декорируют зоны роста оливинов. Включения кристаллитов Сг-шпинели, магнетита, перовскита также характерны для фенокристов флогопита. Основная масса имеет микрозернистое строение и представлена кальцитом, флогопитом, перовскитом и рудными минералами (Сг-шпинель, Ті-магнетит, пикроильменит), а также монтичеллитом, Na-Ca-карбонатами, сульфидами.

Вторичные включения расплава располагаются группами в виде трассирующих цепочек, нередко плотными полями и приурочены к трещин-

Институт минералогии и петрографии Сибирского отделения Российской Академии наук, Новосибирск кам в оливине-1 и оливине-2. Форма включений различная: округлая, каплевидная, реже неправильная, полуограненная. Размеры варьируют от 2 до 80 мкм. Фазовый состав: тонкораскристаллизованный агрегат (карбонаты + сульфаты + + хлориды) + газ ± прозрачные кристаллические фазы ± рудные фазы (рис. 1). Среди прозрачных фаз определены силикаты (тетраферрифлогопит, флогопит, оливин, гумит-клиногумит, диопсид), карбонаты (кальцит, доломит, сидерит и Na-Са-карбонаты), хлориды Na и K, сульфаты. Рудные фазы представлены магнетитом, джерфишеритом и Ni-пирротином, причем магнетит и сульфиды нередко находятся в срастании. В пределах одной цепочки наблюдаются включения с различным фазовым соотношением.

Криометрическими исследованиями установлено, что флюидная фаза во включениях представлена малоплотной углекислотой (тройная точка –57–57.5°С). Термометрические опыты показали, что полная гомогенизация включений происходит в интервале 700–800°С. Наши данные по термометрии включений в целом согласуются с полученными ранее результатами по вторичным включениям расплава в оливине кимберлитов трубки Удачная [3–6].

Химический состав включений определялся на микрозонде "Camebax" в ОИГГМ СО РАН по стандартной методике. К сожалению, получить достоверные результаты по составу прогретых включений не удалось, поскольку гомогенный расплав не закаливается, образуя тонкокристаллический агрегат, который при выводе на поверхность частично разрушается. Тем не менее в прогретых включениях фиксируются более высокие концентрации Са, Na, К и летучих по сравнению с валовым составом кимберлита. Высокие содержания щелочей и летучих в расплаве, вероятно, объясняют невозможность получения гомогенных стекол [7]. Наиболее интересным оказался состав кристаллических фаз из включений.

Силикаты. Наиболее распространенным силикатом во включениях является тетраферри-

Рис. 1. Вторичные включения расплава (а, в) в оливине неизмененного кимберлита трубки Удачная-Восточная и рамановские спектры некоторых дочерних фаз включений (б, г). Hal – галит; Silv – сильвин; Cc – кальцит; Shrt – Na–Ca-карбонат (шортит или земкорит); Mgn – магнетит; Djer – джерфишерит; Tphl – тетраферрифлогопит; Fca – тонкокристаллический агрегат; g – газ. *RS-1*, 2, 3 – рамановские спектры.

флогопит с варьирующим содержанием Al₂O₃ (0.2-6.5 мас. %). В основном преобладают тетраферрифлогопиты практически без Al₂O₃ (табл. 1). Они образуют отдельные индивиды размером от 2 до 10 мкм, иногда каймы вокруг тетраферрифлогопита, содержащего примесь Al₂O₃. Все слюды из включений расплава существенно отличаются от флогопита основной массы кимберлитов и кристаллических включений в оливине. Сопряженные повышенные содержания TiO_2 и Cr_2O_3 во флогопите из основной массы и в особенности во флогопите, включенном в оливин (см. табл. 1), по аналогии с первичными включениями флогопита в алмазах [8] свидетельствуют об их кристаллизации в лерцолитовом парагенезисе. Кроме того, во включениях отмечаются единичные находки оливина, диопсида и гумита-клиногумита (см. табл. 1). Оливины из включений имеют состав Fo_{97-94.7}Fa_{2.6-5}La_{0.4} и существенно отличаются от оливина-хозяина.

Некоторые прозрачные кристаллические фазы из непрогретых включений при выводе на поверхность частично разрушались, поэтому для получения более достоверных результатов применялся метод КР-спектроскопии. По характеристическим пикам в области колебания анионных группировок в невскрытых включениях были установлены карбонаты и сульфаты, что впоследствии подтвердилось анализом на микрозонде.

Карбонаты. Во включениях расплава определены следующие карбонатные фазы: кальцит, доломит, карбонат изоморфного ряда магнезит-сидерит, Na-Ca-карбонаты (табл. 2). Состав кальцитов практически однородный, с незначительными вариациями по CaO (54–57) и SrO (0.2–1.5 мас. %), в отдельных индивидах отмечается примесь MgO (до 3.7) и FeO (до 5.9 мас. %). Высокое содержание Na₂O (до 13 мас. %) в некоторых кристаллических фазах из включений свидетельствует о том, что они, возможно, представлены шортитом или земкоритом [9, 10]. По рамановским пикам в области 1060–1075 см⁻¹ можно предположить присутствие нескольких фаз Na–Ca-карбонатов (рис. 1).

Хлориды, сульфаты, фосфат. Весьма сложным оказалось определение сульфатов и хлоридов из расплавных включений, поскольку они имеют небольшие размеры и гигроскопичны. Тем не менее нам удалось проанализировать некоторые включения, имеющие пре-

ДОКЛАДЫ АКАДЕМИИ НАУК том 388 № 3 2003

Компо- нент	1 (4)	2 (2)	3 (2)	4 (2)	5 (4)	6 (3)	7 (3)	8 (2)	9 (1)	10 (3)
SiO ₂	41.31	40.57	40.47	40.43	40.24	40.39	41.13	37.43	37.99	55.48
TiO ₂	0.59	2.42	0.20	0.07	0.06	0.04	H.o.	0.10	0.93	H.o.
Cr_2O_3	0.19	1.43	H.o.	H.o.	H.o.	H.o.	»	H.o.	H.o.	»
Al_2O_3	12.14	13.04	6.52	0.23	0.09	0.15	»	»	»	»
FeO	5.17	4.96	12.05	12.41	16.71	17.20	7.05	1.88	2.33	1.94
MnO	0.05	0.07	H.a.	H.a.	H.a.	H.a.	0.09	H.o.	H.a.	0.03
MgO	25.38	23.64	25.08	27.45	26.60	26.44	51.14	57.40	56.05	17.40
NiO	H.a.	H.a.	H.a.	H.a.	H.a.	H.a.	0.35	H.a.	H.a.	H.a.
CaO	0.04	H.o.	0.03	0.04	H.o.	H.o.	0.05	0.12	H.o.	25.03
BaO	0.06	0.11	H.o.	H.o.	»	»	H.o.	H.o.	»	H.o.
Na ₂ O	0.10	0.06	0.12	0.23	0.13	0.16	»	»	»	0.33
K ₂ O	10.26	10.26	10.12	10.36	10.24	10.15	»	»	»	H.o.
F	0.42	0.50	0.15	0.44	0.44	0.16	H.a.	3.39	2.50	H.a.
Cl	0.06	0.07	H.o.	H.o.	H.o.	H.o.	H.o.	H.o.	H.a.	H.o.
Сумма	95.75	97.12	94.73	91.65	94.50	94.69	99.81	100.32	99.80	100.22
O=F ₂	0.18	0.21	0.06	0.19	0.19	0.07	0.00	1.43	1.05	0.00
Сумма	95.58	96.91	94.67	91.47	94.31	94.62	99.81	98.89	98.74	100.22

Таблица 1. Химический состав (мас. %) дочерних силикатных фаз из вторичных включений расплава в оливине кимберлита трубки Удачная-Восточная

Примечание. 1 – флогопит из основной массы; 2 – включение флогопита в оливине; 3–6 – тетраферрифлогопит из включений расплава в оливине: 3, 4 – центр и край одного кристалла, 5, 6 – отдельные зерна; 7 – оливин-хозяин; 8, 9 – гумит-клиногумит из включений; 10 – диопсид из включений. В скобках – число анализов. Предел обнаружения для F 0.11 мас. %, для Cl 0.02 мас. %. Н.о. – не обнаружено, Н.а. – не анализировалось.

Таблица 2. Химический состав (мас. %) карбонатов, сульфата и фосфата из вторичных включений расплава в оливине кимберлита трубки Удачная-Восточная

Компонент	1 (1)	2 (1)	3 (1)	4 (2)	5 (2)	6 (1)	7 (2)	8(2)
SiO ₂	H.o.	0.43						
FeO	0.53	0.30	0.18	25.66	1.68	0.63	0.63	4.27
MgO	0.21	0.19	0.21	40.79	23.34	0.54	0.06	45.94
CaO	57.19	54.26	54.03	0.00	29.20	43.41	0.13	1.05
BaO	H.o.	H.o.	H.o.	0.10	H.o.	H.o.	0.09	H.o.
SrO	0.58	1.22	1.54	H.o.	0.42	1.01	H.a.	0.22
Na ₂ O	H.o.	0.24	0.31	»	0.06	11.08	19.03	2.48
K ₂ O	»	H.o.	H.o.	»	H.o.	4.87	29.08	0.16
P_2O_5	»	»	»	»	»	H.o.	H.a.	45.30
SO ₃	»	»	»	»	»	1.61	50.50	H.o.
Сумма	58.52	56.22	56.27	66.55	54.70	63.15	99.52	99.85

Примечание. 1–3 – кальцит; 4 – карбонат ряда магнезит-сидерит; 5 – доломит; 6 – Na–Ca-карбонат (шортит?, возможен захват кальцита при анализе); 7 – афтиталит; 8 – Mg-фосфат.

имущественно солевой состав. Среди хлоридов четко определены галит и сильвин, которые образуют тесные срастания. Кроме того, получены данные о возможном присутствии хлоромагнезита MgCl₂ и неидентифицированного Na–Mg-хло-

рида (Mg 15.6; Na 26.3; Cl 14.1 мас. %). Наиболее трудной оказалась диагностика сульфатов. Согласно рамановским спектрам [SO₄] групп в области 980–1010 см⁻¹ наиболее вероятно нахождение во включениях таких щелочных сульфатов, как те-

нардит, глауберит, афтиталит (см. рис. 1), а также барита и целестина. Однако при микрозондовом анализе большинства включений содержание SO_3 не превышало 3 мас. %, а Ва и Sr отсутствовали. Лишь в одном из включений удалось проанализировать афтиталит состава $K_2Na_2(SO_4)_2$. В некоторых включениях был также определен Mg-фосфат в ассоциации с Са-карбонатами (см. табл.2).

Оксиды. В магнетитах отмечаются незначительные вариации по содержанию MgO (2.6– 5.6) и FeO (85–89 мас. %). По составу этот минерал относится к изоморфному ряду MgFe₂O₄– FeFe₂O₄, концентрации других миналов менее 1%.

Сульфиды. Для джерфишерита из включений характерны широкие вариации по составу, мас. %: Fe 32.6–38.5; Ni 4.2–23.1; Co 0.1–0.5; Cu 0–17.6; K 8.9–9.1; Na до 0.7; S 32.7–33.4; Cl 1.2–1.4. В пределах одного зерна (центр–край) вариации по Fe, Ni и Cu незначительны. Кроме джерфишерита в единичном случае установлен Ni-пирротин (Fe 55.1; Ni 4.4; Co 0.4; Cu 0.8; S 38.9 мас. %). Джерфишерит в кимберлитах ранее был обнаружен в виде кайм вокруг сульфидных обособлений в алмазах и ксенолитах, а также как позднемагматическая фаза в основной массе [11–13].

Максимально возможное давление захвата включений, рассчитанное по программе FLINCOR, составляет <1 кбар при $T = 800^{\circ}$ С. Следовательно, эти включения захватывались в приповерхностных условиях и, вероятно, являются реликтами проэволюционировавшего кимберлитового расплава. Исходя из результатов исследования кристаллических фаз в расплавных включениях, можно предположить, что кимберлитовый расплав на поздних стадиях кристаллизации имел силикатнокарбонатный состав с высоким содержанием летучих (Cl, S). Таким образом, эволюция кимберлитового расплава при кристаллизации была направлена в сторону повышения количества CaO, Na₂O, K₂O, FeO, летучих и понижения SiO₂, MgO, Al₂O₃. После кристаллизации оливина 2-й генерации кимберлитовый расплав становился силикатно-карбонатным со значительным смещением в карбонатитовую часть. В дальнейшем кристаллизация минералов основной массы (флогопита, Ті-магнетита, перовскита) привела к тому, что остаточный кимберлитовый расплав становился щелочно-карбонатитовым. При этом в расплаве происходило накопление Са, К, СО₂, а также таких некогерентных для породы элементов, как Na, Cu, Ni Cl, S. Последние капли расплава (после кристаллизации рудных и карбонатов) имели высокие концентрации Cl и S, что способствовало образованию хлоридов и сульфатов. При этом не исключается, что кимберлитовый расплав мог незначительно ассимилировать эвапоритовые толщи, отмечающиеся во вмещающих породах, что явилось дополнительным источником Na, K, S и Cl.

Изучение включений в оливине показало, что Ca-Mg-Fe-карбонаты, Na-Ca-карбонаты и джерфишерит имеют позднемагматическое происхождение в кимберлитах трубки Удачная-Восточная. В процессе кристаллизации кимберлитовый расплав эволюционировал в сторону карбонатитов. Термобарогеохимические исследования щелочно-карбонатитового комплекса Палабора (Южная Африка) показали, что включения расплава в минералах этого комплекса характеризуются примерно тем же набором кристаллических фаз, что и вторичные включения в оливине кимберлитов трубки Удачная-Восточная [14, 15].

Работа выполнена при финансовой поддержке РФФИ (гранты 02–05–64620 и 00–15–98541) и ОИГГМ СО РАН (грант ВМТК №1762).

СПИСОК ЛИТЕРАТУРЫ

- 1. Маршинцев В.К., Мигалкин К.Н., Николаев Н.С., Барашков Ю.П. // ДАН. 1976. Т. 231. № 4. С. 961– 964.
- 2. Соболев Н.В., Харькив А.Д., Похиленко Н.В. // Геология и геофизика. 1986. Т. 27. № 7. С. 18–27.
- Похиленко Н.П., Усова Л.В. В кн.: Тез. IV совещания по термобарогеохимии, Владивосток. 1978. С. 66–67.
- 4. Попивняк И.В., Лазько Е.Е. // ДАН. 1979. Т. 244. № 1. С. 194–197.
- Sobolev A.V., Sobolev N.V., Smith C.B., Dubessy J. In: Proc. IV IKC. Kimberlite and Related Rocks. Perth 1989. GSA Spec. Publ. № 14. V. 1. P. 220–240.
- 6. Kamenetskaya M.B., Sobolev A.V., Sobolev N.V., Pokhilenko N.P. In: XII Goldschmidt Conf. Davos, 2002. Abstr. Vol.
- Мазурин О.В., Стрельцина М.В., Швайко-Швацковская Т.Н. Свойства стекол и стеклообразующих расплавов: Справочник. Л.: Наука, 1973–1981. Т. 1/4
- Sobolev N.V., Yefimova E.S. In: Abstr. Vol. Geol. Soc. Amer. Ann. Meeting, Salt Lake City. 1997. V. 29. P. A191.
- 9. Егоров К.Н., Ущаповская З.Ф., Кашаев А.А. и др. // ДАН. 1988. Т. 301. № 1. С. 188–193.
- Хомяков А.П., Черепивская Г.Е., Тимченко А.Д. // Минерал. журн. 1980. Т. 2. № 2. С. 85–89.
- 11. *Clarke D.B., Pe G.G., MacKay R.M. et al.* // Earth and Planet. Sci. Lett. 1977. V. 35. P. 421–428.
- 12. Буланова Г.П., Специус З.В., Лескова Н.В. Сульфиды в алмазах и ксенолитах из кимберлитовых трубок Якутии. Новосибирск: Наука, 1990. 120 с.
- Clarke D.B., Mitchell R.H., Chapman C.A.T., MacKay R.M. // Can. Miner. 1994. V. 32. № 4. P. 815– 823.
- 14. Aldous R. // Econ. Geol. 1986. V.81. P. 143-155.
- 15. Соловова И.П., Рябчиков И.Д., Когарко Л.Н., Кононкова Н.Н. // Геохимия. 1998. № 5. С. 435–447.

ДОКЛАДЫ АКАДЕМИИ НАУК том 388 № 3 2003