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Abstract—A first order characteristic of the relative abundance of the elements in solar system materials
ranging in size from inclusions in primitive meteorites to planetary sized objects such as the Earth and the
Moon is that they are very much like that of the Sun for the more refractory elements but systematically
depleted to varying degrees in the more volatile elements. This is taken as evidence that evaporation and
and/or condensation were important processes in determining the distinctive chemical properties of solar
system materials. In some instances there is also isotopic evidence suggesting evaporation in that certain
materials are found enriched in the heavy isotopes of their more volatile elements. Here model calculations
are used to explore how the relative rates of various key processes determine the relationship between
elemental and isotopic fractionation during partial evaporation and partial condensation. The natural measure
of time for the systems considered here is the evaporation or condensation timescale defined as the time it
would take under the prevailing conditions for evaporation or condensation to completely transfer the element
of interest between the two phases of the system. The other timescales considered involve the rate of change
of temperature, the rate at which gas is removed from further interaction with the condensed phase, and the
rates of diffusion in the condensed and gas phases. The results show that a key determinant of whether or not
elemental fractionations have associated isotopic effects is the ratio of the partial pressure of a volatile element
(Pi) to its saturation vapor pressure (Pi,sat) over the condensed phase. Systems in which the rate of temperature
change or of gas removal are slow compared to the evaporation or condensation timescale will be in the limit
Pi � Pi,sat and thus will have little or no isotopic fractionation because at the high temperatures considered
here there is negligible equilibrium fractionation of isotopes. If on the other hand the temperature changes are
relatively fast, then Pi � Pi,sat and there will be both elemental and isotopic fractionation during partial
evaporation or partial condensation. Rapid removal of evolved gas results in Pi � Pi,sat which will produce
isotopically heavy evaporation residues. Diffusion-limited regimes, where transports within a phase are not
sufficiently fast to maintain chemical and or isotopic homogeneity, will typically produce less isotopic
fractionation than had the phases remained well mixed. The model results are used to suggest a likely
explanation for the heavy silicon and magnesium isotopic composition of Type B CAIs (as due to rapid partial
melting and subsequent cooling at rates of a few °C per hour), for the uniformity of the potassium isotopic
composition of chondrules despite large differences in potassium depletions (as due to volatilization of
potassium by reheating in regions of large but variable chondrules per unit volume), and that the remarkable
uniformity of the potassium isotopic composition of solar system materials is not a measure of the relative
importance of evaporation and condensation but rather due to the solar nebula having evolved sufficiently
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slowly that materials did not significantly depart from chemical equilibrium. Copyright © 2004 Elsevier Ltd
1. INTRODUCTION

The relative abundances of the elements in many types of
meteorites, as well as the estimated bulk composition of plan-
etary-scale bodies in the inner solar system, are very much like
that of the Sun for the more refractory elements but systemat-
ically depleted to varying degrees in the more volatile elements
(Wänke and Dreibus, 1988; Taylor, 1992; Palme and Boynton,
1993; McDonough and Sun, 1995). These volatility-related
elemental depletions of planetary and meteoritic materials are
evidence that partial condensation and/or evaporation were
important and pervasive processes in establishing the chemical
distinctiveness of solar system materials.

Evidence for evaporation in the early solar system comes

* Author to whom correspondence should be addressed, at University

of Chicago, Department of the Geophysical Sciences, 5734 South Ellis
Avenue, Chicago, IL 60637, USA (richter@geosci.uchicago.edu).

4971
from coarse-grained Type B Ca-Al-rich inclusions (CAIs) in
carbonaceous chondrites that have correlated enrichments in
the heavy isotopes of silicon and magnesium (Clayton et al.,
1988) very similar to what has been measured in laboratory
produced evaporation residues (see fig. 2 in Davis et al., 1990).
The Type B CAIs have igneous textures indicating that they
were once partially molten for at least several hours (Stolper
and Paque, 1986), which when combined with the evaporation
kinetics of silicon and magnesium from Type B CAI-like
liquids in a low pressure hydrogen-dominated gas (Richter et
al., 2002b) leads to the conclusion that they should have suf-
fered significant evaporative loss of these elements while par-
tially molten. The Type B CAIs provide a relatively uncontro-
versial example of how isotopic fractionations of the more
volatile elements are used as a fingerprint of elemental frac-
tionation by evaporation. Chondrules, which are a much more
abundant type of inclusion than the CAIs, also often have

textures suggesting reheating and high degrees of partial melt-
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ing (Lofgren and Lanier, 1990; Radomsky and Hewins, 1990),
however no significant isotopic fractionation of magnesium
(Galy et al., 2000) or of the even more volatile elements
potassium (Alexander et al., 2000) and iron (Alexander and
Wang, 2001) has been found. Galy et al. (2000) attributed the
lack of significant magnesium isotopic fractionation to there
having been a high total gas pressure (presumably hydrogen)
during the reheating of the chondrules. The lack of measurable
isotopic fractionation of potassium isotopes was interpreted by
Alexander et al. (2000) as indicating that the high temperature
event that melted the chondrules evaporated enough potassium
to produce a sufficiently high potassium-vapor pressure for
gas-chondrule isotopic exchange to be complete on the time-
scales of chondrule formation. Alexander and Wang (2001)
argued that the lack of iron isotopic fractionation could have
been due to either very little iron having evaporated because of
low hydrogen pressure or by a process of gas-chondrule isoto-
pic exchange similar to what had been invoked for potassium.
In the following sections, calculations will be used to explore
the role of pressure as it affects isotope fractionation associated
with partial evaporation or partial condensation. The models
will define what, in the present context, represents high vs. low
pressure, and will show how the relative rates of various
important processes determine the pressure. The results will
allow for a more detailed discussion of the conditions that
could have resulted in the Type B CAIs becoming enriched in
the heavy isotopes of silicon and magnesium while chondrules,
which one expects will have lost significant iron and potassium
by evaporation while partially molten, have no significant frac-
tionation of iron and potassium isotopes.

The use of isotopic systematics to constrain the relative
importance of evaporation and condensation in determining the
bulk composition of planetary size objects including the Moon
is becoming quite controversial (see, for example, the recent
exchange between Young, 2000, and Humayun, 2001). When
considering the relative roles of condensation and evaporation,
one should keep in mind that “condensation models” of the sort
pioneered by Larimer and Grossman (e.g., Larimer, 1967;
Grossman, 1972; and for a more recent version see Ebel and
Grossman, 2000) while providing an important framework for
discussing the chemical properties of certain primitive solar
system materials do not imply that partial condensation was the
operative process. These models by assuming that the system
is in thermodynamic equilibrium are independent of the path by
which the system arrived at any particular state, and thus do not
distinguish between partial condensation and partial evapora-
tion. Diagnostic data for making such a distinction will only
arise in systems that evolved significantly out of equilibrium.
Hinton et al. (1987, 1988) and later Humayun and Clayton
(1995) recognized that the isotopic composition of the moder-
ately volatile element potassium might provide diagnostic data
with which to distinguish between partial evaporation and
partial condensation as the primary cause of the variable vol-
atile element depletion of planetary and meteoritic materials.
The structure of the argument as given in Humayun and Clay-
ton (1995) is as follows. The relative depletion of potassium
in a broad range of solar system materials can be determined
from the K/La ratio because both these elements are lithophile
and thus not expected to be significantly fractionated by igne-

ous processes, but because lanthanum is much more refractory
than potassium, it can be reasonably assumed that lanthanum
will be fully condensed (or not significantly evaporated) in
materials containing potassium. Thus, differences in K/La
should reflect volatility related depletions of potassium, and by
this measure, potassium depletions relative to C1 chondrites
span almost two orders of magnitude (e.g., the Earth being
depleted by a factor of �5, the Moon by �50). Humayun and
Clayton (1995) then argued that “the process of partial evapo-
ration can be distinguished from incomplete condensation by
the production in the former of large mass-dependent isotopic
fractionation (Rayleigh distillation) in elements that otherwise
lack isotopic variations in nature” whereas “such effects are not
produced during condensation, as long as the gas is well mixed
(i.e., no diffusive or gravitational separation of isotopes has
taken place), since the rate of uptake of the isotopes at the
surface of a condensed phase is controlled by thermodynamic
factors, and not by the rate at which gas is supplied to the
surface.” With this in mind, they measured the potassium
isotopic composition of a variety of solar system materials with
different K/La and found no significant variation in the 41K/39K
ratio at the level of their typical precision of �1‰. Based on
their claim that partial evaporation always produces isotopic
fractionation they interpreted the lack of measurable isotopic
fractionation of the potassium isotopes as “placing stringent
limits of �2% on the quantity of potassium that could have
been lost by partial volatilization.”

I will use both experimental data and model calculations
based on the generally accepted description of evaporation and
condensation derived from the kinetic theory of gases (see
Hirth and Pound, 1963) to dispute the claim that evaporation
always produces mass-dependent isotope fractionation and that
no isotopic fractionation is produced during condensation from
a well-mixed gas. I will show that there are conditions such that
both partial evaporation and partial condensation can produce
an isotopically fractionated condensed phase, and I will also
show that there are conditions where partial evaporation and
partial condensation can fractionate elements by volatility with-
out measurable isotopic fractionation. A key fact to keep in
mind is that equilibrium processes can fractionate elements
based on their relative volatility whereas equilibrium isotopic
fractionations are negligibly small at the high temperatures
required to significantly volatilize elements such as magne-
sium, iron, and potassium from partially molten silicate sys-
tems. Thus systems evolving close to equilibrium can fraction-
ate elements by volatility without significant isotopic
fractionation. In order for there to be isotopic fractionation
during either evaporation or condensation some aspect of the
kinetics has to be sufficiently fast or slow to keep the system
from maintaining equilibrium. The processes that will be con-
sidered in the following sections involve both mass transports
between phases (i.e., the rates of evaporation and condensation)
and transports within phases (i.e., the rates of advection and
diffusion). Model calculations will be used to illustrate how
departures from thermodynamic equilibrium depend on the
relative rates of these transport processes and also on whether
they are fast or slow compared to the rate of change of key
environmental variables such as temperature. An important
process that will not be included in the present set of models is
exchange between solid and liquid phases (i.e., crystallization

or resorption of minerals) for the reason that it is not directly
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affected by the rates and associated timescales that are the main
focus of this paper. Readers interested in the effect of crystal-
lization during evaporation are referred to the recent model
calculations by Grossman et al. (2002), although it should be
noted that the thermodynamic model used in this effort can
predict crystallization temperatures for major minerals that are
off by as much as 100°C from what is found in experiments
(see Mendybaev et al., 2003).

In the following section the generally accepted theory for
evaporation and condensation is reviewed and then used in later
sections to develop simple model problems that illustrate the
effect of various timescales on the degree of isotopic fraction-
ation associated with elemental fractionation during evapora-
tion and condensation. Much of the modeling and discussion
focuses on the isotopic fractionation of magnesium during
evaporation and condensation of either a Type B CAI-like
composition or forsterite, these being the materials for which
the most detailed experimental data on evaporation kinetics and
isotopic fractionation are available. The focus on CAI-like
compositions and forsterite also derives from their relationship
to the equilibrium condensation behavior of elements from a
cooling gas of solar composition. The Type B CAI-like com-
position used for the model calculations (�15 wt% MgO,
40 wt% SiO2, 20% CaO, 25% Al2O3) is similar to condensate
compositions once �5% of the magnesium has condensed,
while forsterite takes in the next 90% of the condensable
magnesium from the cooling solar composition gas (see
Yoneda and Grossman, 1995). It is also worth noting that the
equilibrium condensates are predicted to be solids for all rea-
sonable total pressures (Ptot � 10�2 atm) of the solar compo-
sition gas (see Yoneda and Grossman, 1995) and that partially
melting Type B CAI-like compositions (Stolper, 1982; Richter
et al., 2002a) requires reheating to several 100 K above their
condensation temperature.

The emphasis on magnesium should not obscure the fact that
the model results are meant to be quite general in that they
depend on nondimensional parameters that in principle could
have been specified for some other element of interest. Indeed,
many of the models discussed here, particularly those focused
on evaporation, can be considered simplified versions of the
much more detailed and exhaustive models already developed
by Ozawa and Nagahara (2001). Model problems that despite
their simplicity still capture the essentials of the system being
studied do have their virtues in that they often render the results
more intuitively understandable. In the present case a key
determinant of the relationship between elemental and isotopic
fractionation during partial evaporation or partial condensation
is the partial pressure of the evaporating species at the surface
relative to the saturation vapor pressure. A distinctive feature of
the approach adopted here is the emphasis on how the various
natural timescales of evaporating and condensing systems de-
termine the relative magnitude of these two pressures.

2. THEORETICAL CONSIDERATIONS

A detailed mathematical formulation of evaporation and
condensation was given by Hirth and Pound (1963). For present
purposes, I will use a somewhat simplified version applicable to
situations such as those considered here where the equilibrium

gas species of a given element of interest are dominantly of a
single type. The net flux Ji of an element i between a condensed
phase and a surrounding gas is given by

Ji �
n�i(Pi,sat � Pi)

�2�miRT
(1)

Ji is the flux of i in moles per unit area per unit time (positive
indicating net evaporation), n is the number of atoms of i in
the dominant gas species molecule containing i, �i is a
sticking coefficient, Pi,sat and Pi are the saturation vapor
pressure and partial pressure of the gas molecule containing
i at the surface of the condensed phase, mi is the molar mass
of the gas species molecule containing i, R is the gas
constant, and T is the absolute temperature. The simplifica-
tion of considering only one gas species per element in Eqn.
1 is appropriate for elements such as magnesium and silicon
in that the gas in equilibrium with the condensed phases
considered here will be dominated by Mg and SiO. The same
will be true for the speciation of iron and potassium (as Fe
and K) in a gas in equilibrium with a chondrule-like com-
position. For all these gas species n � 1, and thus n will not
be explicitly included in any of the equations given below.
Eqn. 1 is closely related to the kinetic theory of gases in that

the quantity Ji � Pi ⁄�2�miRT is the rate at which the gas
species containing i impinge on the surface. In many cases,
only a fraction of the species impinging on the surface
actually condense, which is accounted for by the sticking
coefficient �i (�1). The evaporation flux is assumed propor-
tional to Pi,sat based on the requirement that as the system
approaches equilibrium, Pi 3 Pi,sat and the net flux must
tend to zero. The opposite limit, Pi /Pi,sat 3 0 will be
referred to as the free evaporation or vacuum limit. Labora-
tory experiments are required in connection with Eqn. 1
because there is no general theory for calculating �i. In
practice �i is determined by requiring that the evaporation
flux calculated using Eqn. 1 in the limit Pi /Pi,sat 3 0
reproduce the flux measured in vacuum experiments. Eqn. 1
implicitly assumes that the condensation flux and the evap-
oration flux are limited by the same sticking coefficient
regardless of the actual value of Pi /Pi,sat. Sticking coeffi-
cients are sometimes very close to one (for example, Wang
et al., 1994 reported �Fe � 1 for iron evaporating from liquid
FeO; Tsuchiyama et al., 1995 and Tachibana et al., 2001
found a similar result for the evaporation of Fe metal),
however for silicon and magnesium evaporating from sili-
cate liquids � is in the range 0.1– 0.01 depending on the
temperature at which the evaporation takes place (see fig. 10
in Richter et al., 2002b).

Eqn. 1 can be used to contrast kinetic and equilibrium
mechanisms of elemental fractionations by volatility. The ratio
of the evaporation flux of two elements indicated by the sub-
scripts 1 and 2 is of the form

J1

J2

� ��1(P1,sat � P1)

�2(P2,sat � P2)
��m2

m1

(2)

The role of volatility enters via the saturation vapor pressures,
however one should note that the ratio of sticking coefficients,
which could be as large (or small) as a factor of 100 (or 0.01),

could also have a significant effect on elemental fractionations
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by kinetic processes. The inverse square root of the atomic
mass term is generally much less important in terms of frac-
tionating major rock forming elements. If the system is allowed
to reach equilibrium, elements can still be fractionated by
volatility in that once an element begins to condense the
amount of that element in the condensed phase must be such
that the partial pressure in the gas equals the saturation vapor
pressure. Thus

�N1

N2
�

cond

�

N1,tot�1 �
P1,sat

P1,max
�

N2,tot�1 �
P2,sat

P2,max
� (3)

where (N1/N2)cond is the element ratio in the condensed phase,
N1,tot /N2,tot is the ratio of all of element 1 and 2 in the system,
and P1,max and P2,max are the pressures corresponding to all of
element 1 and 2 being in the gas at the temperature being
considered. An important potential difference between elemen-
tal fractionation by kinetic (Eqn. 2) and equilibrium processes
(Eqn. 3) comes from the possibility that the ratio of the sticking
coefficients is significantly different from one. For example, if
iron evaporating from a silicate liquid has �Fe � 1, as it has for
iron evaporating from FeO, while for magnesium �Mg � 0.03,
then iron will in effect be �30 times more volatile relative to
magnesium during kinetic evaporation than the more usual
measure of their relative volatility based on saturation vapor
pressures alone.

The applicability of Eqn. 1 for describing the elemental
fractionation by evaporation from a silicate liquid can be tested
by comparing the chemical evolution of laboratory-produced
residues to that calculated using Eqn. 2. Figure 1 shows the

Fig. 1. The Si/Mg ratio as a function of the wt% MgO remaining in
vacuum evaporation residues is shown as open circles. These data are from
a new set of evaporation residues produced in the University of Chicago
vacuum furnace and analyzed for major element composition in the
manner described in Richter (2002b). The starting composition was 22.5
wt% CaO, 12.0 wt% MgO, 19.5 wt% Al2O3, and 46.0 wt% SiO2. The
continuous curve is Si/Mg ratio as a function of wt% MgO in evaporation
residues calculated using Eqn. 2 with PMg � 0, PSi0 � 0, �Mg � �Si, and
the saturation vapor pressures of Mg and SiO calculated using the ther-
modynamic model described in Grossman et al. (2000).
fractionation of the SiO2 and MgO components of CMAS
liquids (molten CaO-MgO-Al2O3-SiO2) that were evaporated
to varying degrees in a vacuum furnace (P � 10�6 Torr) at T
� 1800°C. Also shown is a calculated evolution curve based on
Eqn. 2 in the limit Pi,sat � Pi appropriate to the very low
pressure conditions of the experiments. The agreement between
the experimental data and the calculated evolution shown in
Figure 1, and similarly good results given in Richter et al.
(2002b), is evidence that Eqn. 1 when used together with
Berman’s (1983) thermodynamic model for the solution prop-
erties of the silicate liquids provides an accurate representation
of the free evaporation of volatile components from molten
CAI-like compositions.

Eqn. 2 can also be used to calculate the kinetic fractionation
of isotopes by partial evaporation. In the case of evaporation of
isotopically distinct gas species of mass m1 and m2.

J1

J2

�
�1

�2
�P1,sat � P1

P2,sat � P2
��m2

m1

(4)

In the vacuum limit Pi /Pi,sat � 1, this equation becomes

J1

J2

�
�1P1,sat

�2P2,sat
�m2

m1

�
N1

N2

�1

�2
�m2

m1

� R12

�1

�2
�m2

m1

(5)

where R12 is the atom ratio, N1/N2,in the condensed phase. In
writing Eqn. 5 it is assumed that P1,sat /P2,sat � N1/N2, which
follows from the ideal mixing properties of isotopes and that all
the application considered in this paper involve sufficiently
high temperatures (T � 1000 K) that equilibrium fractionations
can be neglected. The kinetic isotope fractionation factor �,
defined in terms of the isotopic composition of flux relative to

the source is then � � (�1/�2)�m2 ⁄m1. It is usually assumed
that the sticking coefficient for isotopes of the same element are

the same, in which case � is simply � � �m2 ⁄m1.
The cumulative effect of the fractionation given by Eqn. 5 is

easily calculated if it is further assumed that mass transport
processes (e.g., chemical diffusion) are sufficiently fast to
maintain the chemical and isotopic homogeneity of the con-
densed phase. In this case the conservation equation for the
isotope i in a volume V with surface area A becomes

dNi � �JiA (6)

where Ni is the atoms of i in V and the flux is now in units of
atoms of i per unit area per unit time. With the assumption that
�1 � �2, combining Eqns. 5 and 6 gives

dN1

dN2

� �N1

N2
��m2

m1

(7)

or equivalently

dN1

N1

� �
dN2

N2

(8)

with � � �m2 ⁄m1. Eqn. 8 can be integrated from the starting
isotopic abundances N1,0, N2,0 to that at any later time (when
the abundances are N1 and N2), yielding

N1 N2

ln �N1,0

�� � ln �N2,0
� (9)
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or equivalently

N1

N1,0

� � N2

N2,0
��

(10)

Dividing Eqn. 10 by N2/N0,2 and writing the isotope ratios as
R12 � N1/N2 and R0 � N1,0 /N2,0 results in the familiar Ray-
leigh fractionation relationship (Rayleigh, 1896)

R12

R0

� � N2

N2,0
���1

� f ��1 (11)

(N2/N2,0) is the fraction of isotope 2 remaining in the condensed
phase. A common practice is to use the approximate version of
Eqn. 11 written in terms of the fraction f of total element
remaining in the residue, which is reasonable for sufficiently
small changes in the isotope ratio.

There are a number of laboratory vacuum evaporation ex-
periments (e.g., Davis et al., 1990; Wang et al., 2001; Richter
et al., 2002b) that provide data with which to assess the validity
of Eqn. 11 for calculating kinetic isotope fractionations during
the partial evaporation of silicate liquids. Figure 2 shows some
recently obtained high-precision magnesium isotopic data (see
Janney et al., 2003 for details) measured on a subset of the
evaporation residues that were used to construct Figure 1. The
data are plotted as ln (R12/R0) vs. –ln f 24Mg ( f 24Mg is the fraction
of 24Mg remaining in the residue), which according to Eqn. 11,
should be a straight line with slope 1 � � � 0.0202 for the

isotope ratio 25Mg/24Mg (i.e., 1 – �24 ⁄ 25 � 0.0202). The data
in Figure 2 deviate very little from a straight line implying
Rayleigh fractionation with a constant �Mg, however, the value
of �Mg derived from the slope of the line (1 � �Mg � 0.0130;

�Mg � 0.9870) is not equal to �24 ⁄ 25 (� 0.9798). Similar

departures from �Mg � �24 ⁄ 25 were found in many earlier

Fig. 2. Open circles show the 1000 	 ln (R/R0) of evaporation
residues (where R is the 25Mg/24Mg ratio and R0 is the ratio of the
stating material) plotted against �ln f 24Mg where f 24Mg is the fraction of
24Mg remaining in the residue. Rayleigh fractionation (Eqn. 11) pro-
duces a straight line in this type of a plot with intercept (0,0) and slope
1000 	 (1 � �). The data are best fit with a value of � � 0.987 rather
than the expected � � (24/25)1/2 � 0.9798 (see text). Lines corre-
sponding to these two values for � are shown.
experiments (e.g., Richter et al., 2002b: �Mg � 0.9892 for a
different set of CMAS evaporations in vacuum, and �Mg

� 0.9869 for CMAS evaporations in 1.87 	 10�4 bars hydro-
gen; Wang et al., 2001: �Mg � 0.9843 for vacuum evaporation
of a liquid with solar proportions of the major oxides; Davis et
al., 1990: �Mg � 0.9850 for vacuum evaporations of liquid
forsterite). The issue of whether these differences between the
experimentally determined and the theoretically expected value
of �Mg are more likely due to imperfections of the experiments
or false expectations (i.e., that isotopes of a given element have
the same sticking coefficient) will be the subject of a future
paper. For present purposes, the important point is that the
magnesium isotopic fractionations of CMAS evaporation resi-
dues run in the limit Pi /Pi,sat � 1 are consistent with Rayleigh
fractionation with constant �. Vacuum evaporations of iron
from molten FeO (Wang et al., 1994) and potassium evaporat-
ing from a chondrule-like composition in 10�5 atm of air (Yu
et al., 2003) resulted in kinetic isotope fractionations that
follow a Rayleigh law with a value of � corresponding to the
inverse square root of the mass of the evaporating isotopes. The
calculations discussed in the following sections use values of �

corresponding to � � �m2 ⁄m1 even for Mg, where I’m more
inclined to believe the experimentally determined value. Given
that the purpose of the model calculations is to demonstrate the
effect of various timescales on kinetic isotope fractionations
rather than pretend to quantitative rigor, the exact choice of �
is not important so long as it differs from one.

Another simple but useful limiting case arises when the gas
pressure is significantly greater than the saturation vapor pres-
sure (i.e., Pi � Pi,sat). This represents the case of condensation
from a highly supersaturated state and the isotopic composition
of the uncondensed gas will become increasingly heavy by
Rayleigh fractionation as given by an equation analogous to
Eqn. 11 with the variables now referring to properties of the
gas. The condensate will have a bulk isotopic composition
given by

R12

R0

�
(1 � f2

�)

(1 � f2)
(12)

where R12 the isotopic ratio in the condensate, R0 is the initial
ratio in the gas, and f2 is the fractional amount of isotope 2
remaining in the gas.

Isotopic fractionations in particular limiting cases of evapo-
ration (Pi,sat � Pi) and condensation (Pi � Pi,sat) are illustrated
in Figure 3 for the 25Mg/24Mg ratio. In the case of free
evaporation, the condensed phase is the source reservoir and
the gas, the sink, while for condensation, the gas is the source
and the condensed phase the sink. The isotopic composition of
each increment added to the sink is (�-1) 	 1000‰ lighter than
the source, and is also shown. In the following sections a
variety of model problems are used to illustrate how various
key time scales related to evaporation or condensation deter-
mine when evaporating or condensing systems approach the
limiting behaviors shown in Figure 3 or how they depart in
predictable ways by reducing the isotopic fractionation associ-
ate with a given amount of elemental fractionation.

3. EVAPORATION AND CONDENSATION TIMESCALES

The rates of evaporation and condensation define timescales

against which all other rates will be measured. Situations in-
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volving evaporation are typically much easier to specify in
terms of initial conditions (e.g., evaporation of a molten CAI-
like droplet of specified size and composition by a specified
thermal history). A natural measure of the evaporation time-
scale, 	evap, is the time it would take for the evaporation flux
corresponding to the initial state to exhaust a component of
interest in the condensed phase. This timescale is given by

	evap �
Vc
i

AJi

(13)

where Vc is the volume of the condensed phase (e.g., cm3), 
i

is the molar density of i in the condensed phase (e.g., moles
cm�3), A is surface area (e.g., cm2) and Ji is the flux of i in
moles cm�2. V/A � r/3 for a sphere of radius r, and V/A
� L for a slab of half thickness L evaporating from both
surfaces.

A useful limiting estimate of the evaporation timescale is
obtained by assuming free evaporation (i.e., Pi � Pi,sat), which
by ignoring recondensation will give the shortest possible time-
scale. The two condensed systems for which there is sufficient
kinetic data on evaporation involve forsterite and CMAS liq-
uids. Figure 4 shows how the evaporation rate of magnesium
from a Type B CAI-like liquid depends on temperature and
hydrogen pressure based on experimental data and parameter-
izations given in Richter et al. (2002b). Figure 5 shows corre-
sponding estimates for the evaporation timescale for magne-
sium as a function of temperature and pressure for r � 0.25 cm,
which is typical for a Type B CAI. Figure 6 gives some

Fig. 3. The three curves plotted in this figure are respectively the
magnesium isotopic composition of a Rayleigh fractionating source
(condensed phase in the case of evaporation, gas in the case of con-
densation), the bulk sink (condensed phase in the case of condensation,
gas in the case of evaporation), and the instantaneous flux from source
to sink plotted as a function of the fraction f 24Mg of the original 24Mg
remaining in the sink. The isotopic composition of the source was
calculated using Eqn. 11, that of the bulk sink using Eqn. 12, and the
instantaneous flux is always 1000 	 (1 � �) ‰ lighter than the source.
A value of � � �24⁄25 � 0.9798 was used to calculate the various
isotopic compositions. Here and throughout this paper isotopic frac-
tionations relative to the unfractionated magnesium isotopic ratio
(25Mg/24Mg)0 are given in ‰ as 25Mg � [(25Mg/24Mg)/(25Mg/24Mg)0

� 1] 	 1000.
examples of the evaporation timescales for solid forsterite as a
function of temperature, pressure, and size based on the fol-
lowing representation of the evaporation rate of forsterite in
vacuum

JFo � 6.0 � 10�6e
�E
R � 1

T
�

1
T0

� (14)

where R is the gas constant and with an activation energy
E � 630 kJ mol�1 and T0 � 2073.15 K chosen to fit the
evaporation kinetic data of Wang et al. (1999). For forsterite
evaporating in the hydrogen-dominated regime (PH2

� 10�6

bars) the flux is calculated from

JFo � 2.3 � 10�8�PH2

P0

e
�E
R � 1

T
�

1
T0

� (15)

where PH2
is the hydrogen pressure in bars. The reference pressure

P0 � 1.8 	 10�4 bars, activation energy E � 350 kJ mol�1, and

Fig. 4. Free evaporation rate of magnesium as a function of hydrogen
pressure for three temperatures. The open circles are based on exper-
imental evaporation rates and the continuous curves are based on
parameterizations by Richter et al. (2002b).

Fig. 5. Evaporation timescales for magnesium from a molten CMAS
sphere of radius 0.25 cm as a function of temperature and hydrogen

pressure. The shaded area indicates the range of temperatures over
which a Type B CAI-like liquid will be partially molten.
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reference temperature T0 � 1773.15 K were chosen to fit the
kinetic data for forsterite evaporating into hydrogen reported by
Kuroda and Hashimoto (2002).

Estimating realistic timescales for condensation is often
much less straightforward than for evaporation because of the
difficulty in specifying the surface area on which condensation
takes place and reasonable degrees of supersaturation. One way
to proceed is to introduce a new parameter � such that the
degree of supersaturation is given by Pi � (1 � �)Pi,sat, and
assume that the system contains Mi moles of the component of
interest that will condense into � equal spheres or slabs. In the
special case where the species i condenses as part of a one-
component condensed phase (e.g., magnesium condensing as
forsterite), the radius once all of i has condensed will be

r � � viMi

4 ⁄ 3��
� 1

3

� ��
1
3rmax (16)

where �i is the molar volume of component i and rmax is the
final radius if all of the Mi moles had condensed into a single
sphere. If we consider systems containing the same number of
moles of i, the condensation timescale can be defined in relation
to the evaporation timescale for a sphere of radius rmax by

	cond �
��

1
3	evap

�
(17)

In the case of condensation onto slabs, � has no affect on the
condensation timescale because the total surface to total vol-
ume ratio is independent of the number of slabs, and thus �
should be set equal to one in Eqn. 17 regardless of the actual
number of slabs. Model calculations discussed below will show
that the supersaturation parameter � can vary by a large amount
depending on whether the rate of condensation is fast or slow
compared to the rate of change of environmental parameters
such as temperature. Thus, there is no generally appropriate a

Fig. 6. Evaporation timescales for magnesium from a forsterite
sphere of radius 1 mm and 1 �m as a function of temperature and
hydrogen pressure. The shaded area indicates range of temperatures
over which forsterite condenses from a solar composition gas of total
pressure 10�3 atm.
priori choice for �. This is not a serious limitation, however,
because the degree of supersaturation as a function of time will
be part of what is solved for in the condensation problems
considered below. The experimental data on nucleation of
silicate phases from a vapor are still too limited to allow for any
a priori estimates of the nucleation density, thus the factor �
will be treated as a free parameter. The condensation nuclei
density parameter � will not appear explicitly in the model
problems when one measures time in units of 	cond, however,
the uncertainty in � will of course compromise converting
nondimensional time back into dimensional units.

The timescales given by Eqns. 13 and 17 are for various
reasons lower bounds on the actual time scales that might be
realized in a natural system. The evaporation time scale given
by Eqn. 13 is based on the initial surface area, which for a finite
body such as a sphere, will decrease to some degree as evap-
oration proceeds with the effect of increasing the timescale for
further evaporation. In situations where the evaporation is not
congruent (e.g., evaporation of magnesium from a CMAS
liquid), the evaporation time will also tend to be longer than
that given by Eqn. 13 because the chemical activity and thus the
saturation vapor pressure of the more rapidly evaporating com-
ponents will typically decrease as evaporation proceeds with
the effect of reducing the evaporation rate. The timescale given
by Eqn. 13 is also a lower bound because it ignores reconden-
sation. In the case of the condensation, the timescale given by
Eqn. 17, being based on the final surface area, could result in a
significant underestimate of the condensation time. One should
keep in mind that as long as one does not neglect terms in the
governing equations on the basis of these estimated timescales,
the solutions will be valid regardless of whether or not one has
made a reasonable a priori estimate of the timescales. The
mismeasure of the timescales will show up by the system
evolving very rapidly or very slowly when time is measured in
units of the misestimated timescales.

4. ENVIRONMENTAL CHANGE TIMESCALE

In this section model problems will be used to illustrate the
consequences of the environmental conditions in a closed sys-
tem changing rapidly or slowly compared to the characteristic
timescales of evaporation and condensation. The measure of
whether the environment, specified here in terms of tempera-
ture, changes rapidly or slowly is given by the ratio

� �
	evap

	T

�
�TVc
i

AJi,0

(18)

or in the case of condensation by

� �
	cond

	T

�
�TVc
i�

�
1
3

AJi,0

(19)

where 	T is a timescale for temperature change based on the
cooling rate �T � �(1/T)dT/dt (	T � �T

�1) and Ji,0 is the free
evaporation rate at some specified T and P (e.g., from Fig. 4 or
equations such as Eqns. 14 and 15). The nucleation density
parameter � is set equal to one if Eqn. 19 is used for a slablike
geometry.

The model problems considered in this section involve the
conservation equations for a closed system (except for heat)

along with statements specifying thermodynamic properties.
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Assuming a spherical condensate of uniform composition, the
governing equations can be written as

dMi

dt
� �4�r2�Ji (20)

Ji �
�i(Pi,sat � Pi)

�2�miRT
(21)

Pi,sat � fn(T, PH2
, Cj) (22)

Pi � (Mi,tot � Mi)
RT

V
(23)

T � T0e
��Tt (24)

dr3

dt
� � j � 3vj

4��
�dMj

dt
(25)

with initial conditions r � r0 and Mi � Mi,0. Mi,tot is the total
moles of i in the system, Mi is the moles of i in the condensed
phase, and V refers to the volume of the entire closed system.
V can be chosen such that when Mi,tot is entirely in the gas
phase the partial pressure of i is some desired quantity, for
example, the partial pressure of i in a solar composition gas of
specified total pressure. As before, � is the number of conden-
sate spheres in the volume V. Cj represents a composition
vector of the condensed phase required for calculating the
saturation vapor pressure of i, and �j is the molar volume of
each of the j evaporating components that are summed to
calculate the changing radius.

The role of the nondimensional parameter �, which is a measure
of whether temperature is changing rapidly or slowly, becomes
explicit when the above equations are made nondimensional by
measuring time in units of 	evap and the other variables relative to
their initial values or the bulk properties of the system (i.e., t=
� t/	evap, r= � r/r0 , Mi= � Mi/Mi,tot, Pi= � PiV/Mi,totRT0, T= �

T/T0, Ji= � Ji /Ji0 where Ji0 � �iPi,sat0 ⁄ �2�miRT0 is also the
reference flux used to specify �. Pi,sat0 is the saturation vapor
pressure of i over the starting composition of the condensed phase
for T � T0 and specified PH2

. The nondimensional equations (after
the usual practice of dropping primes with the understanding that
hereafter all variables are nondimensional unless otherwise indi-
cated) become

dMi

dt
� �r2Ji (26)

Ji � �Pie
�

E
RT0

� 1
T

�1� (27)

Pi � (1 � Mi)T (28)

T � e��t (29)

dr3

dt
� � j Xj0

dMj

dt
(30)

In Eqn. 27 
Pi � (1 � Pi /Pi,sat) where for the purposes of this
definition both Pi and Pi,sat are dimensional (Pi,sat calculated
using Eqn. 22). E in Eqn. 27 is an effective activation energy

specified such that it takes into account the effect of tempera-
ture on both Pi,sat and �i, and the dependence of Ji on T�1/2

from Eqn. 21. Xj0 is the volume fraction of the jth component in
the condensed phase at t � 0. Eqns. 26–30 along with Eqn. 22
are the requisite six equations for the six unknowns (Mi, r,
Ji,
Pi, Pi, and T). The problem becomes fully specified given
initial conditions for Mi, Mi,tot, Xi0, r, Pi, and T, two material
properties (E and Xi0), a thermodynamic model for calculating
the saturation vapor pressures (represented here by Eqn. 22),
and the dimensionless parameter � that provides the measure of
how fast temperature changes relative to the evaporation or
condensation timescales. The main difference in terms of initial
conditions between an evaporation calculation and a conden-
sation calculation is that in the former Mi � 1 and r � 1 while
in the latter Mi � 0 and r � 1 (r � 1 for Xj0 � 1).

4.1. Condensation of Homogeneous Forsterite

In this section the equations derived above are used to model
the isotopic fractionation of condensing forsterite as a function
of the timescale parameter � � 	cond /	T. Forsterite evaporates
congruently (see Wang et al., 1999 and references therein), and
for present purposes it is assumed that the initial composition of
the gas phase is such that only forsterite condenses. Further
simplifying assumptions, that will be relaxed in later sections,
are that the isotopic composition of the condensed fosterite
remains spatially uniform due to rapid transport processes
within the condensed phase and that the system composed of
the gas plus the condensed phase is closed. It is useful to begin
by considering the equilibrium condensation of forsterite in a
closed system as this will represent the limiting behavior for
sufficiently small �. The curves without symbols in Figure 7a
compare the temperature dependence of the partial pressure of
Mg in a solar composition gas (P � 10�3 bars at T � 1773 K)
in the absence of condensation with the saturation pressure of
magnesium in equilibrium with forsterite. The continuous
curve in Figure 7b is a plot of the fraction of forsterite con-
densed as a function of the temperature assuming equilibrium.
Also shown in these figures are calculated values of PMg vs. T
and the fraction of magnesium condensed (MMg) vs. T for
various choices of �. As expected, when � is sufficiently small
(e.g., the timescale on which temperature changes is much
longer than the condensation timescale) PMg 3 PMg,sat and
MMg as a function of temperature approaches that calculated for
equilibrium condensation. Figure 7c shows the bulk magne-
sium isotopic composition of the condensed material for the
same choices of �. When the cooling rate is sufficiently fast
compared to the rate of condensation (� � 0.01) very substan-
tial isotopic fractionation can be produced by partial conden-
sation.

The effect of � on the isotopic composition of the condensed
magnesium is most easily understood in terms of how closely
PMg tracks PMg,sat for different choices of �. The effect of
PMg,sat /PMg on the isotopic fractionation associated with con-
densation is most easily calculated starting from Eqn. 1 if one
assumes that the isotopic composition at the surface is that of
the most recently condensed material. The derivation is similar
to that for Eqn. 22 in Richter at al. (2002b) with PMg,sat /PMg in
place of P /P and neglecting any fractionation arising from
1 1,sat

differences in the diffusivity Mg isotopes in the gas. The result
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phrased in terms of an effective fractionation factor �= for the
25Mg/24Mg of the net condensing magnesium is then

�′ � 1 � (� � 1)�1 �
PMg, sat24

PMg24
� � 1 � (� � 1)�1 �

PMg,sat

PMg
�

(31)

where � � �24 ⁄25, P24Mg,sat is the saturation pressure of 24Mg
over the condensate, and P24Mg is the partial pressure of 24Mg
in the gas. Eqn. 31 shows that the isotopic fractionation of the
earliest condensing magnesium will always be small when
condensation begins with PMg � PMg,sat. This explains why the
highest temperature condensates in Figure 7c are unfraction-
ated regardless of �. If however the temperature falls suffi-

Fig. 7. (a) The thinner continuous curve shows the part
composition gas of total pressure of 10�3 bars if no conde
curve is the saturation pressure of magnesium over forste
curves with symbols show the calculated partial pressure o
of temperature change is slow (� � 1) or fast (� � 0.1) c
	T is the timescale for temperature change defined as the
magnesium condensed as forsterite as a function of tempe
temperature (� � 0.001) the fraction of magnesium conde
condensation shown by the continuous curve. (c) Magn
relative to the initial 25Mg/24Mg in the gas.
ciently quickly (� 3 1) the ratio PMg,sat /PMg soon becomes
negligible compared to 1 (see Fig. 7a) and the condensate can
become isotopically fractionated to the fullest extent possible
(i.e., �= � �). The isotopic fractionation must vanish once all
the magnesium has condensed, which explains why the frac-
tionations shown in Figure 7c evolve back towards zero as the
percent of magnesium condensed (shown in Fig. 7b) tends to
100%.

4.2. Evaporation of a Homogeneous CAI-like Liquid

This section describes model problems motivated by the
Type B CAIs. The results illustrate the effect of the rate of
change of the temperature on the elemental and isotopic frac-
tionation of magnesium evaporating from a Type B CAI-like

ure of magnesium as a function of temperature in a solar
of magnesium were to take place. The heavier continuous
a function of temperature in 10�3 bars of hydrogen. The
sium as a function of declining temperature when the rate

d to the condensation timescale 	cond. � � 	cond/	T where
of the e-folding time of the temperature. (b) Fraction of

nd the timescale ratio �. For sufficiently slowly changing
a function of temperature approaches that for equilibrium
sotopic composition of the condensed phase in per mil
ial press
nsation
rite as
f magne
ompare
inverse
rature a
nsed as
liquid when diffusion in the liquid and surrounding gas is
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sufficiently fast that both can be considered to be homogeneous
at all times. The gas plus condensed phase are assumed to be a
closed system. The initial composition considered in this sec-
tion is that of the partial condensate of a solar composition gas
to the point (T � 1300 K and P � 10�3 atm) where �5% of
the total magnesium has condensed. The condensate will have
�15% wt % MgO. This partial condensate is then rapidly
reheated by some unspecified process (perhaps a shock wave as
discussed by Desch and Connolly, 2002) to a temperature of
�1700 K sufficient to produce 95% partial melting with only a
few spinel crystals remaining. As mentioned earlier, such a
large degree of partial melting is indicated by the coarse-
grained texture of the Type B CAIs. Figure 8 illustrates the
effect of rapid reheating in terms of producing significant
undersaturation of the magnesium component in the gas at
1700 K. Unless the subsequent cooling is extremely fast com-
pared to the timescale for evaporation, this undersaturation will
result in the preferential evaporation of some of the magnesium
relative to the much more refractory calcium and aluminum.
The model calculations for the evaporation of magnesium from
a reheated Type B CAI-like composition involve numerical
integration of Eqns. 26–30 along with a thermodynamic model
for the solution properties of the melt. The thermodynamic
model used here to calculate the saturation vapor pressures was
developed by Denton Ebel for the evaporation calculations
discussed in Grossman et al. (2000) and in Richter et al.
(2002b).

Figure 9 shows model results for the effect of the cooling
rate, specified in terms of the temperature change parameter �
� 	evap/	T on the elemental and isotopic fractionation of mag-
nesium from a model Type B CAI. When the cooling rate is
sufficiently slow (i.e., � � 0.03) all the magnesium not in

Fig. 8. The two curves plotted as unbroken lines show the partial
pressure of magnesium in a solar composition gas of total pressure
10�3 bars (assuming no condensation) and the saturation vapor pres-
sure of magnesium over a Type B CAI-like liquid in 10�3 bars of
hydrogen as a function of temperature. The dashed curve shows a
trajectory for rapid reheating of an initially solid Type B CAI-like
composition (black circle) to a temperature where it becomes �95%
partially molten (open circle). The open circle is the initial conditions
for T and PMg used in the evaporation calculations of a Type B
CAI-like liquid discussed in the text.
crystallized phases (mostly spinel) will have evaporated by the
time the temperature has dropped by a few tens of degrees. The
isotopic fractionation during evaporation in this limit follows a
Rayleigh curve as given by Eqn. 11. In the opposite limit (�
� 1), the cooling rate is so fast that both elemental and isotopic
fractionations are negligible for lack of time.

The model calculations discussed in sections 4.1 and 4.2
show that isotopic fractionation can take place during either
partial evaporation or during partial condensation depending on
the value of �, which measures how much temperature changes
on the timescale over which significant evaporation or conden-
sation can take place. In the case of condensation during
cooling, when � � 1 (i.e., temperature changing slowly com-
pared to the time it takes to condense the species of interest)
systems will remain close to equilibrium and there will be very
little isotopic fractionation. As � 3 1, systems increasingly
depart from equilibrium by becoming supersaturated and pro-
ducing condensates enriched in the lighter isotopes of the
evaporating species. In the case of evaporation of a molten
condensate following rapid reheating, the system starts out

Fig. 9. (a) MgO content of evaporation residues plotted as a function
of temperature for calculations starting with 15 wt% MgO and cooling
from 1673 K at different rates specified by � � 	cond/	T, where 	cond is
the condensation timescale and 	T is the timescale for temperature
change as defined in the text. (b) Magnesium isotope fractionation in
per mil corresponding to the five cases shown in (a).
undersaturated and for � � 1 the residue becomes enriched in
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the heavy isotopes of the evaporating species. When the cool-
ing rate is sufficiently fast compared to evaporation (i.e., � � 1)
both the elemental and the isotopic fractionations are negligi-
ble.

5. DIFFUSION-LIMITED EVAPORATION
AND CONDENSATION

In the preceding section it was assumed that the condensed
phase remained homogeneous despite elemental and isotopic
fractionation at the surface, implying that chemical transport
processes were fast compared to the evaporation or condensa-
tion timescale. Here we will relax the requirement that the
phases remain homogeneous at all times. The timescale for
chemical homogenization of the condensed phase by diffusion,
	D, will be of the order of 	D � L2/D, where L is a typical
length scale (e.g., radius for a sphere or half thickness for a
slab) and D is the chemical diffusion coefficient. The con-
densed phase will be effectively homogenized if this timescale
is short compared to the evaporation or condensation timescale.
The nondimensional parameter that will determine the degree
of homogeneity of component i in the condensed phase will be
of the form 	D/	evap � (L2/D)/(Mi /JiA) � nLJi /CiD where A is
the surface area, Mi is the total moles of i in the condensed
phase, Ci is the molar density of i, and n is now used to
represent a geometrical factor that specifies the surface to
volume ratio of the geometry considered (n � 3 for a sphere
with radius r � L, n � 1 for a slab of half thickness L). We can
already anticipate that when 	D/	evap is large, diffusion will be
too slow for the condensed phase to remain homogeneous
during evaporation or condensation.

To model departures from homogeneity due to finite chem-
ical diffusion rates in the condensed phase Eqn. 26 needs to be
replaced by a partial differential equation and appropriate
boundary conditions. For the sake of simplicity, and because
certain analytical solutions are then more easily obtained, the
case consider here will involve a horizontally uniform slab. The
dimensional mass conservation equations become

�Ci

�t
� U

�Ci

�x
� Di

�2Ci

�x2
(32)

where x is the distance coordinate normal to the surface, U is an
advection velocity that depends on the frame of reference (e.g.,
U � 0 for a frame attached to the center of the slab, U � 0 for
a frame attached to one of the evaporating or condensing
surfaces of the slab) and Di is an effective binary diffusion
coefficient for the component containing i. In the reference
frame attached to the center of the slab at x � 0, the boundary
conditions in terms of dimensional variables become

�Ci

�x
� 0 at x � 0 (33)

Di

�Ci

�x
� UCi � �Ji at x � �L(t) (34)

U in boundary condition 34 is the velocity of the surface at L(t)
relative to the center of the slab, which in the reference frame
used will be a negative velocity. For a sufficiently thick slab

(thick compared to the distance affected by diffusion over the
time of interest) the reference frame can be attached to either of
the moving surfaces of the slab. In this frame of reference the
surface of interest can be called x � 0 and material from the
interior (x 3 �) will be continuously advected towards the
surface with velocity U. Boundary conditions 33 and 34 are still
used in the moving reference frame but with Eqn. 33 applied at
x 3 � and Eqn. 34 at x � 0. The velocity U of the surface
relative to the center of the slab depends on the evaporation or
condensation fluxes Jk as

U � �k vkJk (35)

where �k is the molar volume of component k. For present
purposes it is most natural to nondimensionalize time in
terms of the diffusion timescale, thus t' � t ⁄�L0

2 ⁄D0�, and also
x= � x/L0, L= � L/L0, C=i � Ci/Ci0, J=i � Ji /Ji0, U= � U/U0,
and D=i � Di /D0. L0 is a typical dimension (e.g., the initial
half thickness of a slab), D0 is a measure of the magnitude
of the diffusion coefficients, Ci0 is some appropriate mea-
sure of the molar density of component i in the condensed
phase (e.g., the initial value in the condensed phase), and U0

is the velocity of the boundary when the fluxes Jk are equal
to their reference value Jk0. The nondimensional equivalents
of Eqns. 32 and 35 and the boundary conditions 33 and 34
are (after dropping the primes)

�Ci

�t
� PeU

�Ci

�x
� Di

�2Ci

�x2
(36)

U �
�k vkJk0Jk

�k vkJk0

(37)

�Ci

�x
� 0 at x � 0 (38)

Di

�Ci

�x
� PeUCi � EiJi at x � � L(t) (39)

where Pe (�U0L0/D0) is the Peclet number and Ei (�Ji0L0/
D0Ci0), which Richter et al. (2002b) called the evaporation
number for component i, is the ratio of the diffusion timescale
	D to the evaporation timescale 	evap of component i. Using the
definition of U0 in the Peclet number, one derives the following
relationship between the Peclet number and the evaporation
numbers.

Pe �
L0

D0
�k �kJk0 � �k Ck0�k� Jk0L0

D0Ck0
�� �k VkEk (40)

where Vk is the initial volume fraction of the kth component.
Using Eqn. 39, the all-important boundary condition 40 can be
rewritten in terms of the evaporation numbers as

Di

�Ci

�x
� UCi�k VkEk � EiJi at x � � L(t) (41)

Note that congruent evaporation (i.e., k � 1) is a special case
in that the right hand side of Eqn. 41 becomes equal to zero to
reflect the fact that no chemical gradients can arise in a con-
gruently evaporating system. For the more general case of

multicomponent systems, the right hand side of boundary con-
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dition 41 as it applies to a given component can be either
positive or negative depending on the relative volatility and
abundance of the various components. The model problems
discussed in the following sections involving diffusion-limited
condensation or evaporation are based on Eqns. 36 and 37
subject to boundary conditions 38 and 41, together with Eqns.
27–29, and constitutive equations for calculating the reference
evaporation or condensation fluxes Jk0 and the diffusion coef-
ficients Di.

5.1. Diffusion-Limited Condensation of Forsterite

The major magnesium-containing phase to condense from a
solar composition gas at the pressures usually assumed for the
early solar nebula is solid forsterite (Grossman, 1972; Yoneda and
Grossman, 1995). Forsterite evaporates congruently and for the
purpose of this section the initial composition of the gas is as-
sumed to be such that condensation can also be characterized in
terms of forsterite alone. In the limit of a one-component system,
boundary condition 41 becomes simply �Ci /�x � 0, and Ci � 1 is
then a solution valid for all times. The isotopic composition of the
condensate can still be fractionated if condensation takes place
from a supersaturated gas. The model problem for condensation of
homogeneous forsterite discussed in Section 4.1 can now be seen
to involve the limit Ei3 0. However, diffusion in solid forsterite
is sufficiently slow that condensation from a supersaturated state
onto a finite size object (L � 1 �m) will almost certainly be in the
opposite limit, Ei � 1. For example, EMg � 100 for L � 1 �m
(EMg � 105 for L � 1 mm) using the forsterite evaporation
timescales for PH2

� 10�3 atm and T� 1400 K given in Figure 6
and the magnesium diffusivities as a function of temperature given
in Figure 4 of Wang et al. (1999). When Ei � 1, using L0

2 ⁄D0 to
scale time is no longer particularly useful, instead time is better
measured in units of the condensation time Ci0L0/Ji0. When this is
done, the diffusion term on the right hand side of Eqn. 36 becomes
of order Ei

�1, indicating that for sufficiently large Ei transport by
diffusion can be neglected.

The main difference between the isotopic fractionation of the
condensed phase in the limit Ei � 1 vs. Ei � 1 is that in the
former case the isotopic composition will be spatially uniform
whereas in the latter, the isotopic composition will be zoned
reflecting that each increment of condensation does not ex-
change with earlier condensed increments. However, the bulk
isotopic composition of the condensate is not much affected by
Ei, as can be seen in Figure 10 showing calculated magnesium
isotopic compositions of forsterite condensing onto a sphere as
a function of radius and a rate of temperature change given by
� � 	cond ⁄	T � 0.1 (i.e., temperature changing sufficiently fast to
allow for significant isotopic fractionation). A spherical geom-
etry is used here because the profiles vary more smoothly with
radius than they would with the thickness of an equivalent slab.
The figure shows that the bulk isotopic composition of the
condensed forsterite for Ei � 1 is not much different from that
of a homogeneous sphere (Ei � 1) evaporating with the same
value of �. The overall conclusion is that the parameter Ei �
	D/	cond has little effect on the bulk isotopic composition of the
condensed phase, but for Ei large (i.e., slow diffusion), the
condensed phase will be zoned reflecting the isotopic compo-

sition of each increment of condensate.
5.2. Diffusion-Limited Evaporation of Forsterite

Forsterite evaporates congruently and so the only reason to
model diffusion-limited conditions is to investigate the effect in
terms of isotopic fractionation. Wang (1995; see also Wang et
al., 1999) has already discussed this problem in some detail in
the limit Pi /Pi,sat � 1 (i.e., free evaporation) and provided both
a time-dependent analytical solution for the isotopic ratio and
experimental data in excellent agreement with the eventual
steady state solution that develops in the frame of reference
attached to the evaporating surface. Here I will also assume that
Pi /Pi,sat � 1 but seek a slightly more general solution to this
problem in terms of the individual isotopes. Assuming that a
steady state exists, (i.e., �Ti/�t � 0, �Ci/�t � 0 and Di, U, and
Ji all equal to 1), Eqn. 36 becomes

Pe
�Ci

�x
�

�2Ci

�x2
(42)

subject to the boundary condition

�Ci

�x
� PeCi � Ei at x � 0 (43)

where Ci and its initial value Ci0 are now being used to
represent the fraction of isotope i relative to the sum of all
isotopes of the element of interest. The initial isotope ratio is
then defined as R0 � C20 /C10. J0 is used to represent the total
free evaporation flux of the element of interest if it were
composed entirely of isotope 1. The flux of the individual
isotopes 1 and 2 is then J1 � C1J0 and J2 � �C2J0 using the

value of Ci at the evaporating surface and � � �m1 ⁄m2. This
results in E1 � C1J0L0 ⁄C0D0, E � � RE , and Pe � E � E .

Fig. 10. Calculated magnesium isotopic composition of condensates
from a system cooling at � � 0.1 in the homogeneous condensate limit
(E � 1) and in the completely diffusion-limited case (E � 1) plotted as
a function of the fractional radius of a sphere that would have a final
radius r0 once all the magnesium has condensed. The bulk composition
of the diffusion-limited sample (dotted curve labeled E � 1) is not
significantly different from that of the homogeneous sample shown by
the thin continuous curve labeled E � 1.
2 1 1 2

The steady state solution of Eqn. 42 is of the form
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Ci � Ci0 � �ie
�Pex (44)

which in order to satisfy the boundary condition (Eqn. 43)
requires

�1 �
(� � 1)C10C20

�C10 � C20

(45)

�2 �
(1 � �)C10C20

�C10 � C20

(46)

Thus the faster (slower) evaporating isotope decreases (increases)
towards the surface by an amount of order (� � 1) over a
nondimensional distance of order Pe�1 corresponding to a dimen-
sional distance D0/U. At steady state, the isotopic ratio at the
evaporating surface is R � R0/�. The time for this steady state to
become established is of the order of the time required to diffuse
over a distance D0/U, which is D0/U2 or equivalently 	evap/Pe.
Figure 11 shows the steady state solution for the isotopic ratio in
terms of the departure of the 25Mg/24Mg ratio (expressed as
25Mg in ‰) from the initial value. This solution will be unchang-
ing in a frame attached to the evaporating surface until the dimen-
sions of the slab become less than �10 D0/U. Also shown are two
magnesium isotopic profiles for times when the slab is no longer
effectively large compared to the boundary layer. A reasonable
estimate of the bulk isotopic fractionation of a layer that has been
reduced by evaporation to a fractional half thickness L is 25Mg �
1000(1 � �) L�1 Pe�1, valid for Pe � 10 and LPe � 5.

5.3. Diffusion-Limited Evaporation of a CAI-like Liquid

Richter et al. (2002b) have already discussed the isotopic frac-
tionation magnesium due to free evaporation from a CMAS liquid
sphere for initial evaporation numbers in the range E � 0 (ideal

Fig. 11. Profiles of the magnesium isotopic composition from a
model calculation of an evaporating slab of forsterite in the diffusion-
limited regime. Three cases are shown corresponding to slab half
thicknesses that have evolved to x � 10, 5, and 2.5 in units of D/U
where D is the diffusion coefficient for magnesium isotope exchange in
forsterite and U is the velocity of the surface relative to the center due
to evaporation. For x � 10, the magnesium isotopic profile is unchang-
ing in a reference frame attached to the moving surface.
Mg

Rayleigh fractionation) to EMg � 10 (see their fig. 14). For EMg
� 1, significant chemical and isotopic gradients develop and there
is a systematic decrease in the bulk isotopic fractionation for a
given amount of magnesium evaporated. For example, figure 14d
in Richter et al. (2002b) shows that 25Mg when 50% magnesium
has evaporated decreases as a function of EMg as e�0.09EMg. Here the
effect of even smaller evaporation numbers during free evapora-
tion will be considered using a model that is simplified in several
ways from that given in Richter et al. (2002b). The model assumes
the condensed phase to be a slab rather than a sphere as this will
allow the results to be more easily confirmed by analytical solu-
tions. The system will be treated as effectively binary by consid-
ering MgO � �(CaO � Al2O3 � SiO2) with only the MgO
component evaporating. Chemical diffusion is then characterized
by a single effective binary diffusion coefficient for MgO. The
model assumes that the activity of the MgO component in the melt
is proportional to the mole fraction of MgO in the melt and that the
system remains completely molten at all times. These simplifica-
tions, which do not compromise the qualitative behavior of the
system, are made in order that one might more easily understand
a particularly surprising aspect of the isotopic fractionations pro-
duced by this model. The results of the present simplified model
have been compared in several cases to those of the more complete
four-component spherical model with realistic thermodynamic
solution properties of Richter et al. (2002b) and the differences in
terms of the calculated bulk properties are indeed quite minor.

Figure 12 shows various aspects of the results of an evapo-
ration calculation with an initially large evaporation number
EMg � 100. Figure 12a shows the magnesium concentration as
a function time measured in units of L2/D where L is the half
thickness of the layer and D is the effective binary diffusion
coefficient of the MgO component in the melt. Diffusion-
limited evaporation of a relatively minor component such as
MgO (initially 10 wt% in this calculation) rapidly reduces the
concentration of that component at the evaporating surface to
the point that the rate of evaporation, which is proportional to
the MgO concentration at the surface, becomes sufficiently
small that diffusion can continuously replenish the loss of
magnesium from the surface. In other words, regardless of the
initial conditions, the evaporation number rapidly becomes of
order one. A remarkable feature of model results for EMg

initially equal to 100 is shown in Figure 12b. The isotopic
fractionation of magnesium remains restricted to a thin bound-
ary layer at the surface even when the elemental fractionation
has affected the interior of the slab to the point of having
removed almost all of the initial magnesium. Ozawa and Na-
gahara (2001) have also found a similar result in their very
detailed model calculations of evaporation effects in a molten
binary system. The very different spatial distribution of the
elemental and isotopic fractionations as well as its cause is
sufficiently puzzling that an even simpler model problem was
posed in an effort to gain some additional insight. The simpli-
fied model involves a half-space with the velocity of the surface
set to zero despite evaporation from the surface. This represents
a legitimate limiting situation in that the surface velocity will
become negligible if the evaporating components are suffi-
ciently dilute so that they represent a negligible volume fraction
of the system as a whole (i.e., Pe 3 0 as Vk 3 0). The
evaporation problem in the limit Pe3 0, EMg � 0 is equivalent

to that of temperature in a slab cooled by a radiation boundary



4984 F. M. Richter
condition with the surface flux proportional to the surface
temperature. The solution for this radiation problem is given in
Carslaw and Jaeger (1959) and in terms of the variables used
here it becomes

C(t)

C(0)
� erf� x

2�t
�� eEMgx�EMg

2 terfc� x

2�t
� E�t� (47)

EMg represents either E24Mg or E25Mg depending on whether C in
Eqn. 47 refers to the concentration of 24Mg or 25Mg. Figure 13
shows the result of using Eqn. 47 to calculate the evolution of
24Mg and 25Mg due to evaporation from the surface with E24Mg

� 10 and 100, and E25Mg
� �24 ⁄ 25 E24Mg. In much the same

way as was seen earlier in Figure 12, Figure 13 shows the
isotopic fractionation restricted to a boundary layer while the

Fig. 12. (a) Profiles of the MgO content (measured as a fraction of
the initial amount) of an evaporating CMAS liquid slab at four different
times. Time is measured in units of 	D, the diffusion time scale. The
magnesium evaporation number, EMg, is initially equal to 100, but soon
falls to about one as the evaporation rate decreases in proportion to the
reduced MgO content at the evaporating surface. (b) Magnesium iso-
topic composition profiles for three of the times used in panel (a). A
noteworthy feature of the results is that the isotopic fractionation
remains restricted to a surface boundary layer even when the MgO
content of the interior has been reduced to less than 10% of the initial
amount.
elemental profiles are diffused over a significantly larger dis-
tance. This result is a reminder that the equation governing the
time evolution of an isotopic ratio is not a diffusion equation,
although it is very often approximated as such. Consider the
equation for two isotopes with molar density C1 and C2, each
obeying a diffusive mass conservation equation of the form

�Ci

�t
�

�2Ci

�x2
(48)

The equation for the ratio R � (C2/C1) is obtained by first
expanding the time derivative �(C2/C1)/�t and then using Eqn.
48 to write the result in terms of R and C1. The result is

�R

�t
�

�2R

�x2
�

2

Ci

�Ci

�x

�R

�x
(49)

The second term on the r.h.s. of Eqn. 48 plays the role of an
advection term (i.e., a term like u(�R/�x) with effective velocity
u � �(2/C1)(�C1/�x)) that for (�C1/�x) positive will maintain
a boundary layer by offsetting the effect of the diffusion term
in much the same way that an actual velocity gave rise to a
steady state boundary layer solution in the congruent evapora-
tion case. As can be seen in Figure 13, the smaller C1 becomes
at the surface, the narrower the boundary layer becomes be-
cause the “advection velocity” is proportional to 1/C1.

One might, at this point, be tempted to conclude that diffu-
sion-limited evaporation of volatile species from a multi-com-
ponent condensed phase can significantly fractionate elements
by volatility without very much bulk isotopic fractionation of
the residue. To conclude this would, however, ignore the pos-
sibility of isotope fractionation by chemical diffusion in silicate
melts. Richter et al. (1999, 2003) showed that chemical diffu-
sion in silicate melts fractionates calcium isotopes by an
amount that corresponds to a mass dependence of the diffusion
coefficients of the individual isotopes of D1/D2 � (m2/m1)�

with � � 0.1. Richter et al. (2003) also showed that lithium
isotopes were fractionated during chemical diffusion in a way

Fig. 13. Normalized MgO concentration and isotopic composition
profiles from an analytical solution for magnesium evaporation from a
CMAS liquid slab with initial evaporation numbers of 10 and 100. The
model used for this case differs from that used to construct Figure 12
in assuming that the surface velocity can be neglected and set to zero.
corresponding to � � 0.2. Tsuchiyama et al. (1994) used
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molecular dynamic simulations to calculate a value of � � 0.1
for magnesium isotopes diffusing in molten MgO. These ex-
perimental and computational results make it very likely that
the diffusion of magnesium in a CMAS liquid will fractionate
magnesium isotopes by an amount corresponding to � � 0.1.
Figure 14 shows model results for the isotopic fractionation of
magnesium in evaporation residues when diffusive isotope
fractionation with � � 0.1 is included in the calculation used
earlier to construct Figure 12. The magnesium concentration
profiles from this new calculation are unchanged from those
shown in Figure 12a, however the isotopic composition of the
interior is now very significantly fractionated by t � 0.5. This
is because in the diffusion-limited evaporation regime the mag-
nesium being lost from the surface has to be replenished by
diffusion from the interior, and as a result of the lighter isotope
diffusing faster, the interior isotopic composition becomes pro-
gressively heavier. So, it seems very likely that diffusion-
limited evaporation of a multicomponent system will produce
isotopically fractionated residues after all.

6. OPEN AND CLOSED SYSTEMS

The model calculations in this section address the effects in
terms of elemental and isotopic fractionation of evaporating
systems being partially open to gas loss. The limiting case of a
perfectly closed system will serve as a starting point with which
to consider the effect of removing the evaporating species from
the surrounding gas at a finite rate, and eventually sufficiently
rapidly that the behavior approaches that of the perfectly open
system. The model problems involve the evaporation and re-
condensation of the magnesium content of a molten sphere at a
fixed temperature T � 1673 K with a stating composition 15
wt% MgO, 36 wt% SiO2, 27 wt% CaO, and 22 wt% Al2O3.
The initial conditions assume that all the material starts out in
the condensed phase. A key parameter in the model is the ratio
of the total mass of the condensed phase to the total volume of
the system, which will determine the wt% MgO remaining in
the condensed phase once the system achieves equilibrium. A

Fig. 14. Same as Figure 12b except that in calculating the magne-
sium isotopic profiles shown here it was assumed that the magnesium
isotopes have slightly different diffusion coefficients given by
D25 Mg

⁄D24 Mg
� �24 ⁄25�0.1.
recent very detailed discussion of the isotopic fractionation in a
cooling closed system with realistic solar bulk composition (but
without crystallization, which was emphasized in an earlier
discussion by Grossman et al., 2002) is given by Grossman and
Fedkin (2003).

The first set of model calculations assume that a homoge-
neous condensed phase and a well-mixed surrounding gas
occupy a fixed volume at a constant temperature. The rate of
change of the moles of magnesium initially all in the condensed
phase of radius r and in a surrounding gas of fixed volume V is
calculated using Eqn. 1 for the magnesium flux JMg with �Mg

� 0.03 (from Richter et al., 2002b), PMg,sat from the thermo-
dynamic model described in Grossman et al. (2000), and PMg

calculated using the ideal gas law. Time is measured in units of
	evap � MMg/4�r2JMg where MMg is the total moles of mag-
nesium in the system and JMg is the magnesium flux when all
the magnesium is still in the condensed phase. Figure 15 shows
the effect of different choices for the total volume of the closed
system on the time evolution of the MgO content and magne-

Fig. 15. (a) Wt% MgO as a function of time in a CMAS condensed
phase evaporating into a fixed closed volume V measured in units V50

defined as the volume such that when the gas and condensed phase are
in equilibrium, 50% of the of the magnesium will be in each phase.
Time is measured in units of the evaporation timescale 	evap. (b)
Evolution of the magnesium isotopic composition of the condensed
phase as a function of time for the six cases shown in (a).
sium isotopic composition of the condensed phase. In these
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calculations the total volume of the system is measured in terms
of a reference volume (V50) defined as the volume such that at
equilibrium there would be equal amounts of magnesium in the
gas and in the condensed phase. As expected, Figure 15a shows
that the smaller the volume the less magnesium is lost by the
condensed phase to establish equilibrium with the surrounding
gas. Figure 15b shows the corresponding magnesium isotopic
composition of the condensed phase for the various choices of
the volume of the system. The larger the total volume of the
system, the greater the maximum isotopic fractionation, how-
ever, given sufficient time, the continuous exchange of mag-
nesium with the surrounding gas drives the isotopic fraction-
ation back to zero. An important if somewhat obvious
conclusion is that even when only a very small fraction of the
volatile species remains in the condensed phase (�1% of the
original amount), the isotopic composition of the condensed
phase returns to normal on a time scale short compared to ten
times 	evap.

Partially open systems will be characterized in terms of a
decay constant � corresponding to the fraction of the species of
interest in the gas removed per unit time by some process other
than recondensation. A finite flow of the surrounding gas rel-
ative to the condensed materials is an example of such a
partially open system. A residence timescale in the surrounding
gas can be defined in terms of the decay constant as 	R � 1/�.
The model problem for magnesium in a partially open system
differs from the closed system model in that the partial pressure
of magnesium, PMg, is reduced every time increment 
t by a
fraction PMg� 
 t with 
 t and � measured in units of 	evap.
Figure 16 shows that when the rate of removal of magnesium
from the gas is sufficiently fast compared to evaporation (i.e.,
short residence time with 	evap/	R � 10) the MgO content
decreases much as it would for free evaporation into a vacuum
and the magnesium isotopic fractionation of the residue tends
to the corresponding ideal Rayleigh fractionation limit. When
the rate of removal of magnesium from the gas is slow (i.e.,
	evap/	R � 0) the MgO content and the isotopic composition of
the residue at early times are similar to that in the closed system
(	evap/	R � 0), but for longer times, the slow but finite rate of
magnesium loss from the system will result in a perceptible
decline of the MgO content of the residue and small but finite
isotopic fractionation.

The problems so far considered in this section have assumed
that the surrounding gas is well mixed in terms of the distri-
bution of the evaporating species. If however, the total pressure
of the surrounding gas is sufficiently high that diffusion
through this gas has to be taken into account, the removal of
evaporating species from the vicinity of the surface will require
that there be a greater pressure of the evaporating species at the
evaporating surface compared to that in the far field. In the case
of the far-field partial pressure of the evaporating species being
negligible compared to the saturation vapor pressure, the sur-
face pressure Pi relative to the saturation pressure Pi,sat is given
by (see Richter et al., 2002b)

Pi

Pi,sat

� 1 �
1

1 �
�ir

Di
gas� RT

2�mi

(50)
where r is the radius of the condensed phase and Di
gas is the
binary diffusion coefficient for the species of interest through
the surrounding gas. The effect of the pressure of the surround-
ing gas enters via its effect on the diffusivity of the evaporating
species (i.e., the diffusion coefficient is inversely proportional
to the total gas pressure). The finite pressure at the surface
produces recondensation, which slows the net evaporation rate
and reduces the kinetic isotope fractionation. The reduction of
the net evaporation rate relative to the free evaporation rate is
given by

Ji,net ⁄ Ji �
1

1 �
�ir

Di
gas� RT

2�mi

(51)

Fig. 16. (a) Same as V � V50 case in Figure 15a except that now the
volume V need not be closed. The parameter � measures of the rate of
loss of magnesium from V in terms of the evaporation timescale 	evap

divided by the residence time 	R of magnesium in the surrounding gas.
� � 0 (i.e., very long residence time) corresponds to the closed system
case in Figure 15a. (b) Evolution of the magnesium isotopic composi-
tion for the four cases shown in panel (a). Also shown are curves for the
isotopic evolution corresponding to perfect Rayleigh fractionation (i.e.,
for � � (24/25)1/2 in Eqn. 11) in the free evaporation limit (�3 �) and
for an effective �= taking into account the finite PMg/PMg,sat of the � �
10 case (i.e., using �= from Eqn. 52 in Eqn. 11).
Richter et al. (2002b) also derived a relationship for the effect
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of finite Pi /Pi,sat on the isotopic fractionation of the residue,
which will still follow a Rayleigh fractionation curve but with
an effective kinetic isotope fractionation factor �= given by

�′ � 1 � (� � 1)�1 �
P1

P1,sat
�� �D1

gas

D2
gas

� 1� P1

P1,sat

(52)

where � � �m2 ⁄m1. The second term on the right hand side
takes into account isotopic fractionation by diffusion through
the surrounding gas.

Increasing the hydrogen pressure has two opposite effects on
the net evaporation rate. On the one hand, as shown in Figure
4, the free evaporation rate of Mg in the hydrogen-dominated

regime increases with hydrogen pressure in proportion to �PH2
.

Increasing hydrogen pressure will also reduce the net evapora-
tion rate by making it harder for the evaporating species to
diffuse away from the surface (i.e., by decreasing Di

gas in Eqn.
51. Figure 17a shows the effect of hydrogen pressure on the net
evaporation rate of magnesium from a Type B CAI-like liquid
for three choices of the radius of the condensed phase. Figure
17b shows the effect of hydrogen pressure on the isotopic
fractionation of magnesium in terms the isotopic fractionation
of Mg in a residue from which 50% of the magnesium has
evaporated. These results show that for typical chondrule or
CAI sizes, the effect of surrounding pressure in reducing the
evaporation rate and isotopic fractionation begins to be felt at
�10�3 bars, and has significant effects at pressures below
�10�1 bars.

7. SUMMARY AND DISCUSSION

This closing section is used to briefly restate some of the key
ideas and conclusions derived from the model problems that
show the effect of various timescales on the elemental and
isotopic fractionation of condensed phases during evaporation
and condensation. The model results are then used to interpret
the properties laboratory produced evaporation residues and
also to reconsider some of the implications of the volatility-
related fractionations of planetary and meteoritic materials.

Given the focus on evaporation and/or condensation, it is
most natural to measure time in terms of how long it would take
to completely evaporate or condense an element of interest
under the prevailing conditions of temperature, pressure, com-
position and dimensions of the system. Estimates of this time-
scale as a function of temperature for various choices of pres-
sure and size of the condensed phase were given in Figure 5 for
magnesium in a CMAS liquid and in Figure 6 for forsterite. For
temperatures in the range where CMAS compositions are par-
tially molten or forsterite is partially condensed from a solar
composition gas, the evaporation/condensation timescales are
of order days to years. The central set of issues addressed via
the model calculations are the consequences for elemental and
isotopic fractionation when some of the other timescales af-
fecting evaporation and condensation are fast or slow compared
to the evaporation or condensation timescale. The timescales
that were explicitly considered involved the rate of change of
temperature, the rate of chemical homogenization of the con-
densed phase by diffusion, and the rate at which evaporated
species were removed from further interaction with the con-

densed phase. Table 1 gives a summary of the consequences of
these timescales being large or small compared to the evapo-
ration or condensation timescale.

Some of the timescales listed in Table 1 have had a role in
determining the outcome of laboratory evaporation experi-
ments. Vacuum evaporation experiments such as those pio-
neered by Hashimoto (1983) are designed to be in the regime
Pi /Pi,sat � 1, which will be the case when the gas species are
rapidly removed from the system (i.e., 	R � 	evap). In this limit,
the isotopic fractionation of the residue is expected to follow a

Fig. 17. (a) Effect of hydrogen pressure on the evaporation rate of
magnesium (normalized to the rate at PH2

� 10�5 bars) illustrated for
spheres of radius r � 0, 0.1 cm (chondrule-like), and 0.5 cm (CAI-like).
In the absence of recondensation (r � 0 case), hydrogen, through its
effect on the saturation vapor pressure of magnesium, increases the
evaporation rate in proportion to �PH2

. At sufficiently high surrounding
pressure, the diffusion of the evaporating species away from the surface
requires that it have a finite partial pressure at the surface, which in turn
produces recondensation (see Eqn. 1). This recondensation is respon-
sible for the departure of the magnesium evaporation rate for r � 0.1
and 0.5 cm from continuing to increase as �PH2

. (b) Effect of hydrogen
pressure on the isotopic fractionation of magnesium in evaporation
residues illustrated by curves of the fractionation corresponding to 50%
loss of magnesium by evaporation from sphere with initial radius of 0.1
and 0.5 cm. The diminished isotopic fractionation at sufficiently high
surrounding gas pressure is due to the effect of PMg/PMg,sat on the
effective kinetic isotope fractionation factor as given by Eqn. 52.
Rayleigh fractionation curve. The magnesium isotope data



4988 F. M. Richter
from vacuum evaporation residues shown in Figure 2 confirms
the Rayleigh behavior, however in the case of Mg, the kinetic
fractionation factor � is not exactly the expected value of
�24 ⁄ 25. The reduced isotope fractionation found in the exper-
iments could be explained by recondensation due to 	evap/	R �
10 (see Fig. 16b), although this does not seem likely because
the samples used to construct Figure 2 were of very different
sizes ranging from 6 mm to 1 mm in diameter (i.e., very
different 	evap but same 	R) and yet they all have isotopic
fractionations falling on a single fractionation line. The evap-
oration residues were found to be homogeneous in both ele-
mental and isotopic composition, which rules out diffusion-

limited evaporation as the cause of � � �24⁄ 25. The most
likely explanation of why the experimentally determined � for
Mg evaporating from a molten silicate liquid is greater than
�24⁄ 25 is that 24Mg and 25Mg have slightly different sticking

coefficients (i.e., � � (�25Mg/�24Mg)�24⁄ 25 and �25Mg/�24Mg �
1.007). Richter et al. (2002b) carried out several experiments in
which CMAS liquids were evaporated in one bar of hydrogen
slowly flowing through a gas-mixing furnace. The residues had
large volatility controlled elemental depletions (up to 60% loss
of magnesium relative to aluminum) without any measurable

Table 1. Timescales for

Timescale

Homogeneous phases in c

	cond/	T � 0.001 Elemental fracti
during partial

	cond/	T � 0.001 Elemental and i
partial conden

	evap/	T � 1 (slow cooling after rapid reheating) Elemental and i
partial evapor

	evap/	T � 1 (fast cooling after rapid reheating) Very little elem

Diffusion-limited system

	D/	cond � 1 Zoned condensa
E � 	D/	evap � 100 (congruent evaporation) No significant is

E � 	D/	evap � 100 (multi-component
evaporation)

Elemental fracti
No significan
diffusion in m

	D/	evap � 1
	D/	cond � 1

Partially open syste

	cond/	R � 1
	evap/	R � 1
	cond/	R � 1 Negligible cond
	evap/	R � 0.1 Elemental fracti

fractionation

	evap/	R � 10 Elemental and i
partial evapor

a 	cond and 	evap are the characteristic timescales for the condensatio
all of the species of interest under the prevailing condition. 	T is t
homogenization timescale (	D � L2/D; L is a measure of size, D is the c
more specifically in the text. 	R is a residence timescale of the evaporat
per unit time by processes other than recondensation).
isotopic fractionation of the magnesium in the residues. The
lack of magnesium isotopic fractionation despite the large loss
of magnesium can be understood in terms of the 1 bar exper-
iments being in a parameter range such that 	evap/	R � 1 (i.e.,
long residence time of the evaporated species in the vicinity of
the sample). Figure 16b shows that large elemental fraction-
ations without significant isotopic fractionation would be ex-
pected for �	evap � 0.1. The volume of the gas-mixing furnace
is sufficiently small (i.e., V � V50) that a negligible amount of
the magnesium from the condensed phase is sufficient to sat-
urate the gas. Nevertheless, the slow but continuous flow of
saturated gas out of the furnace will, given sufficient time,
show up as a depletion of the more volatile species from the
condensed phase. The 1 bar experiments are a clear example of
how elements can be volatilized without leaving behind isoto-
pically fractionated residues. The model calculations not only
help us understand the lack of isotopic fractionation of the 1 bar
evaporation residues, but also to define the general conditions
for such a result to arise.

Isotope fractionations of residues from experiments in which
potassium was evaporated from a silicate melt both in air (P
� 10�5–1 atm) and in hydrogen (P � 1.3 	 10�2–7.2 	 10�5

atm) have been reported by Yu et al. (2003). The reported potas-
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potassium lost from the melt are very different depending on the
pressure of the experiment. Evaporations in 10�5 atm of air
produced residues with isotopic fractionations of potassium that
follow a Rayleigh fractionation curve with a fractionation factor

for 41K/39K very close to � � �39⁄41. Experiments run at all
pressures greater than 10�5 atm (even for P � 1.8 	 10�5 atm air)
produced isotopic fractionations such that the residues as a func-
tion of potassium loss first became heavier (as expected) but then
with further loss of potassium, became increasingly light. The
results are in some ways quite similar to the closed system results
shown in Figure 15b, however it is not at all clear why a furnace
tube that is continuously pumped to maintain low pressure should
behave as a closed system or why increasing the pressure seems to
have the same effect as decreasing the volume of the closed
system. The authors suggest that some of the earliest evaporated
potassium (and thus isotopically lightest) may have plated out in
cooler parts of the furnace and later exchanged potassium with the
residue to make the residue isotopically lighter again. No attempt
was made to model such a system.

Experiments in the diffusion-limited regime have been car-
ried out for congruently evaporating systems by Wang (1995)
and Wang et al. (1999) using solid forsterite, and by Young et
al. (1998) using solid SiO2. Wang (1995) and Wang et al.
(1999) showed that the magnesium isotopic fractionations in
the solid forsterite decay towards the interior in the manner
shown in Figure 11. The evaporation residues from molten
CMAS experiments reported by Richter et al. (2002b) and the
new samples used to construct Figures 1 and 2 were quenched
sufficiently rapidly at the end of the experiments that any
chemical or isotopic gradients would have been preserved. No
such gradients were observed, which is in good agreement with
the expectation that 	D � 	evap based on the sample size, the
evaporation rate, and the chemical diffusion coefficients in
CMAS liquids (see Richter et al., 2002a for magnesium and
silicon diffusion coefficients in Type B CAI-like liquids). The
lack of chemical or isotopic gradients in the materials used to
construct Figure 3 rules out diffusion-limited evaporation as the
explanation for the magnesium isotopic fractionations shown in
Figure 2 falling below the fractionation expected for � �

�24⁄25.
To my knowledge there are no well-controlled experiments

directly relevant to the question of kinetic isotope fractionation
by condensation. Esat (1988) measured the magnesium isotopic
composition of condensates from a gas derived from the dis-
tillation of a molten pyroxene source in a bell-jar vacuum
chamber (P � 5 	 10�5 torr) and found that the source became
enriched in the heavy isotopes of magnesium, while the con-
densate was enriched in the light isotopes. I would interpret the
isotopic fractionations observed by Esat (1988) as being the
result of a kinetic fractionation of the source and equilibrium
condensation from the gas onto cold surfaces. The source
became kinetically fractionated (heavy isotope enriched) be-
cause it is evaporating into a low-pressure region from which
the evaporating species are rapidly removed by condensation
onto cold surfaces (i.e., evaporation with 	evap/	R � 1). The
magnesium entering the gas is isotopically light and removed
almost immediately by condensation onto the cold surfaces,
including those that were later analyzed for the magnesium

isotopic composition of the condensates. Because the magne-
sium is for all practical purposes being quantitatively removed
from the gas by condensation, the condensate will show the
same light isotope enrichment as the gas. Laboratory experi-
ments, that in principle at least, are more directly relevant for
determining kinetic isotope fractionations during condensation
were carried out by Uyeda et al. (1991). They allowed a
low-pressure silicate vapor to condense onto a cold finger
whose temperature decreased with distance away from the
vapor source. The vapor source and materials condensed at
various distances along the cold surface were analyzed for their
magnesium isotopic composition. The magnesium isotopic
composition of the source was, as expected, somewhat enriched
in the heavy isotopes of magnesium. The first (highest temper-
ature) condensate was similarly enriched in the heavy isotopes
of magnesium. The authors argued that since the source had
become enriched in the heavy isotopes, the evolved gas must
have been isotopically light, but since they found the conden-
sate from this gas to be heavy, they were forced to conclude
that kinetic condensation produced condensates that were en-
riched in the heavy isotopes relative to the source gas. This is
completely at odds with the theoretical framework adopted in
this paper, which predicts that in a kinetic regime the lighter
isotopes will condense faster than the heavier ones. Simply put,
the results given by Uyeda et al. (1991) cannot be explained by
the standard representation of condensation given in Section 2.

The results from the model problems can also be used to
identify reasonable parameters that can account for the isotopic
properties of solar system materials with volatility related ele-
mental depletion patterns. In the case of the Type B CAIs one
would like to find conditions that would result in their magne-
sium isotopic compositions being enriched in the heavy iso-
topes by 1–5‰ per amu. Partial melting of Type B–like com-
positions requires temperatures of �1700 K (Stolper, 1982)
and their coarse-grained textures can be reproduced if the
subsequent cooling rates are less than 50 K/h (Stolper and
Paque, 1986). The model results shown in Figures 9a,b provide
an alternative way of constraining the cooling rate based on the
evaporation kinetic and associated isotopic fractionation. The
requirement that some magnesium remain when the Type B
CAIs become completely solid again at T � 1400 K implies
	evap/	T � 0.03. A more stringent requirement comes from the
magnesium isotopic composition, which will be fractionated by
1–5‰ per amu if 0.3 � 	evap/	T � 1. Taking numerical values
for 	evap from Figure 5 and keeping in mind that 	T was defined
in terms of the timescale for the temperature to drop by a factor
of e (�500 K), the cooling rates that are consistent with 1–5‰
per amu magnesium isotopic fractionation of a 2.5 mm radius
Type B CAI are dT/dt � 25 K h�1 if evaporation takes place
in 10�3 bars of hydrogen, and dT/dt � 1 K h�1 in 10�6 bars of
hydrogen. These estimates of the cooling rate of Type B CAIs
with magnesium isotope fractionations of the order of 1–5‰
per amu are very similar to the values given in Figure 15 of
Richter et al. (2002b) based on much more detailed calcula-
tions. The merit of deriving cooling rate estimates from simple
arguments based on relative timescales is that it makes it that
much easier to understand how the properties of the CAIs and
the environment combine to determine the degree of isotopic
fractionation of evaporation residues.

Chondrules often also have textures that suggest that they

were reheated and partially molten, and yet, the isotopic com-
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position of the relatively volatile element potassium is not
measurably fractionated. One possible explanation for this is
that the cooling must have been sufficiently fast so that little or
no potassium evaporated. If that were true, then the differences
in the relative abundance of potassium as reflected by K/Al
ratios would then have to have been due to some process other
than volatilization. Using Figure 9a as a guide, little measurable
isotopic fractionation would be expected if 	evap/	T � 1. The
evaporation time for potassium for a chondrule of radius 500
�m and 1 wt % K2O can be estimated using the evaporation
kinetics reported by Yu et al. (2003), JK � 1 	 10�7 moles
cm�2 s�1 for T� 1750 K, giving 	evap � 1 min. It follows that
	evap/	T � 1 implies that the cooling rate would have to have
been greater than 3 	 104 K h�1. This bound on the cooling
rate is similar to that estimated by Alexander et al. (2000) as
being necessary to prevent more than 12% K loss from a 1 mm
diameter chondrule heated to a peak temperature in the range
1700–1800 K. A cooling rate of 3 	 104 K h�1 is one to four
orders of magnitude faster than the laboratory cooling rates that
have been used to reproduce chondrule textures (see tables 1
and 2 in Desch and Connolly, 2002 for a summary). Alexander
et al. (2000) are quite right in pointing out that if one accepts
the laboratory cooling rates as reasonable estimates of the
actual cooling rate of chondrules, the issue becomes one of
finding conditions that would suppress potassium isotope frac-
tionation at these “slow” (i.e., 	evap/	T � 1) cooling rates. Their
suggestion is that evaporation of potassium from fine-grained
dust and chondrule precursors during chondrule formation may
have produced sufficient potassium vapor pressure for gas-
chondrule isotopic exchange to be complete on the timescales
of chondrule formation. The model problems described in
Section 6 can give some insight as to what would be required
for this suggestion to be effective. It follows from the results
shown in Figures 15 and 16 that to suppress isotopic fraction-
ation of the residues the system would have to be in the
parameter range 	evap/	R � 0.1 (i.e., long residence time for the
evaporating species in the surrounding gas). The isotopic equil-
ibration takes place on a timescale of a few evaporation times
	evap, which is short compared to the cooling times inferred
from the laboratory experiments. Based on the results given in
Figure 15a, one should add the requirement that the volume
density of chondrules has to be sufficiently high for the gas to
become saturated before the potassium is completely volatil-
ized. In the terms used in Section 6, this means that the volume
V per chondrule should not be much greater than 10 times the
volume that would be saturated by half the potassium originally
in the chondrule (i.e., V not much larger than 10V50). The
volume density of chondrules is a particularly interesting pa-
rameter in that chondrules reheated in environments with dif-
ferent amounts of chondrules per unit volume (i.e., different
V/V50) would end up with different degrees of potassium de-
pletion (as for the various cases in Fig. 15a, but for potassium
instead of magnesium) but with little or no associated potas-
sium isotopic fractionation.

Another regime that has been invoked to explain volatile-
element depletions with little or no associated isotopic fraction-
ation is diffusion-limited evaporation. Young (2000), for ex-
ample, used a high Peclet number evaporation model (i.e., fast
evaporation relative to diffusion) to discuss the lack of potas-

sium isotope variation between solar system materials with
very different degrees of potassium depletion relative to the
more refractory elements. Galy et al. (2000) suggested that
evaporation with high Peclet number might explain why they
measured very little fractionation of magnesium isotopes in
chondrules that varied in Mg/Al by more than an order of
magnitude. It should be noted that the evaporation model used
by Young (2000) and by Galy et al. (2000) is the same one-
component evaporation model that was first used by Young et
al. (1998) in their discussion of diffusion-limited evaporation of
SiO2. This is a congruent evaporation model and therefore
cannot be used to discuss the relationship between elemental
and isotopic fractionation in a multi-component system because
by definition there is no elemental fractionation in a congruent
evaporation model. In terms of the potassium and magnesium
isotopic data that Young (2000) and Galy et al. (2000) were
trying to explain, the key question is whether a diffusion-
limited multicomponent system can loose a significant amount
of its more volatile components without a measurable associ-
ated isotopic fractionation of the residue. The answer, based on
the model results given in Section 5.3, is very likely to be no,
because of isotopic fractionation associated with the diffusive
transport of material from the interior of the condensed phase to
the evaporating surface. Fractionation of magnesium and po-
tassium isotopes by diffusion in silicate melts have not yet been
measured, but given the Richter et al. (2003) demonstration of
diffusive fractionations of calcium and lithium isotopes by
diffusion in silicate melts, it seems reasonable to expect that
magnesium and potassium isotopes will be similarly fraction-
ated.

Humayun and Clayton (1995), as noted in the introduction,
interpreted their potassium isotopic measurements as indicating
that partial condensation was the dominant process responsible
for the volatile depletion patterns of solar system materials and
that no more than 2% of the potassium could have been
removed by partial volatilization from the samples they ana-
lyzed. I would interpret the lack of potassium isotope variabil-
ity of solar system materials quite differently. A sufficient
condition for elemental fractionation without isotopic fraction-
ation by either partial evaporation or partial condensation is
that Pi /Pi,sat remain very close to one as the system evolves,
and this condition would be expected whenever the timescale
on which the temperature evolves is slow compared to the
evaporation or condensation timescale. Given that the large-
scale thermal evolution of the early solar system from a gas and
dust cloud to the point of producing solids we might sample
today was on a timescale of 105 yr or more, it seems very likely
that large-scale chemical processes involving exchange be-
tween gas and condensed phases would have taken place in
condition indistinguishable from equilibrium (i.e., 	T � 	cond or
	evap). Under this interpretation the lack of potassium isotopic
fractionation tells us nothing about the relative importance of
condensation and evaporation.

A number of the issues associated with kinetic isotope frac-
tionation by evaporation discussed here in terms of simple
model problems have also been addressed in several recent
papers using far more detailed models in more specific con-
texts. For example, the effect of recondensation on elemental
and isotopic fractionation has been discussed by several authors
including Tsuchiyama et al. (1999), Humayun and Cassen

(2000), Ozawa and Nagahara (2001), Richter et al. (2002b),
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and most recently by Grossman and Fedkin (2003). All of these
papers recognized that the key parameter governing reconden-
sation is Pi /Pi,sat, which follows directly from Eqn. 1, and come
to similar conclusions as to how isotope fractionation is af-
fected by finite Pi /Pi,sat. What distinguishes the present ap-
proach is that the models have been idealized and simplified to
allow one to more easily recognize how the various timescales
of the evaporation problem determine the magnitude of Pi /
Pi,sat and the associated departures of the isotopic fraction-
ations from perfect Rayleigh fractionation. Simple models can
also make certain potentially puzzling results easier to under-
stand by stripping the problem down to its most essential
aspects. An example of this is seen in the discussion of the
diffusion-limited evaporation of a multicomponent system
where the elemental fractionation can extend throughout the
sample but the isotopic fractionations are restricted to a bound-
ary layer. Ozawa and Nagahara (2001) have also shown model
results in which the elemental and isotopic fractionations occur
over very different length scales but they did not discuss this
curious result in any detail and they did not consider how
isotope fractionation by diffusion might modify the results. In
the most general sense, the role of idealized models is to
enhance our intuition regarding the systems of interest by
providing natural measures of fast vs. slow; big vs. small.
Developing an intuitive grasp of the conditions that allow
evaporating and/or condensing systems to fractionate elements
with or without associated isotopic fractionation is an essential
step towards being able to exercise independent critical judg-
ment regarding specific claims as to the role that evaporation
and condensation played in establishing the diverse chemical
properties of solar system materials.
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