= геохимия =

УДК 550.93:552.3(470.21)

РАННЕПРОТЕРОЗОЙСКИЙ (2.1 МЛРД. ЛЕТ) Fe-ТОЛЕИТОВЫЙ МАГМАТИЗМ БЕЛОМОРСКОЙ ПРОВИНЦИИ БАЛТИЙСКОГО ЩИТА: ГЕОХИМИЯ, ГЕОХРОНОЛОГИЯ

© 2003 г. А. В. Степанова, А. Н. Ларионов, Е. В. Бибикова, В. С. Степанов, А. И. Слабунов

Представлено академиком М.А. Семихатовым 09.12.2002 г.

Поступило 25.12.2002 г.

В пределах восточной части Балтийского щита выделяется ятулийская (2.3–2.06 млрд. лет) Карельская трапповая провинция [1] – одна из крупнейших в мире. Входящие в ее состав платобазальты, силлы и дайки установлены в Карельской и Кольской структурных провинциях, но не были надежно идентифицированы в Беломорской, представляющей собой глубинный срез земной коры докембрийского подвижного пояса (рис. 1).

В Беломорской провинции широко распространены габброиды с коронарными структурами -«друзиты». Среди них выделяются три комплекса: габбро-анортозитов, лерцолитов-габбро-норитов и коронитовых габбро (гранатовых габбро, по В.С. Степанову [2]). Они относятся к высокоглиноземистой, кремнеземистой высокомагнезиальной и Fe-толеитовой сериям соответственно. В последнее время получены данные U-Pb-изотопного датирования по цирконам пород двух первых комплексов, детально изучены петрология и геохимия раннепротерозойского (2.44 млрд. лет) комплекса лерцолитов-габбро-норитов [2-5], однако отсутствовали данные о возрасте и геохимических особенностях комплекса коронитовых габбро. Проведенные ранее исследования показали, что дайки долеритов Карельской провинции и ятулийские платобазальты [6, 7] имеют близкий химический состав [8-10] и возраст образования около 2.1 млрд. лет (2113 ± 4 млн. лет [11, 12] и 2114 ± 14 млн. лет [13] для даек и 2150 ± ± 60 млн. лет [14] для базальтов). В ходе настоящего исследования изучены геохимические осо-

Карельского научного центра

Российской Академии наук, Петрозаводск

Стокгольм

бенности коронитовых габбро, проведено численное моделирование условий формирования первичных расплавов этого комплекса и выполнено изотопное датирование пород по цирконам.

Комплекс коронитовых габбро объединяет в своем составе многочисленные дайки и малые интрузивные тела, сложенные метаморфизованными габброидами. Характерной особенностью этих пород является повсеместное развитие коронарных структур, которые представляют собой реакционные каймы на границе зерен плагиоклаза и клинопироксена. Внешняя часть кайм сложена

Рис. 1. Схема распространения комплексов даек Fe-толеитов на территории Северной Карелии и место отбора пробы (С-2717-2) для геохронологических исследований. 1 – ятулийские (2.3–2.1 млрд. лет) вулканогенно-осадочные комплексы; 2 – коронитовые (гранатовые) габбро Беломорской провинции; 3 – дайки долеритов Карельского архейского кратона; 4 – нерасчлененные сумийские и сариолийские вулканогенно-осадочные комплексы; 5 – интегральная граница Карельского архейского кратона и Беломорской провинции.

Институт геологии

Шведский музей естественной истории,

Институт геохимии и аналитической химии им. В.И. Вернадского

Российской Академии наук, Москва

Рис. 2. Диаграмма Йенсена (а) и спайдер-диаграмма (б) для коронитовых габбро; образец С-2717-2 выделен черным цветом.

ксеноморфным гранатом, в составе которого преобладает альмандиновый минал, а внутренняя – тонкозернистым кварц-роговообманковым агрегатом гранобластовой структуры. В породах редко, но встречаются реликты габбровой и офитовой структур.

Коронитовые габбро – это породы основного состава с довольно низким содержанием MgO (<7.5%), но повышенным содержанием FeO* (>12%) и TiO₂ (>1%), что позволяет классифицировать их как высокожелезистые толеиты (рис. 2а). Состав наиболее представительных образцов этих пород приводится в табл. 1. В целом, исключая крупноионные литофильные элементы, которыми коронитовые габбро обогащены в 3-20 раз, по содержанию рассеянных элементов (рис. 2б) они сходны с базальтами СОХ [15]. Наиболее близкими их аналогами являются континентальные платобазальты (низкоТі-Zr-разновидности). Характер распределения РЗЭ в породах ((Ce/Yb)_N = $= 2.14, (Sm/Yb)_N = 1.55, (Tb/Yb)_N = 0.97)$ свидетельствует о том, что родоначальные магмы коронитовых габбро формировались путем плавления мантийного источника, не содержащего гранат, т.е. при давлениях, не превышающих 25 кбар. Результаты количественного моделирования показывают, что наиболее близким к коронитовым габбро по содержанию рассеянных элементов и РЗЭ является расплав, получаемый в результате равновесного плавления мантийного лерцолита в поле стабильности шпинели. Степень плавления источника составляет 15-17%, а первичный расплав соответствует по составу эвтектоидной выплавке из шпинелевого перидотита и, вероятно, близок по содержанию редких элементов к примитивным базальтам COX [15].

Дальнейшая эволюция составов родоначальных магм коронитовых габбро предполагает фракционную кристаллизацию при преимущест-

7 ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 4 2003

венном оливиновом контроле с незначительным участием клинопироксена. Это объясняет низкое содержание Mg, Ni и Cr в породах. Высокое содержание FeO* в породах является следствием фракционной кристаллизации в условиях высокой f_{0_2} , отодвигающей начало кристаллизации оксидов Fe, из-за чего происходило обогащение остаточных жидкостей Fe. Реликты офитовых структур в породах позволяют считать, что кристаллизация магм коронитовых габбро происходила в гипабиссальных условиях. Последующая эволюция пород предполагает метаморфические изменения при давлении порядка 5–6 кбар и T == 650°С [2]. В процессе метаморфизма в породах сформировались коронарные структуры, которые определяют их современный облик.

Для определения изотопного возраста магматической стадии формирования комплекса коронитовых габбро Беломорской провинции был использован циркон, выделенный из пород дайки мощностью 30 м в районе оз. Боярское. Морфология цирконов и детали их внутреннего строения были рассмотрены с использованием оптического микроскопа и катодной люминесценции (КЛ). В популяции доминируют обломки удлиненных полупрозрачных и непрозрачных трещиноватых цирконов, типичных для интрузивных пород основного состава (рис. 3). КЛ позволила установить практически полное отсутствие в зернах зональности. Они имеют темную КЛ-окраску, что свидетельствует о высоком содержании в них U. Такие цирконы образуются на поздних стадиях кристаллизации основного расплава.

U–Pb-точечный анализ циркона (результаты см. в табл. 2) проводился на вторично-ионном масс-спектрометре NORDSIM. U–Pb-возраст по 5 точкам (из 7 проанализированных точек были выбракованы две наименее конкордантные) составляет 2115 ± 25 млн. лет (СКВО = 0.085). Если

Компонент	Обр. С-1093-2	Обр. С-1643-3	Обр. С-2003-2	Обр. С-2007-2	Обр. С-2407-13	Обр. С-2717-2	Обр. С-765-40	
Mg [#]	47.97	44.63	33.92	48.65	51.15	41.14	42.12	
SiO ₂	49.65	52.84	51.06	51.93	50.11	50.34	51.36	
TiO ₂	2.37	1.32	2.36	1.07	0.91	1.26	1.33	
Al_2O_3	13.58	13.37	13.63	13.95	14.04	15.27	14.60	
FeO	13.39	12.98	15.00	12.46	12.78	13.82	12.83	
MnO	0.22	0.21	0.21	0.19	0.16	0.22	0.21	
MgO	6.93	5.87	4.32	6.63	7.51	5.42	5.24	
CaO	10.20	9.81	8.83	10.10	11.92	9.92	10.33	
Na ₂ O	2.61	2.52	3.14	2.86	2.15	2.79	3.32	
K ₂ O	0.49	0.70	0.95	0.46	0.05	0.37	0.36	
P_2O_5	0.36	0.17	0.25	0.14	_	0.22	0.20	
Cr	346	243	125	127	173	82	155	
Ni	106	82	43	111	121	83	61	
Sc	38	41	31	35	0	32	35	
V	293	340	258	234	295	123	275	
Cu	343	139	74	156	130	39	162	
Rb	21	23	30	12	_	8	12	
Ba	142	225	262	144	_	84	92	
Sr	110	164	183	172	_	109	118	
Tl	0.06	0.00	0.10	0.04	1.40	0.00	0.02	
Ga	22	19	24	19	_	_	21	
Li	0.66	0.69	0.78	0.65	0.63	5.55	0.71	
Ta	0.69	0.37	0.65	0.00	0.00	0.55	0.00	
Nb	14.7	4.4	9.3	2.8	0.4	10.7	5.7	
Zr	193	114	155	100	_	52	132	
Y	45	29	35	21	_	40	34	
Th	_	-	-	-	-	2.68	_	
U	_	-	-	-	-	0.61	_	
La	13.23	10.02	10.55	7.73	5.20	10.37	7.18	
Ce	35.85	22.49	25.87	17.28	12.00	21.41	18.45	
Pr	4.65	2.91	3.65	2.29	1.55	3.43	2.56	
Nd	23.23	15.34	19.27	11.79	8.0	16.10	14.86	
Sm	5.86	3.78	4.97	2.85	1.95	4.21	4.10	
Eu	1.57	0.92	1.32	0.79	0.50	1.21	1.07	
Gd	7.27	_	5.88	3.36	2.05	4.79	5.02	
Tb	0.95	0.57	0.77	0.45	0.27	0.86	0.64	
Dy	8.28	5.32	6.69	3.86	2.30	5.42	5.54	
Но	1.57	0.78	1.01	0.57	0.34	1.11	0.80	
Er	4.65	2.91	3.65	2.24	1.25	3.20	3.02	
Tm	0.53	0.35	0.43	0.25	0.14	0.46	0.35	
Yb	4.34	2.76	3.45	2.08	1.18	3.17	2.87	
Lu	0.53	0.34	0.42	0.25	0.03	0.48	0.35	

Таблица 1. Химический состав коронитовых габбро

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 4 2003

№ п.п.	Точка	U, ppm	Th, ppm	²⁰⁷ Pb/ ²³⁵ U	$\pm 2\sigma\%$	²⁰⁶ Pb/ ²³⁸ U	$\pm 2\sigma\%$	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2\sigma\%$	R	D
1	n87401	1013	2354	6.7448	5.76	0.37581	5.74	0.13017	0.64	0.99	-2.4
2	n87402	557	256	6.2543	5.78	0.36510	5.72	0.12424	0.78	0.99	-0.7
3	n87402a	678	255	6.9224	5.80	0.38398	5.72	0.13075	0.96	0.99	-0.7
4	n87403	484	283	6.4734	6.86	0.35948	6.34	0.13060	2.62	0.92	-7.0
5	n87404	138	79	6.7760	6.12	0.37909	5.78	0.12964	2.02	0.94	-1.2
6	n87404a	404	385	7.2167	5.76	0.39681	5.72	0.13190	0.70	0.99	1.7
7	n87404b	436	440	7.2606	5.76	0.39743	5.72	0.13250	0.70	0.99	1.4

Таблица 2. Результаты U–Pb-точечного анализа цирконов пробы 2717-2

Примечание. R – эррокорреляция 206 Pb/ 238 U– 207 Pb/ 206 Pb, D – дискордантность, %.

учесть практически конкордантное положение точек, то средневзвешенный $^{207}\text{Pb}/^{206}\text{Pb}$ -возраст по тем же 5 результатам равен 2115 ± 18 млн. лет (СКВО = 4.6). Таким образом, магматическая стадия формирования интрузий комплекса коронитовых габбро оценивается в 2115 ± 25 млн. лет.

Полученные данные впервые доказали наличие значительного (более 300 млн. лет) разрыва во времени между образованием комплексов лерцолитов–габбро-норитов и коронитовых габбро, а также позволили надежно коррелировать комплекс коронитовых габбро Беломорской провинции с платобазальтами Карельской трапповой провинции, дайками Fe-толеитов западной части Карельской структурной провинции [13, 14] и долеритами северной ее части [2, 7].

Рис. 3. Результаты U–Pb-датирования зерен цирконов из коронитовых габбро, образец C-2717-2. Анализы выполнены на приборе NORDSIM в Шведском музее естественной истории. Пересечения 2115 ± 25 и $791 \pm \pm 431$ млн. лет, CKBO = 0.74.

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 4 2003

Резюмируя все сказанное, отметим следующее: 1) впервые в пределах Беломорской провинции Балтийского щита установлено время проявления Fe-толеитового магматизма, представленного интрузиями коронитовых габбро, оцениваемое в 2115 ± 25 млн. лет; 2) по геохимическим характеристикам коронитовые габбро Беломорской провинции сопоставимы с континентальными платобазальтами; 3) совокупность полученных данных позволяет рассматривать коронитовые габбро как проявление раннепротерозойского (ятулийского) траппового магматизма в пределах Беломорской провинции Балтийского щита.

Авторы благодарят Университет г. Оулу (Финляндия) и лично J. Vuollo за содействие в проведении аналитических работ и также Шведский музей естественной истории и лично С. Клайсена за предоставленную возможность выполнить геохронологические исследования.

Работа частично выполнена при поддержке РФФИ (грант 00–05–64701) и Шведского Фонда естественнонаучных исследований (стипендия NFR).

СПИСОК ЛИТЕРАТУРЫ

- Голубев А.И., Иванников В.В., Филиппов Н.Б. и др. В сб.: Мантийные плюмы и металлогения. М.; Петрозаводск, 2002. С. 60–63.
- 2. Степанов В.С. Основной магматизм докембрия Западного Беломорья. Л., 1981. 216 с.
- 3. Шарков Е.В., Богатиков О.А., Красивская И.С. // Геотектоника. 2000. № 2. С. 3–25.
- 4. Lobach-Zhuchenko S.B., Arestova N.A., Chekulaev V.P. et al. // Precambr. Res. 1998. V. 92. P. 223–250.
- Слабунов А.И., Ларионов А.Н., Бибикова Е.В. и др. В сб.: Геология и полезные ископаемые Карелии. Петрозаводск, 2001. В. З. С. 3–14.
- Голубев А.И., Светов А.П. Геохимия базальтов платформенного вулканизма Карелии. Петрозаводск, 1983. 190 с.
- 7. Светов А.П. Платформенный базальтовый вулканизм карелид Карелии. Л., 1979. 208 с.

- 8. *Еин А.С.* В сб.: Интрузивные базиты и гипербазиты Карелии. Петрозаводск, 1984. С. 30–41.
- 9. Степанов В.С., Слабунов А.И. Амфиболиты и ранние базит-ультрабазиты докембрия Северной Карелии. Л., 1989. 175 с.
- 10. Степанов В.С. В сб.: Докембрий Северной Карелии: петрология и тектоника. Петрозаводск, 1994. С. 118–170.
- 11. *Pekkarinen L.J.* // Geol. Surv. Finland Bull. 1979. № 301. P. 1–141.
- 12. *Pekkarinen L.J., Lukkarinen H. //* Geol. Surv. Finland Bull. 1992. № 357. P. 1–30.
- Perttunen V. // Geol. Surv. Finland, Rept Investigation. 1987. V. 76. P. 29–34.
- 14. Кратц К.О., Левченков О.А., Шулешко И.К. и др. // ДАН. 1976. Т. 231. № 5. С. 1191–1194.
- 15. *McDonough W.F.* // Geol. Soc. Spec. Publ. 1989. № 42. P. 313–345.