
doi:10.1016/S0016-7037(03)00459-9

Optimal methods for estimating kinetic isotope effects from different forms of the Rayleigh
distillation equation

K. M. SCOTT,1,* X. L U,2 C. M. CAVANAUGH,1 and J. S. LIU*2

1Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
2Department of Statistics, Harvard University, 1 Oxford Street, Cambridge, MA 02138, USA

(Received December 10, 2002;accepted in revised form June 17, 2003)

Abstract—The interpretation of stable isotope values hinges on precise, accurate estimates of kinetic isotope
effects (�), which are equal to1k/2k, where1k and 2k are the reaction rate constants for the two isotopes.
Kinetic isotope effects are commonly determined by monitoring the reactant concentration (C) and isotope
ratio (R) relative to their initial values (C1 andR1, respectively). Values of� are estimated from theC andR
values by using the Rayleigh distillation equation (RDE).

�R/R1� � �C/C1�
1/��1 (A)

We conducted simulation experiments to evaluate the precision of the many different published approaches
of estimating� from linearized versions of the RDE and reached the following conclusions: (a) kinetic isotope
effects estimated from the slope of the line ln(R) vs. ln(C) were accurate and precise; (b) regressing ln(Ri/Rj)
on ln(Ci/Cj), where all i datapoints were compared to all preceding datapointsj resulted in inflated 95%
confidence intervals; (c) forcing the regression of ln(R/R1) on ln(C/C1) through the origin resulted in 95%
confidence intervals for� that covered the true value less than 90% of the time; and (d) regression methods
that compensate for errors in bothx andy values need to be used with caution.

When combining multiple datasets, values of� were sensitive to the form of the equation and the level of
error. If all datasets had the same level of error, the optimal estimate of� was achieved by a linear regression
with dummy variables. However, when the three datasets had different levels of error, the optimal estimate of
� and much narrower 95% confidence intervals were obtained by using the Pitman estimator. Our study
demonstrates that some of the other methods jeopardize the accuracy and precision of empirically determined
kinetic isotope effects, thus confounding the interpretation of stable isotope values in the
environment. Copyright © 2004 Elsevier Ltd

1. INTRODUCTION

Kinetic isotope effects, which are the degree to which a
reaction discriminates between two isotopes, have been deter-
mined for a variety of biologic, chemical, and physical pro-
cesses. For example, kinetic isotope effects have been used to
model the formation of carbonaceous chondrite asteroids
(Wang et al., 2001; Richter et al., 2002), to explain the isotopic
composition of stratospheric N2O (Rahn et al., 1998), to deter-
mine the mechanism of CO2 fixation by the enzyme RubisCO
(Roeske and O’Leary, 1984; Roeske and O’Leary, 1985; Rob-
inson et al., 2003), and to model sulfate reduction by thermo-
philic bacteria in deep sea pore fluids (Rudnicki et al., 2001).
Kinetic isotope effects (�) are equal to1k/2k, where1k and2k
are the reaction rate constants for the lighter and heavier
isotopes, respectively (Table 1; O’Leary et al., 1992). Because
different isotopes react with different rates, the isotopic com-
position of a material bears the “fingerprints” of the kinetic
isotope effects of the various processes that have affected it.
Accurate determinations of kinetic isotope effects, then, are key
to the interpretation of the isotopic compositions of materials
ranging from asteroids to biomass, and to their use in predictive
models.

Values of� for a particular reaction or irreversible process

are commonly determined using a reactant-depletion method,
in which the reaction takes place with a nonreplenished reactant
(O’Leary, 1980). Paired measurements of reactant concentra-
tion (C) and reactant isotope ratio (R) are taken over time. The
change in the isotopic composition of the reactant as it is
consumed by the reaction is described by the Rayleigh distil-
lation equation (RDE):

�R/R1� � �C/C1�
1/� � 1 (1)

whereR andC are the isotope ratio and concentration, respec-
tively, of the reactant at timet, andR1 and C1 are the corre-
sponding quantities initially present (Broecker and Oversby,
1971; Mariotti et al., 1981). In Eqn. 1,� is equal toRr/Rp,
whereRr is the isotope ratio of the available reactant, andRp is
the isotope ratio of the product formed at thisRr. Some re-
searchers have also defined� as the inverse (Rp/Rr; e.g., Mari-
otti et al., 1981).

One can rewrite the RDE to estimate� from R andC values
as

ln�R� � �1/� � 1�ln�C� � ln�R1/C1
�1/� � 1��. (2)

(Fig. 1a). The slope of the line is equal to 1/� � 1, which can
be estimated by the simple linear regression with they value
being ln(R) and thex value being ln(C). Despite the simplicity
of Eqn. 2, another linear form of the RDE,
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ln�R/R1� � �1/� � 1�ln�C/C1�, (3)

is more frequently utilized (Fig. 1b). With y� ln(R/R1) and x�
ln(C/C1), one can again estimate the slope 1/� � 1 by linear
regression (Pennock et al., 1996; Hunkeler and Aravena, 2000;
Wang et al., 2001). In theory, the y-intercept of this line should
be zero; accordingly, some force the regression through the
origin (Mariotti et al., 1981; Weger et al., 1990; Guy et al.,
1993). One difficulty with this approach is that regressing
ln(R/R1) on ln(C/C1), and forcing it through the origin places an
added emphasis on the initial timepoint (Henry et al., 1999). To
ameliorate this overemphasis, some investigators regress ln(Ri/
Rj) on ln(Ci/Cj) based on the equation

ln�Ri/Rj� � �1/� � 1�ln�Ci/Cj�, (4)

where the R and C values of all i timepoints are divided by the

R and C values of all j timepoints preceding them (Fig. 1c;
Weger et al., 1990; Guy et al., 1993).

Several different regression methods have also been used for
estimating �. Standard linear regression assumes that all errors
are associated with the y values and derives the least-square

Table 1. Symbols and abbreviations.

Symbol Definition

Isotope terminology
� kinetic isotope effect, � Rs/Rp

k1, k2 reaction rate constants for two isotopes
R isotope ratio
R1 initial value of R
Rr isotope ratio of the reactant
Rp isotope ratio of the product of a reaction
RDE Rayleigh distillation equation
C reactant concentration
C1 initial value of C
Statistics terminology
� true value of the slope
�̂ slope of a line from a dataset, � ��1 � 1
�� weighted or unweighted average of the slopes from three

datasets
�̃ average of the slopes from three datasets, weighted by

the slopes’ variances
Ii upper or lower limit for a 95% confidence interval
CI confidence interval
D dummy variable for a line that includes several datasets
� error in x
� error in y
� y-intercept of a line
f frequency
LSCE linear squares cubic equation
p probability
Ri.samp isotope ratio of a sample
Ri.std isotope ratio of a standard
Rc.samp ratio of ion currents generated from a sample by a mass

spectrometer
Rc.std ratio of ion currents generated from a sample by a mass

spectrometer
s sample standard deviation
s2 sample variance
s�̂

2 variance of a slope
s��

2 variance of an unweighted or weighted average slope
Ui xi � x�
Vi yi � y�
v degrees of freedom
Wi 	�xi�	�yi�

�2	�yi� � 	�xi�
	(xi) weight of the x observations
	(yi) weight of the y observations
x� mean value of x
y� mean value of y
ŷ value of y predicted from a regression line

Fig. 1. Data from a reactant-depletion experiment, plotted using three
different linearizations of the Rayleigh distillation equation. The num-
bers next to the points on the lines indicate the corresponding time-
points. The slope of all lines � (1/� �1). a) x�ln(C) and y�ln(R). b)
x�ln(C/C1) and y�ln(R/R1). c) x�ln(Ci/Cj) and y�ln(Ri/Rj).
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estimate of the slope by minimizing �(yi-ŷi)
2, where yi is the

observed y values and ŷi is predicted y values from the regres-
sion line (Sokal and Rohlf, 1995). To accommodate measure-
ment error in the x and y values, one can estimate the slope by
solving a “Least Squares Cubic Equation” (LSCE; York, 1966;
York, 1967):

�3�
i

Wi
2Ui

2

	� xi�
� 2�2�

i

Wi
2UiVi

	� xi�
� ���

i

Wi
2Ui

2 � �
i

Wi
2Vi

2

	� xi��
� �

i

WiUiVi � 0 (5)

where Ui � xi � x�, Vi � yi � y�, Wi �
	�xi�	�yi�

�2	�yi� � 	�xi�
,

and 	(xi) and 	(yi) are the weights of each observation. This
equation has several solutions that vary based on the weights of
the x and y values (	(xi) and 	(yi), respectively). When there is
no error in the x values, 	(xi) is set to infinity and 	(yi) is set
to one so that Eqn. 5 gives rise to the standard least-squares
solution:

�̂ �
�� yi � y� �� xi � x� �

�� xi � x� �2
(6)

Further, methods for combining data from replicated exper-
iments have not been rigorously compared. Some investigators
average the estimated � values (Robinson et al., 2003) while
others combine data from replicated experiments into a single
linear regression (Guy et al., 1993). It is not obvious which
method of assigning x and y values, weighting observations,
and combining datasets is best.

To test the many approaches to estimating � values, simu-
lated datasets were used to compare the accuracy and precision
of � values generated from commonly used forms of the RDE
(Berges et al., 1994; Ritchie and Prvan, 1996). We generated
1000 datasets with a true value of 1.025 for � (intermediate for
RubisCO enzymes; Roeske and O’Leary, 1984; Roeske and
O’Leary, 1985; Guy et al., 1993; Robinson et al., 2003) and
measurement errors mimicking those present in a typical data-
set. Each dataset was regressed using the different linear forms
of the RDE and different methods of combining replicated
experiments. The population of � values generated by each
regression was assessed for precision and accuracy.

2. MATERIAL AND METHODS

2.1. Simulated Datasets

The investigation that instigated this study was the determination of
the kinetic isotope effect for CO2 fixation by the Calvin cycle enzyme
ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO). Depend-
ing on the source of the enzyme, RubisCO has a kinetic isotope effect
(12k/13

k) from 1.018 to 1.030 (Roeske and O’Leary, 1984; Roeske and
O’Leary, 1985; Guy et al., 1993; Robinson et al., 2003). In these
measurements of �, five to seven datapoints are collected over the time
course of the reaction as CO2 is consumed, with values of R (13CO2/
12CO2) rising from �0.0110 to 0.0115 as values of C (the concentration
of dissolved inorganic carbon) fall from �4.4 to 0.87 mM. The C and
R values collected from these experiments are used to calculate �
values using a linearized version of the RDE.

Using the determination of RubisCO � values as a model, an
idealized, error-free set of seven datapoints of reactant concentration
and isotope ratio was generated by using C values typical for the initial
and final reactant concentrations (C1 and C7) and dividing the interval

between them by five evenly spaced C values (C2 to C6). A value of R1

typical for the initial isotope ratio was chosen and, with an � of 1.025,
Eqn. 1 was used to calculate R2 to R7. From this idealized dataset, 1000
simulated datasets were generated by introducing normally distributed
error in R and C to mimic measurement error (Fig. 2). For the “ low”
level of error, which was similar to what is typically observed in
RubisCO kinetic isotope effect experiments (KMS and CMC, pers.
obs.), the standard deviation of the R values was fixed at 0.015% of the
maximum value of R; for C, the standard deviation was 3% of the
maximum value of C. Datasets with “medium” and “high” levels of
error were used to test the robustness of the estimates, and to extend the
results to experiments with larger levels of error (Table 2).

2.2. Estimating � from a Single Dataset

2.2.1. Methods for minimizing least squares

Simulated datasets were fitted with lines using four versions of the
LSCE: 1) 	(xi) � (�) and 	(yi) � 1, in which all error was associated
with the y values, 2) reduced major axis regression, with 	(xi)/	(yi) �

2

y/
2
x, where 
2

y � ¥(yi�ŷ)2 and 
2
x is the corresponding term for

the x values, 3) 	(xi)/	(yi) � 1, and 4) 	(xi)/	(yi) � s2[ln(R)]/
s2[ln(C)]. The � values generated using these regression methods with
the lines described in section 2.2.2 were compared.

2.2.2. Methods for assigning x and y values

The three commonly used forms of the RDE described in Eqn. 2–4
were compared. The regressions based on Eqn. 3 and 4 were run twice:
once forced through the origin, and once with an unconstrained y-
intercept. To compensate for multiple use of each data point in Eqn. 4,
the number of degrees of freedom was calculated by subtracting the
number of experiments conducted from the total number of time points
taken (Weger et al., 1990).

2.2.3. Simulation evaluation

From the slope �̂ of each regression line, we computed � as

� �
1

�̂ � 1
. (7)

The limits of the 95% confidence interval (I1�, I2�) were calculated
from the limits of the 95% confidence interval of the slope of the line
(I1�̂,I2�̂

) according to

I1� �
1

I2�̂ � 1
and I2� �

1

I1�̂ � 1
(8)

The frequency with which this interval covered the true value
among the 1000 simulated datasets was determined. From the
population of 1000 � values, the mean and standard deviation
were calculated. Three criteria were used to evaluate the results
from each method: (a) the width of the 95% confidence inter-
vals for the � values estimated from each dataset, (b) the
frequency with which these confidence intervals covered the
true value of �, and (c) whether the mean value of � was equal
to the true value of 1.025.

2.3. Estimating � from Multiple Datasets

When replicating an experiment, it is necessary to combine datasets
to generate an overall “average” � value. Four different methods for
combining datasets were evaluated to determine which was optimal if
the datasets had similar or widely divergent levels of error. The
methods described in 2.3.1 through 2.3.3 combine the datasets by
averaging the slopes calculated independently from three different
datasets, while 2.3.4 describes the use of dummy variables. In each
case, 1000 sets of three datasets, either with the same level of error or
each with a different level (one low, one medium, and one high) were
generated to test each method, and the values of � were evaluated using
the criteria described in section 2.2.3.
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2.3.1. Averaging the slopes from the three datasets

The simplest averaging method was to generate slopes �̂1,�̂2,�̂3 from
three datasets by regressing them as described in section 2.2, and to
calculate an unweighted average slope (�� ). Values of � were calculated
from �� values (Eqn. 7). This procedure was repeated to generate 1000
� values from 1000 groups of three datasets. The standard deviation of
this population of � values was calculated as for single-run experi-
ments. The variance of �� (�s�

2) was determined from the variance for
�̂1,�̂2,�̂3 as s��

2 � �s�̂1
2 � s�̂2

2 � s�̂
2�/9.

2.3.2. Weighted average of the slopes from the three datasets

The second averaging method was to weight the slope from each
dataset by its variance. In this case, the weighted average slope was
calculated as

�̃ �
�̂1s�̂1

�2 � �̂2s�̂2
�2 � �̂3s�̂3

�2

S�̂1
�2 � S�̂2

�2 � s�̂
�2 (9)

Values of � were calculated from these weighted average slope
values as described in Eqn. 7. The variance of �̃ can be computed as

s�̂
2 �

1

s�̂1
�2 � s�̂2

�2 � s�̂3
�2 (10)

Unfortunately, there is no theoretical basis to determine what the
number of degrees of freedom should be when calculating the standard
deviation of the average and weighted average slopes. For the purposes
of this study, the number of degrees of freedom for the averaging
methods was estimated to be 15 (�21 datapoints –3 slopes –3 inter-
cepts). Using the weighted average method is also problematic when
the number of data points per experiment was small (	10), because it
results in imprecise estimates of the variances, which adds to the
imprecision of the slope estimate (see Eqn. 9).

2.3.3. Using a Pitman estimator

Since the three slope estimates are mutually independent and follow
t-distributions (with possibly different degrees of freedom), all center-
ing at the true slope �, it is most efficient to use the “Pitman estimator”
to combine the three experiments:

�̂ �

��fv1� �̂1 � �

s�̂1
� fv2� �̂2 � �

s�̂2
� fv3� �̂3 � �

s�̂3
�d�

� fv1� �̂1 � �

s�̂1
� fv2� �̂2 � �

s�̂2
� fv3� �̂3 � �

S�̂3
�d�

(11)

(Pitman, 1939; Cox and Hinkley 1974), where fv(●) is the probability
density function of the t-distribution with � degrees of freedom, and the
�i are the degrees of freedom of the �̂i estimated from each line,
respectively. The Pitman estimator is identical in form to a Bayes
estimator with a uniform prior distribution. In Bayesian analyses, prior

Fig. 2. Generation of simulated datasets with different levels of error. Beginning with an idealized Rayleigh distillation
with an � of 1.025, where measurements of the reactant concentration and isotope ratio have zero error, three sets of 1000
simulated datasets were generated with low, medium, and high levels of random error.

Table 2. Levels of Error Incorporated into the Simulated Datasets.

Level of errora

% of the
maximum value

of C

% of the
maximum value

of R

Low 3 0.015
Medium 5 0.1
High 5 1

a “Level of error” refers to the standard deviations for C and R,
which were fixed at the indicated percent of the maximum values of C
and R.
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distributions are based on information available before data collection;
posterior distributions are generated by modifying the prior distribu-
tions based on the data. When a noninformative (uniform) prior distri-
bution of beta is used, the resulting posterior distribution of � is:

P���data� �

fv1� �̂1 � �

s�̂1
� fv2� �̂2 � �

s�̂2
� fv3� �̂3 � �

S�̂3
�

� fv1� �̂1 � �

s�̂1
� fv2� �̂2 � �

S�̂
� fv3� �̂3 � �

s�̂3
�d�

(12)

whose mean value is exactly the same as the Pitman estimator (Eqn.
11).

The 95% confidence interval (I1, I2) of � can be calculated from the
integrals:

�
��

I1

p���data�d� � 0.025 �
��

I2

p���data�d� � 0.975 (13)

Different from a standard Bayesian interval, however, it can be proven
that interval (I1,I2) covers the true � value 95% of the time if there is
no error in x and the same experiments are repeated indefinitely (Cox
and Hinkley 1974). Since these integrals do not have an explicit
solution, it is necessary to use a numerical approximation method to
tackle the problem. These methods approximate the area beneath a
curve by dividing a specified range on the x-axis of the distribution
(which is the range in �̂i values here) into a number of intervals
(discretization steps). The value of the distribution at the beginning of
each discretization step was calculated, and multiplied by the width of
the interval. The area beneath the curve was estimated from the sum of
these approximated areas. For this study, the discretization was cen-
tered at the average of the �̂i, and ranged over ten times the average
standard deviation or 5 times the range of the �̂i (whichever was
greater). Then, 4000 equally spaced grid points were taken within this
region. The Pitman estimate approaches the estimate resulting from a

variance-weighted average of the three slopes when the degrees of the
freedom become large.

2.3.4. Regressing with dummy variables

For this method of combining datasets, a single regression equation
was generated that included the data from all three datasets, with
dummy variables to account for differences in the y-intercept between
datasets (Neter et al., 1990). This approach is particularly attractive if
the error variances are the same and the number of datapoints and the
spread of the x values are not the same between experiments, because
the datasets are weighted by their respective “ informativeness.” The
regression line for this method is:

y � �̂x � �1 � �2D2 � �3D3 (14)

where �1 is the y-intercept term for the first dataset, �2 and �3 are the
difference between �1 and the y-intercept terms for the second and third
datasets, respectively, and D2 and D3 are dummy variables. The
dummy variable D2 is equal to 1 if x and y are from the second dataset,
and is equal to zero if x and y are from the first or third datasets.
Likewise, D3 is equal to 1 if x and y are from the third dataset, and is
equal to zero otherwise. For example, if x and y are from the first
dataset, Eqn. 14 reduces to y � �̂x � �1. If x and y are from the second
dataset, y � �̂x � �1 � �2D2. To calculate � from the slopes of these
lines, Eqn. 7 was used. The 95% confidence interval of � from each
combined regression equation was calculated from the 95% confidence
interval of the slope as described in Eqn. 8. The number of degrees of
freedom used to calculate the standard deviation of the slope was 17
(21 datapoints �3 y-intercepts �1 slope).

3. RESULTS

3.1. Estimating � from a Single Dataset
3.1.1. Methods for minimizing least squares

At a low level of error, all methods for minimizing least
squares resulted in estimates of � that had similar standard

Table 3. Precision and Accuracy of Kinetic Isotope Effects (�) Calculated from Single Simulated Datasets with Regressions Assigning all Error
to the y Valuesa.

Regression method Level of errorb
Mean value

of �c
Std. dev.

of �c
Mean 95% CI 


std. dev.d
Cover

frequencye

In(R) vs. In(C)
low 1.02499 0.0003 0.0013 
 0.0004 94.4%
medium 1.02497 0.0009 0.0043 
 0.0013 95.2%
high 1.02505 0.0075 0.0376 
 0.0122 94.8%

In(R/R1) vs. ln(C/C1)
Unconstrained low 1.02499 0.0003 0.0016 
 0.0006 94.4%

medium 1.02496 0.0010 0.0052 
 0.0019 95.8%
high 1.02526 0.0088 0.0458 
 0.0168 95.2%

Forced through origin low 1.02501 0.0004 0.0012 
 0.0004 85.8%
medium 1.02500 0.0013 0.0032 
 0.0011 76.3%
high 1.02526 0.0110 0.0339 
 0.0121 87.8%

ln(Ri/Rj) vs ln(Ci/Cj)
Unconstrained low 1.02495 0.0003 0.0022 
 0.0007 98.6%

medium 1.02488 0.0010 0.0080 
 0.0025 99.6%
high 1.02505 0.0090 0.0641 
 0.0208 99.4%

Forced through origin low 1.02499 0.0003 0.0012 
 0.0004 92.7%
medium 1.02497 0.0009 0.0043 
 0.0013 95.2%
high 1.02505 0.0075 0.0343 
 0.0112 93.1%

a These values were calculated from 1000 simulated datasets, each with seven timepoints.
b “Level of error” refers to the standard deviations for C and R, as defined in Table 2.
c Calculated from the population of 1000 � values generated by the 1000 simulated datasets.
d Mean and standard deviation of the 95% confidence intervals (CI) for � from the simulated datasets.
e Percent of simulated datasets whose 95% confidence interval covered the true value of 1.025.
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deviations and 95% confidence intervals (Tables 3–6). At
medium and high levels of error, most generated mean �
values of 1.025, the “ true” � value used to generate the
datasets (Tables 3–6). However, using reduced major axis
regression for datasets with higher levels of error in both R
and C resulted in mean values of � substantially greater than
the true value used to generate the simulated datasets (Table
4). Given the sensitivity of the accuracy of the estimates of
� generated from reduced major axis regressions to error in
R and C, this method should not be used to analyze exper-
imental data, when the actual level of error is unknown.
Further, weighting the x and y values as in Tables 5 and 6 did
not result in any improvement in the � value estimates.
Accordingly, all subsequent results presented here use “ typ-
ical” least-squares regression, which assumes all error is in
the y-value.

3.1.2. Methods for assigning x and y values

The precision and accuracy of the � values from regressing
ln(R) on ln(C) were high (Table 3). The 95% confidence
intervals were reasonably narrow, covering the true value ap-
proximately 95% of the time. The mean of the � values was
equal to the true value at all levels of error.

Regressing ln(R/R1) on ln(C/C1) with an unconstrained y-
intercept resulted in unbiased estimates of � values, and 95%
confidence intervals that covered the true value �95% of the
time (Table 3). However, the widths of the confidence intervals
were slightly greater than those from regressing ln(R) on ln(C),
which is primarily due to the fact that the information in the
first data point (R1, C1) is not utilized by the regression.
However, if the regression was forced through the origin,
regressing ln(R/R1) on ln(C/C1) resulted in 95% confidence

Table 4. Precision and Accuracy of Kinetic Isotope Effects (�) Calculated from Single Simulated Datasets with Reduced Major Axis Regres-
siona.

Regression method Level of errorb
Mean value

of �c
Std. dev.

of �c
Mean 95%

CI 
 std. Dev.d
Cover

frequencye

1n(R) vs. 1n(C)
low 1.0250 0.0001 0.0007 
 0.0002 96.1%
medium 1.0251 0.0009 0.0043 
 0.0014 93.5%
high 1.0304 0.0070 0.0404 
 0.0143 95.3%

1n(R/R1) vs. 1n(C/C1)
Unconstrained low 1.0250 0.0002 0.0008 
 0.0003 95.8%

medium 1.0251 0.0010 0.0052 
 0.0019 94.3%
high 1.0308 0.0082 0.0497 
 0.0199 96.2%

1n(Ri/Rj) vs 1n(Ci/Cj)
Unconstrained low 1.0250 0.0002 0.0012 
 0.0004 99.2%

medium 1.0252 0.0010 0.0079 
 0.0026 99.5%
high 1.0405 0.0100 0.0751 
 0.0284 99.3%

a These values were calculated from 1000 simulated datasets, each with seven timepoints.
b “Level of error” refers to the standard deviations for C and R, as defined in Table 2.
c Calculated from the population of 1000 � values generated by the 1000 simulated datasets.
d Mean and standard deviation of the 95% confidence intervals (CI) for � from the simulated datasets.
e Percent of simulated datasets whose 95% confidence interval covered the true value of 1.025.

Table 5. Precision and Accuracy of Kinetic Isotope Effects (�) Calculated from Single Simulated Datasets Regressed Using the Least Squares Cubic
Method, with 	(Xi)/	(Yi) � 1a.

Regression method Level of errorb
Mean value

of �c
Std. dev.

of �c
Mean 95%

CI 
 std. dev.d
Cover

frequencye

1n(R) vs. 1n(C)
low 1.0250 0.0003 0.0013 
 0.0004 95.2%
medium 1.0249 0.0009 0.0042 
 0.0013 94.4%
high 1.0251 0.0077 0.0376 
 0.0122 94.3%

1n(R/R1) vs. 1n(C/C1)
Unconstrained low 1.0250 0.0003 0.0016 
 0.0006 94.8%

medium 1.0250 0.0010 0.0052 
 0.0019 94.3%
high 1.0250 0.0088 0.0459 
 0.0167 95.5%

1n(Ri/Rj) vs 1n(Ci/Cj)
Unconstrained low 1.0250 0.0003 0.0024 
 0.0008 99.5%

medium 1.0249 0.0010 0.0079 
 0.0025 99.6%
high 1.0249 0.0091 0.0701 
 0.0227 99.2%

a These values were calculated from 1000 simulated datasets, each with seven timepoints.
b “Level of error” refers to the standard deviations for C and R, as defined in Table 2.
c Calculated from the population of 1000 � values generated by the 1000 simulated datasets.
d Mean and standard deviation of the 95% confidence intervals (CI) for � from the simulated datasets.
e Percent of simulated datasets whose 95% confidence interval covered the true value of 1.025.
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intervals that covered the true value less than 90% of the time.
This may be due to the susceptibility of the slopes from this
regression to error in R1 and C1.

When regressing ln(Ri/Rj) on ln(Ci/Cj) with an uncon-
strained y-intercept, the 95% confidence intervals were
sometimes twice as broad as those generated using the other
methods, and covered the true value of � �98% of the time
(Table 3), which may indicate that the correction in the
number of degrees of freedom for using each datapoint more
than once (Section 2.2.2) overcompensated somewhat and
inflated the width of the 95% confidence interval. Forcing
this line through the origin narrowed the 95% confidence
intervals to values similar to those obtained when regressing
ln(R) on ln(C), though the frequency with which they cov-
ered the true value was still a bit low (Table 3). The
increased frequency with which the 95% confidence inter-
vals included the true value of �, relative to regressing
ln(R/R1) on ln(C/C1) is likely due to the removal of some of
the added emphasis on R1 and C1, even when forcing the
regression through the origin.

Further analyses were not conducted for regressions forced
through the origin, as the 95% confidence intervals for the �
values from these regressions did not reliably cover the true
value 95% of the time.

3.2. Estimating � from Multiple Datasets

The regression of ln(R) on ln(C) was used to examine the
effects of different methods to combine the results of three
simulated datasets. Two scenarios were explored: (i) the level
of error for the three datasets was the same, and (ii), the level
of error for the three datasets was different: one had a low level,
one had a medium level, and one had a high level of error. In
case (i), averaging the slopes from the three datasets resulted in
average � values with 95% confidence intervals that covered
the true value �95% of the time (Table 7). However, when the
three datasets had different levels of error, this frequency
dropped to �91%. Values of � calculated from a weighted

average of the slopes had 95% confidence intervals that cov-
ered the true value less than 95% of the time, whether the level
of error of the three datasets was the same or not (Table 7). This
is probably due to inaccuracies introduced by variance esti-
mates from small sample sizes (see Eqn. 9).

When a Pitman estimator was used to estimate values of �

from datasets with unequal levels of error, the 95% confidence
intervals covered the true value �95% of the time. Further,
using a Pitman estimator substantially increased the precision
of the estimated � values, with substantially smaller standard
deviations for the population of 1000 � values and narrower
95% confidence intervals (Table 7).

When three datasets with similar levels of error were com-
bined into a single regression with dummy variables to generate
a mean � value, the standard deviations for � were smaller, and
the 95% confidence intervals were narrow (Table 7). However,
when the levels of error for the three datasets were different, the
95% confidence interval was substantially broader than that
from the Pitman procedure.

Regression with dummy variables, determined to be a suit-
able method for combining datasets with similar levels of error
(Table 7), was used to evaluate different forms of the RDE
when generating � values from three datasets. Similar to when
only a single dataset was used, regressing ln(R) on ln(C)
resulted in accurate � values (�1.025) and 95% confidence
intervals that covered the true value �95% of the time (Table
8). When regressing ln(R/R1) on ln(C/C1) with an uncon-
strained y-intercept, the standard deviation of the population of
1000 � values was similar to those generated when regressing
ln(R) on ln(C) (Table 8). However, the 95% confidence inter-
vals for individual � values determined from each set of three
datasets were broader, and they covered the true value �97%
of the time. Regressing ln(Ri/Rj) on ln(Ci/Cj) with an uncon-
strained y-intercept and calculating � values from three lines,
similar to when only one line was used (Table 3), generated
wider 95% confidence intervals which included the true value

Table 6. Precision and Accuracy of Kinetic Isotope Effects (�) Calculated from Single Simulated Datasets Regressed Using the Least Squares Cubic
Method, with 	(Xi)/	(Yi) Estimated by Repeated Measurementsa.

Regression method Level of errorb
Mean value

of �c

Std.
dev. of

�c
Mean 95% CI 


std. dev.d
Cover

frequencye

1n(R) vs. 1n(C)
low 1.0250 0.0003 0.0013 
 0.0004 94.6%
medium 1.0250 0.0009 0.0043 
 0.0014 95.1%
high 1.0253 0.0077 0.0377 
 0.0124 95.2%

1n(R/R1) vs. 1n(C/C1)
Unconstrained low 1.0250 0.0003 0.0016 
 0.0006 96.4%

medium 1.0250 0.0010 0.0052 
 0.0018 95.9%
high 1.0254 0.0088 0.0461 
 0.0169 93.7%

1n(Ri/Rj) vs 1n(Ci/Cj)
Unconstrained low 1.0250 0.0003 0.0025 
 0.0008 99.4%

medium 1.0250 0.0010 0.0080 
 0.0025 99.3%
high 1.0256 0.0088 0.0706 
 0.0234 99.3%

a These values were calculated from 1000 simulated datasets, each with seven timepoints.
b “Level of error” refers to the standard deviations for C and R, as defined in Table 2.
c Calculated from the population of 1000 � values generated by the 1000 simulated datasets.
d Mean and standard deviation of the 95% confidence intervals (CI) for � from the simulated datasets.
e Percent of simulated datasets whose 95% confidence interval covered the true value of 1.025.
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�99% of the time (Table 8), further indicating that the number
of degrees of freedom was inappropriate.

4. DISCUSSION

4.1. Suggested Form of the RDE for Estimating �

Overall, the results of our study show that kinetic isotope
effects are most accurately estimated from the RDE by regress-
ing ln(R) on ln(C) using linear regression with error assigned to
the y values. Each datapoint is used only once, the precision
and accuracy of the � estimates are high at realistic levels of
experimental error, and the 95% confidence intervals for �
cover the true value approximately 95% of the time and are the
narrowest among all methods that result in correct coverage.

In contrast, regressing ln(R/R1) on ln(C/C1) is problematic:
forcing the line through the origin places too much emphasis on

the first data point, and not forcing this line through origin is
equivalent to throwing away an observation, as the degrees of
freedom decrease by 1 by adding an unconstrained y-intercept.
Regressing all ln(Ri/Rj) on all ln(Ci/Cj) makes the determina-
tion of the degrees of freedom unnecessarily complicated and
results in inflated 95% confidence intervals (Tables 3 and 8).
However, when the level of precision of the R values ap-
proaches the level of uncertainty with which the absolute
isotope ratio of the standard is known (e.g., when measuring
permeg rather than permil differences), it is more appropriate to
use the regression described in Eqn. 3 for the following rea-
sons. During the calibration of a mass spectrometer, one uses
the presumed isotope ratio of the standard to calibrate the ratio
of ion currents corresponding to the isotopic forms of the
compound of interest. The isotope ratio of the sample (Ri.samp)
is calculated as Ri.samp�Rc.samp*Ri.std/Rc.std, where Rc.samp and

Table 7. Precision and Accuracy of Kinetic Isotope Effects (�) Calculated from Three Simulated Datasets with Varying Levels of Error Using
Different Methods to Combine the Datasetsa.

Method of combining
the datasets Level of errorb

Mean value
of �c

Std. dev.
of �c

Mean 95% CI 

std. dev.d

Cover
frequencye

Datasets with same level of error
Average medium 1.0250 0.0005 0.0021 
 0.0004 95.7%
Weighted average medium 1.0250 0.0005 0.0019 
 0.0004 92.0%
Dummy variables medium 1.0250 0.0005 0.0021 
 0.0004 95.9%

Datasets with different levels of error
Average low, medium, and high 1.0250 0.0026 0.0106 
 0.0034 90.7%
Weighted average low, medium, and high 1.0250 0.0003 0.0010 
 0.0003 90.5%
Pitman estimator low, medium, and high 1.0250 0.0003 0.0012 
 0.0004 94.4%
Dummy variables low, medium, and high 1.0250 0.0026 0.0106 
 0.0031 95.8%

a These values were calculated from 1000 simulated datasets, each with seven timepoints, with a regression assigning all error to the y values. For
all datasets, 1nR was regressed on 1nC.

b “Level of error” refers to the standard deviations for C and R, as defined in Table 2. “All” indicates that each dataset had a different level of error:
one had a low level, one had a medium level, and one had a high level.

c Calculated from the population of 1000 � values generated by 1000 groups of three simulated datasets. The mean value of � was 1.025 for all
regressions included in this table.

d Mean and standard deviation of the 95% confidence intervals (CI) for � from the simulated datasets.
e Percent of simulated datasets whose 95% confidence interval covered the true value of 1.025.

Table 8. Precision and Accuracy of Kinetic Isotope Effects (�) Calculated from Three Simulated Datasets Using Different Linear Versions of the
RDE.a

Regression method Level of errorb
Mean value

of �c
Std. dev.

of �c
Mean 95% CI 


std. dev.d
Cover

frequencye

1n(R) vs. 1n(C)
low 1.0250 0.0002 0.0006 
 0.0001 94.8%
medium 1.0250 0.0005 0.0019 
 0.0003 95.8%
high 1.0249 0.0044 0.0183 
 0.0033 95.0%

1n(R/R1) vs. 1n(C/C1)
Unconstrained low 1.0250 0.0002 0.0010 
 0.0002 97.4%

medium 1.0249 0.0006 0.0031 
 0.0008 97.5%
high 1.0250 0.0050 0.0278 
 0.0072 98.6%

1n(Ri/Rj) vs 1n(Ci/Cj)
Unconstrained low 1.0250 0.0002 0.0012 
 0.0002 99.8%

medium 1.0249 0.0006 0.0042 
 0.0007 99.8%
high 1.0249 0.0052 0.0339 
 0.0061 99.9%

a These values were calculated from 1000 sets of three simulated datasets of seven timepoints apiece, with a regression assigning all error to the
y values. For all regression methods, the three datasets were combined by regressing them in a single line with dummy variables.

b “Level of error” refers to the standard deviations for C and R, as defined in Table 2.
c Calculated from the population of 1000 � values generated by 1000 sets of three simulated datasets.
d Mean and standard deviation of the 95% confidence intervals (CI) for � from the simulated datasets.
e Percent of simulated datasets whose 95% confidence interval covered the true value of 1.025.
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Rc.std are the ratio of ion currents generated from the sample
and standard, respectively, and Ri.std is the isotope ratio of the
standard (Santrock et al., 1985). Calculating � values using
R/R1 values has the advantage of canceling out Ri.std. In this
case, using the regression described in Eqn. 3 without forcing
it through the origin would be optimal.

Regression methods that incorporate error in x-values did not
give more accurate or precise estimates of �; further, reduced
major axis regression generated mean � values consistently
higher than the true value at higher levels of error (Tables 4–6).
This is due to the sensitivity of reduced major axis regression
slope estimates to the size of the error in y. Since

y � �z � � (15)

where z is the true value of x (x�z��, and � is the error in x),
the slope of the line in reduced major axis regression is

�̂ � ��� yi � y� �2

�� xi � x� �2
� ��2�� zi � z��2 � ���i � �� �2

�� zi � z��2 � ���i � �� �2

(16)

In order for Eqn. 16 to give a consistent estimate of �,

���i � �� �2 � �2���i � �� �2 (17)

implying that the error variance in y needs to be about �2 times
that in x. Datasets with medium and high levels of error in y
thus resulted in an overestimate of �.

Measurement errors in x values induce an inflation of the
sum of squares (denominator in Eqn. 6) approximately equal to
(n�1)s2, where s2 is the variance of the measurement. This
effect can be neglected if s is much smaller than the range of
ln(C) values. On the other hand, if the variance of the mea-
surement errors in ln(C) can be determined, the slope estimates
from Eqn. 6 can be adjusted to

�̂ �
�� yi � y� �� xi � x� �

�� xi � x� �2 � �n � 1�s2
(18)

4.2. Suggested Methods for Combining Datasets

When the results of replicated experiments with similar
levels of error are combined to give a mean �, a single regres-
sion line with dummy variables is a reliable way to obtain
accurate and precise estimates of �. Unweighted averages gave
similar results here only because all three of the datasets
combined had the same number of observations and a similar
spread in x values. Otherwise, taking the unweighted average
has the undesirable consequence of weighting less informative
datasets (fewer datapoints or a smaller spread in x values)
equally to more informative ones. The weighted average
method is not very reliable when small samples sizes are
involved and uncertainties in variance estimates are not negli-
gible. Further, there is no theoretical method to estimate the
appropriate degrees of freedom for these averaging approaches.

If the level of error among the three datasets varies substan-
tially, we recommend using the Pitman estimator under these
circumstances, as it substantially increases the precision of the
� estimates. Given that Pitman estimators are a novelty to
non-statisticians, to facilitate the application of this method by
other researchers, a Matlab program to calculate � values with

Pitman estimators is available as an electronic annex from
http://www.fas.harvard.edu/�junliu/isotope or from the
Elsevier website (http://www.elsevier.com/inca/publications/
store/2/1/2/). When all datasets have a similar level of error,
using a Pitman estimator will yield results similar to those
obtained when taking the average or using the dummy variable
method. In general, the Pitman estimation approach is prefer-
able as a way to combine information from replicated experi-
ments in all situations although it is theoretically more involv-
ing and computationally more challenging.

4.3. Extension of the Results to Other Systems and
Experimental Designs

Although this study was instigated by measurements of
enzymatic kinetic isotope effects, the results are applicable to
any Rayleigh distillation and to measurements of � with any
true value. Measured values of � span a broad range, from �
�1.0007 for the diffusion of 12CO2 and 13CO2 through water
(O’Leary, 1984) to ��1.3 for the hydrogenation of methylated
substrates by methanogens (Whiticar, 1999). Since the standard
deviation of the 1000 � estimates is equal to

ssample � ����i � �� �2)

n � 1
(19)

it will scale with the value of �. Likewise, since the standard
deviation of the slope estimate is

s�̂ � ��� yi � ŷ�2/�n � 2�

�� xi � x� �2
(20)

it will also scale with the value of �. Accordingly, the 95%
confidence intervals will include the true value of � with
frequencies virtually identical to the ones presented here.

The conclusions from this study are also applicable to dif-
ferent experimental designs. For instance, the results would
have been the same if the simulated datasets had a number of
datapoints other than seven. With fewer datapoints, the slope
estimates for the lines (and therefore the � values) will be more
sensitive to error in the individual datapoints, which will in-
crease both the standard deviation for the population of �
values and the standard deviation of the slope estimates. Since
the width of the 95% confidence intervals will therefore also
increase (Eqn. 20), the frequency with which they cover the
true value should be similar to the frequencies reported here,
for seven datapoints. It is perhaps more profitable to use the
Pitman estimator in this situation, as this would narrow the
widths of the 95% confidence intervals. The same discussion,
adjusted accordingly, holds true for datasets larger than seven.
Better estimates of � values will substantially improve the
interpretation of the isotopic compositions of materials of ter-
restrial and extraterrestrial origin, thus enhancing our under-
standing of the biologic, chemical, or physical alterations af-
fecting them.
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