= ГЕОХИМИЯ =

УДК 549.211

ПЕРВАЯ НАХОДКА КСЕНОЛИТА С АЛМАЗОМ В КИМБЕРЛИТЕ ТРУБКИ БОТУОБИНСКАЯ (НАКЫНСКОЕ ПОЛЕ, ЯКУТИЯ)

© 2003 г. З. В. Специус, С. И. Митюхин, А. С. Иванов

Представлено академиком В.А. Жариковым 12.11.2002 г.

Поступило 26.12.2002 г.

Опыт промышленной эксплуатации кимберлитовых трубок Южной Африки и Якутии показал, что первичные материнские алмазоносные породы, т.е. мантийные ксенолиты с алмазами найдены в большинстве промышленных алмазных месторождений, хотя и не во всех кимберлитовых трубках [1-3]. При этом следует отметить, что если в трубках Мир и Удачная присутствует сравнительно большое количество ксенолитов с алмазами, то в трубках Сытыканская, Айхал это редкие находки, а в трубке Интернациональная они не обнаружены. Столь же неравномерно они встречаются и в разрабатываемых кимберлитовых трубках Южной Африки [3]. Поскольку дискуссия по проблеме генезиса алмаза до сих пор не завершена, любая находка материнских алмазосодержащих пород, а тем более в новом кимберлитовом поле, представляет несомненный интерес для понимания условий и среды образования алмаза, а также для решения вопросов петрологии литосферной мантии и выяснения особенностей формирования кимберлитов в различных участках Сибирской платформы.

В данной работе описан образец ксенолита с алмазом, найденный на стадии разведочного опробования кимберлитовой трубки Ботуобинская при просмотре концентрата тяжелой фракции. Внешне образец (Б-20) выглядит как крупный мегакрист граната овальной формы размером $15 \times 13 \times 10$ мм. Алмаз почти полностью находился в породе, снаружи наблюдалась только вершина октаэдрического кристалла. После предварительной очистки и подготовки алмаз в породе был сфотографирован (рис. 1). На приведенном снимке алмаз представлен бесцветным прозрачным кристаллом октаэдрического габитуса размером около 5 мм. Алмаз разбит трещиной, часть кристалла отколота в результате техногенного воздействия при обогащении. В породе сохранился отпечаток отсутствующей части кристалла с характерным рисунком грани октаэдрического кристалла с полицентрическим строением. Большая часть видимой поверхности алмаза имеет рельефный рисунок со следами природной коррозии и растворения. Секущая алмаз трещина, вероятно, также имеет природный характер, ее направление соответствует общей структуре деформации породы. Следует отметить, что вокруг алмаза присутствует оторочка, выполненная хлоритизированным флогопитом. Алмаз идентифицирован также с использованием рентгеновского излучения. Его параметры: Ј_{ст} (статическая интенсивность рентгенолюминесценции) = 0.013 мкА, J_{π} (длительная компонента) = 0.07 мкА, J_{κ} (короткая компонента) = 0.01 мкА, т (постоянная затухания) ≈2–3 мс. Кристалл обладает голубым свечением при ультрафиолетовом возбуждении.

Рис. 1. Алмаз в ксенолите из кимберлитовой трубки Ботуобинская (обр. Б-20). Кристалл разбит трещиной на две части, в нижней части алмаза видна выколка техногенного характера. На месте отколотого обломка в породе сохранился характерный отпечаток рисунка октаэдрической грани. Вокруг алмаза развита оторочка мелкозернистого хлоритизированного флогопита мощностью около 1.5 мм.

Якутский научно-исследовательский и проектный институт алмазодобывающей промышленности, г. Мирный, Республика Саха–Якутия

Компо- нент	Б-20								M-772	У-759
	1	2	3	4	5	6	7	8	9	10
SiO ₂	40.25	40.33	40.18	40.37	40.07	40.26	40.07	40.60	40.60	42.01
TiO ₂	0.16	0.18	0.17	0.17	0.17	0.22	0.15	0.54	0.22	0.97
Al_2O_3	23.36	23.48	23.60	23.43	23.47	23.73	23.47	21.70	22.70	22.10
Cr_2O_3	0.10	0.09	0.09	0.09	0.10	0.08	0.09	0.09	0.06	0.03
FeO	16.39	16.27	16.32	16.33	16.30	14.27	15.08	15.47	17.80	12.56
MnO	0.33	0.32	0.32	0.32	0.33	0.35	0.34	0.08	0.40	0.37
MgO	16.39	16.42	16.49	16.51	16.45	18.26	18.00	18.85	16.30	19.31
CaO	1.09	1.11	1.14	1.09	1.11	0.90	0.81	2.63	2.64	3.25
Na ₂ O	0.15	0.15	0.15	0.14	0.15	0.16	0.17	0.01	0.10	0.21
Сумма	98.22	98.35	98.45	98.45	98.15	98.23	98.19	99.97	100.82	100.80

Таблица 1. Химический состав граната в ксенолите с алмазом из кимберлитовой трубки Ботуобинская (обр. Б-20), мас. %

Примечание. Анализы минералов (среднее из двух) выполнены в АК "АЛРОСА", г. Мирный; 1–6 – анализы отдельных зерен граната; 6, 7 – зональное зерно граната (6 – центр, 7 – край); 8 – гранат из алмазоносного эклогита трубки Удачная, по [5]; 9 – гранат из алмазоносного эклогита трубки Удачная, по [6]; 10 – гранат из алмазоносного пироксенита трубки Удачная, по [7].

Петрографическое изучение образца и изготовленных прозрачных шлифов показало, что ксенолит более чем на 90% сложен гранатом, с включениями овальных зерен размером 1-2 мм, сложенных агрегатом вторичных минералов хлорита, серпентина и карбоната, которые, вероятно, представляют собой псевдоморфозы по первичному клинопироксену. Образец рассечен узкими прожилками, параллельными деформации породы. Эти прожилки толщиной 0.1–0.5 мм, редко до 1 мм, проходят через весь образец, рассекая зерна граната, достаточно очевиден и не вызывает сомнений их более поздний характер. Они выполнены вторичными продуктами, состоящими из хлорита по флогопиту, серпентина, редких зерен карбоната и мельчайших зерен шпинели. По-видимому, основным минералом в прожилках был флогопит. Основываясь на структурных взаимоотношениях вторичных минералов, можно предположить, что первоначально это были стеклообразные продукты, аналогичные продуктам плавления в ксенолитах эклогитов из трубки Удачная [2]. Вероятно, в породе присутствовал также и клинопироксен, но он полностью замещен хлорит-серпентиновым агрегатом с образованием псевдоморфоз и неизмененных реликтов его не сохранилось.

Исследование состава граната, слагающего основную ткань породы, а также присутствующих вторичных образований осуществлялось в стандартных условиях с помощью рентгеновского микроанализатора с электронным зондом Superprobe JXA-8800R акционерной компании "АЛРОСА". Как следует из результатов зондовых анализов (табл. 1), гранат является пироп-альмандином с примерно равным соотношением этих компонентов. Он имеет небольшую примесь хрома (около 0.1 мас. % Cr₂O₃), несколько бо́льшую примесь титана (до 0.2 мас. % TiO₂) и высокое количество примеси МпО (0.30-0.35 мас. %). Особенностью характеризуемого граната является уникально низкое содержание кальция, которое по результатам семи определений колеблется в интервале 0.8-1.1 мас. % СаО (см. табл. 1). Подобное исключительно низкое содержание кальциевого компонента не было отмечено в составе гранатов из ксенолитов как среди эклогитов, в том числе алмазоносных [2, 3], так и среди гранатов большинства ультрамафитов. Даже низкокальциевые гранаты дунит-гарцбургитового парагенезиса, как правило, содержат более 2 мас. % СаО [1, 2], хотя в составе алмазосодержащих дунит-гарцбургитов и включений гранатов в алмазах встречаются пиропы с содержанием СаО около 1 мас. % [1, 4]. Однако в таком случае это высокохромистые гранаты с содержанием Cr₂O₃ более 5-6 мас. %. В нашем случае примесь Cr₂O₃ составляет около 0.1 мас. % (см. табл. 1). С учетом этого гранат из образца Б-20 в большей степени отвечает гранатам из алмазоносных эклогитов трубок Мир и Удачная, хотя даже приведенные в табл. 1 составы гранатов с наиболее низкими содержаниями кальциевого компонента, выбранные из большого количества опубликованных зондовых анализов [5, 6], имеют более высокое содержание CaO по сравнению с характеризуемым гранатом.

Следует отметить, что гранат из образца Б-20 близок к минералу из алмазоносного клинопироксенита (обр. У-759, трубка Удачная) [7], с которым он сходен по большинству компонентов, хотя и содержит немного большее количество кальция. Это подтверждается и сходным, не-

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 5 2003

сколько повышенным содержанием титана TiO₂ (0.15–0.21 мас. %) в минерале обоих образцов. Необходимо подчеркнуть, что проанализированные гранаты характеризуются повышенной марганцовистостью (см. табл. 1), причем вариации содержания MnO в отдельных зернах очень незначительны. Количество примесного никеля невысокое, и можно считать, что в целом оно находится в пределах ошибки измерений. Особого внимания заслуживает содержание Na_2O , которое является достаточно высоким (около 0.15 мас. %), по данным всех определений, что согласуется с повышенным содержанием натрия в гранатах алмазоносных эклогитов и включений в алмазах [1]. По натриевости граната данный образец соответствует типичным алмазоносным эклогитам, аналогичное содержание натрия отмечается также в гранатах пироп-клинопироксен-алмазных сростков [1]. Таким образом, оценивая по составу граната и другим косвенным признакам возможный парагенезис данной породы с алмазом, можно с достаточно высокой степенью достоверности полагать, что характеризуемый образец ксенолита с алмазом представляет собой породу мантийного происхождения, соответствующую эклогиту или гранатовому пироксениту. Как следует из сравнения составов граната рассматриваемого образца и гранатов в алмазоносных эклогитах и пироксенитах из трубок Мир и Удачная, гранат из образца Б-20 по содержанию большинства петрогенных окислов совпадает с гранатами из ксенолитов эклогит-пироксенитовой серии пород.

Обсуждая особенности граната характеризуемого ксенолита, нельзя не отметить, что в образце Б-20 фиксируется явная неоднородность и наличие зональности в составе отдельных зерен граната. От центра к краю зерен наблюдается существенное снижение магнезиальности зерен с параллельным возрастанием (более чем на 0.5 мас. %) содержания железа. Несколько снижаются также кальциевость, глиноземистость и титанистость граната от центра к периферии зерен (сравни ан. 6 и 7 из центральной и периферийной частей одного и того же зерна). Установлено, что зональность более ярко выражена в зернах, расположенных на контакте или внутри секущих вторичных прожилок, состоящих из раскристаллизованных и измененных стеклообразных продуктов и замещенного хлоритом флогопита. Данный факт позволяет с уверенностью утверждать, что изменение состава зерен граната от центра к периферии является следствием метасоматического преобразования породы под воздействием флюидных агентов, вероятно, обогащенных К, Na и Fe. Не исключено, что пониженная кальциевость граната частично также обусловлена подвижностью Са в процессе проявления метасоматоза, что отчасти подтверждается и наиболее низким содержанием СаО в зерне с наличием

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 5 2003

Таблица 2. Составы хлоритов (мас. %) в ксенолите с алмазом из кимберлитовой трубки Ботуобинская (обр. Б-20)

1	2	3	4	5
29.55	29.03	30.16	29.97	26.57
0.70	1.29	0.47	0.24	0.14
18.71	19.77	16.78	14.86	26.02
0.22	0.28	0.07	0.11	0.44
11.12	10.17	10.32	12.07	18.36
0.01	0.02	0.01	0.01	0.02
27.03	26.63	27.15	20.77	18.47
0.02	0.03	0.03	0.15	0.05
0.05	0.06	0.07	0.14	0.01
0.01	0.00	0.01	0.03	0.00
0.02	0.00	0.08	0.05	0.00
0.11	0.09	0.13	0.03	0.26
0.31	0.23	0.29	0.23	0.09
87.75	87.51	85.44	78.58	90.31
	1 29.55 0.70 18.71 0.22 11.12 0.01 27.03 0.02 0.05 0.01 0.02 0.11 0.31 87.75	1229.5529.030.701.2918.7119.770.220.2811.1210.170.010.0227.0326.630.020.030.050.060.010.000.020.000.110.090.310.2387.7587.51	12329.5529.0330.160.701.290.4718.7119.7716.780.220.280.0711.1210.1710.320.010.020.0127.0326.6327.150.020.030.030.050.060.070.010.000.010.020.000.080.110.090.130.310.230.2987.7587.5185.44	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Примечание. Анализы минералов (среднее из двух) выполнены в АК "АЛРОСА".

зональности (см. табл. 1). Более детально особенности зональности гранатов и специфику метасоматических изменений предполагается рассмотреть в отдельной публикации.

К сожалению, в образце не сохранилось реликтов неизмененного клино- или ортопироксена, а присутствие отдельных псевдоморфных зерен, полностью замещенных вторичными хлоритом или серпентином или же их смесью, не позволяет уверенно судить об исходном составе замещенного минерала, что, в свою очередь, исключает возможность точной оценки *PT*-условий формирования породы.

Составы вторичных хлоритов из различных зерен, замещающих существовавший ранее флогопит и, вероятно, также первичный клинопироксен, приведены в табл. 2. Проанализированные хлориты характеризуются высокой магнезиальностью и повышенной титанистостью. В минералах фиксируется постоянное присутствие фтора и хлора. Содержание никеля нестабильно в различных зернах, и отдельными анализами зафиксировано относительно высокое содержание никеля (см. табл. 2), что косвенно указывает на возможность первоначального присутствия в породе ортопироксена. Следует отметить, что в большинстве выделений хлорита зарегистрировано высокое (до 0.44 мас. %) содержание Cr₂O₃, что свидетельствует о вторичном характере замещенного им флогопита [2]. Это подтверждается также и распространенностью измененных зерен последнего в составе секущих метасоматических прожилков (подобных продуктам частичного плавления), и развитием хлоритизированного флогопита во вторичной кайме вокруг алмаза.

Таким образом, учитывая петрографические особенности и состав минералов, слагающих характеризуемую алмазоносную породу, можно достаточно определенно утверждать, что данный ксенолит с алмазом является представителем верхней мантии, образовавшимся при высоких РТ-параметрах. Наиболее вероятно, что он принадлежит к серии пород эклогитового или пироксенитового состава, причем претерпевших существенные метасоматические преобразования и подвергшихся интенсивным тектоническим деформациям. Вероятно, эти два события были конформны или близки по времени. Не исключено, что образование алмаза в данном случае также может быть связано с этапом метасоматоза и флогопитизации породы, поскольку возможность вторичного роста части алмазов в мантии в связи с процессами глобального метасоматоза и метаморфизма в последнее время подтверждается рядом наблюдений [8, 9].

В заключение следует подчеркнуть, что находка первого алмазоносного ксенолита в кимберлитовой трубке Ботуобинская, принадлежащего к эклогит-пироксенитовой серии пород, а также некоторые другие факторы [10] указывают на несколько отличный характер состава среды и, возможно, условий образования алмазов, а также их последующей эволюции в кимберлитовых трубках Накынского поля по сравнению с соседними Мало-Ботуобинским и Далдыно-Алакитским полями. Специфика алмазоносных мантийных пород обсуждаемого района подтверждается и тем, что в период подготовки данной публикации к печати обнаружен второй алмазоносный ксенолит подобного типа в кимберлитах этой трубки, что указывает на вероятное преобладание алмазоносного мантийного субстрата эклогит-пироксенитового типа в этом кимберлитовом поле. Дополнительным доказательством отличия условий образования и сложной последующей эволюции мантийного вещества и самих алмазов из кимберлитов этих трубок могут служить также особенности кристалломорфологии алмазов, распространенность следов пластической деформации и отдельные признаки интенсивных послеростовых преобразований поверхности кристаллов [10, 11]. Повышенное содержание подобного рода кристаллов в совокупностях алмазов из трубок Ботуобинская и Нюрбинская обусловливает своеобразие характеристик алмазов в кимберлитах Накынского поля, свидетельствующее об относительно интенсивном проявлении деформации и последующих процессах их коррозии и травления, что, в свою очередь, указывает на повышенную тектономагматическую активность литосферы данного района и длительную эволюцию алмазов после их образования.

СПИСОК ЛИТЕРАТУРЫ

- 1. Соболев Н.В. Глубинные включения в кимберлитах и проблема состава верхней мантии. Новосибирск: Наука, 1974. 264 с.
- Специус З.В., Серенко В.П. Состав континентальной верхней мантии и низов коры под Сибирской платформой. М.: Наука, 1990. 272 с.
- 3. *Dawson J.B.* Kimberlites and their Xenoliths. B.: Springer, 1980. 252 p.
- Соболев Н.В., Похиленко Н.П., Ефимова Э.С. // Геология и геофизика. 1984. № 12. С. 63–80.
- 5. Специус З.В., Безбородов С.М. // ДАН. 1992. Т. 326. № 4. С. 717–721.
- 6. *Beard B.N., Fraracci L.K., Taylor L.A. et al.* // Contribs. Mineral. and Petrol. 1996. V. 125. P. 293–310.
- Пономаренко А.И., Специус З.В., Соболев Н.В. // ДАН. 1980. Т. 251. № 2. С. 438–441.
- 8. *Spetsius Z.V.* In: Proceedings VII Intern. Kimberlite Conf. Cape Town. 1999. V. 2. P. 823–828.
- Taylor L.A., Bulanova G.P., Milledge H.J. et al. // Intern. Geol. Rev. 1998. V. 40. P. 592–604.
- Специус З.В., Серенко В.П. В сб.: Геология и тектоника платформ и орогенных областей северовостока Азии. Тез. докл. Якутск: ЯНЦ СО РАН, 1999. Т. 2. С. 104–108.
- Cherny S.D., Fomin A.S., Yanygin Ju.T. et al. VII Intern. Kimberlite Conf. Ext. Abstr. Cape Town, 1998. P. 147– 148.

ДОКЛАДЫ АКАДЕМИИ НАУК том 390 № 5 2003