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Abstract—New techniques of isotopic measurements by a new generation of mass spectrometers equipped with
an inductively-coupled-plasma source, a magnetic mass filter, and multiple collection (MC-ICPMS) are quickly
developing. These techniques are valuable because of (1) the ability of ICP sources to ionize virtually every element
in the periodic table, and (2) the large sample throughout. However, because of the complex trajectories of multiple
ion beams produced in the plasma source whether from the same or different elements, the acquisition of precise
and accurate isotopic data with this type of instrument still requires a good understanding of instrumental
fractionation processes, both mass-dependent and mass-independent. Although physical processes responsible fo
the instrumental mass bias are still to be understood more fully, we here present a theoretical framework that allows
for most of the analytical limitations to high precision and accuracy to be overcome. After a presentation of unifying
phenomenological theory for mass-dependent fractionation in mass spectrometers, we show how this theory
accounts for the techniques of standard bracketing and of isotopic normalization by a ratio of either the same or a
different element, such as the use of Tl to correct mass bias on Pb. Accuracy is discussed with reference to the
concept of cup efficiencies. Although these can be simply calibrated by analyzing standards, we derive a
straightforward, very general method to calculate accurate isotopic ratios from dynamic measurements. In this
study, we successfully applied the dynamic method to Nd and Pb as examples. We confirm that the assumption of
identical mass bias for neighboring elements (notably Pb and Tl, and Yb and Lu) is both unnecessary and incorrect.
We further discuss the dangers of straightforward standard-sample bracketing when chemical purification of the
element to be analyzed is imperfect. Pooling runs to improve precision is acceptable provided the pooled
measurements are shown to be part of a single population. Second-order corrections seem to be able to improve the
precision on143Nd/144Nd measurements. Finally, after discussing a number of potential pitfalls, such as the
consequence of peak shape, correlations introduced by counting statistics, and the effect of memory on double-spike
methods, we describe an optimal strategy for high-precision and accurate measurements by MC-ICPMS, which
involves the repetitive calibration of cup efficiencies and rigorous assessment of mass bias combined with
standard-sample bracketing. We suggest that, when these simple guidelines are followed, MC-ICPMS is capable

of producing isotopic data precise and accurate to better than 15 ppm.Copyright © 2004 Elsevier Ltd
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1. INTRODUCTION

Because of the intrinsic limitations of quadrupoles, m
spectrometers equipped with an inductively-coupled-pla
source were unable to produce precise isotopic measure
until they were fitted with a magnetic mass filter—which
sures flat top peaks—and multiple collection—which o
comes the instability of the plasma. Although the precisio
the very first isotopic measurements by MC-ICPMS (Walder e
al., 1993) remained somewhat unconvincing due to a com
nation of arduous issues, such as isobaric interferences, m
effects, and the complex path of ions formed at very
temperatures, the techniques improved rapidly over the fo
ing years to the point where it could eventually be dem
strated that the typical between-run uncertainties of this p
ular analytical method were becoming very similar to
state-of-the-art of thermal ionization mass spectrom
(TIMS). In particular, routine external precision better t
0.35 epsilon units (35 ppm) can be achieved on Nd an
isotopic compositions (Blichert-Toft et al., 1997; Luais et a
1997; Vance and Thirlwall, 2002). When this property is com
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bined with the ability of the ICP source to ionize nearly
elements in the periodic system, thus producing precise iso
compositions for poorly ionizing elements (Fe, Cu, Zr, Hf,
and the possibility of correcting instrumental mass bias b
use of an element different from that being analyzed (e.g
for Pb, Zn for Cu, and Yb for Lu) (Longerich et al., 1987,
Rehkämper and Mezger, 1997;Belshaw et al., 1998; Mare´chal
et al., 1999; White et al., 2000; Blichert-Toft et al., 2002), the
large sample throughput of MC-ICPMS gives this instrume
tremendous advantage over conventional TIMS. It is not e
gerating to assert that MC-ICPMS has now superseded T
for routine isotopic analysis of most elements and is the me
of choice for the numerous elements that, for one reaso
another, cannot be measured by TIMS.

The accuracy and precision of MC-ICPMS measurem
are, however, still perceived as insufficiently validated, in
ticular with reference to TIMS. Dynamic measurements o
(Blichert-Toft et al., 1997) and Nd (Luais et al., 1997) isotope
compositions have demonstrated that MC-ICPMS can pro
accurate isotopic results, but this method remains tediou
inefficient for small samples. Consequently, essentially all
ICPMS instruments are run in static mode, which vividly exp
their major weakness: the transmission of an ion beam depen

both the trajectory and the collection device associated with each
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individual isotope to an extent that surpasses what is observed for
TIMS measurements. Such strong isotopic bias, which will be
discussed in more detail later in the paper, becomes increasingly
severe as instruments get older and more contaminated by accu-
mulating sample material. The isotopic bias is primarily due to the
very high temperature of the plasma, which generates ions with
different initial energies and therefore with complex trajectories in
the mass spectrometer. The habit has been developed on some
instruments to correct these effects by using “efficiencies” deter-
mined by calibration against known standard solutions. On the
unwarranted assumption inherited from TIMS historical develop-
ment that a good mass spectrometer should be able to yield
accurate results without having to resort to complex data reduc-
tion, this correction is therefore often erroneously considered as a
suspect “fudging” practice.

A new generation of TIMS is now commercially available
for which ultra-high precision (typically less than 10 ppm)
recently has been claimed, but mass fractionation behavior
observed in that range of precision still remains a complex
issue (Papanastassiou et al., 2003; Caro et al., 2003). In addi-
tion, given the immense success of the triple-spike method of
isotopic measurements by TIMS in obtaining very precise Pb
isotope data (Galer, 1999), this method is rapidly spreading to
MC-ICPMS instruments (Thirlwall, 2002) and, inevitably,
some discrepancies have appeared between these results and
those obtained in static mode, especially when one element is
used to correct the mass bias of another, such as in the case of
Tl on Pb (Thirlwall, 2000, 2002). Finally, one downside to the
large MC-ICPMS throughput is the capability of this instru-
ment to generate large numbers of replicate analyses. By itself,
this sheer number of data increases the number of seemingly
inconsistent results that would only be occasionally produced
with a more tedious and time-consuming technique.

The present study describes the theoretical foundations of the
production of precise and accurate data by MC-ICPMS. Once
these are established, we show how this theory accounts for the
techniques of standard bracketing, and of isotopic normaliza-
tion by a ratio of either the same or a different element.
Accuracy is discussed with reference to the concept of efficien-
cies, and we also derive a general method to calculate more
accurate ratios from dynamic measurements. We further dis-
cuss a number of potential pitfalls, such as the correlations
introduced by counting statistics and the impact of memory
effects on double-spike methods. A final discussion describes
the pros and cons of each of the available approaches to
high-precision and accurate measurements by MC-ICPMS.

A table of symbols and some analytical details relevant to the
examples discussed in this article are given as Appendices.

2. A PHENOMENOLOGICAL DESCRIPTION OF THE
MASS-DEPENDENT INSTRUMENTAL BIAS

Mass bias is mass fractionation introduced by the mass
spectrometer. Although this topic has been covered before in a
number of papers (Hofmann, 1971; Russell et al., 1978; Hart
and Zindler, 1989; Habfast, 1998), the more general phenom-
enological theory of Maréchal et al. (1999) provides a unifying
framework essential for the understanding of instrumental pre-
cision and will be briefly reviewed here.
Let us call Nk the number of atoms of the isotope k of an
element of interest introduced into the mass spectrometer and
nk the number of charges forming the electronic signal of this
isotope. Let us further call �(Mk) the transmission nk/Nk of the
isotope of mass Mk through the mass spectrometer. A variety of
phenomena concur to create the condition for variable yield
from one isotope to another even for a same element. Mass-
dependent ionization, even at very high plasma temperatures,
hydrodynamic entrainment by the expanding Ar atoms behind
the cones (Niu and Houk, 1996), space-charge effects within
the zone of electrical acceleration, and chromatic aberrations in
the electrostatic sector, are all effects that may affect the
transmission in a relatively smooth mass-dependent way.

2.1. The Linear Law

This law (Fig. 1) is probably the most intuitive of all the
mass-fractionation laws. Let us expand the transmission �(M)
of isotopic beams at mass M as a function of the mass differ-
ence with a reference mass Mk:

��M� � ��Mk� �
���Mk�

�M
�M � Mk� � ���M � Mk�

2� (1)

where � indicates that the remainder of the expansion is on the
order of magnitude of the argument. Let us evaluate this expres-
sion for M � Mi � Mk � �M and divide the results by �(Mk):

��Mi�

��Mk�
� 1 �

� ln ��Mk�

�M
�Mi � Mk� � O��Mi � Mk��

2 (2)

Fig. 1. Transmission as a function of the collector position along the
focal plane. This position is parameterized by mass M. Transmission is
the ratio between the number of ions of mass Mi arriving at the collector
at mass Mi divided by the number of atoms of mass Mi introduced in
the mass spectrometer. � is the linear mass bias coefficient.
Let us now call � the derivative on the right-hand side evalu-
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ated at M � Mk and consider the first-order term only. The
expression:

��Mi�

��Mk�
�

ni/nk

Ni/Nk
�

ri

Ri
� 1 � ��Mi � Mk� (3)

gives the common form of the linear mass fractionation law. In
this expression, ri and Ri stand for the measured and true
isotope ratios, respectively, with the implicit convention that
the ratios have the reference isotope k at the denominator. The
parameter � is referred to as the linear mass bias. A typical
mass bias for MC-ICPMS may vary from a few percent per
amu at low mass to 1% per amu for high masses, such as Hf and
Pb. This bias is typically an order of magnitude larger than for
the characteristic bias incurred in TIMS measurements. Unfor-
tunately, the linear law is not consistent: if two ratios fraction-
ate according to the linear law, the ratio of these ratios does not.

2.2. The Power Law

Let us instead expand the logarithm of the transmission
�(M) of isotopic beams at mass M as a function of the mass
difference with a reference mass Mk:

ln ��Mk � �M�

� ln ��Mk� �
� ln ��Mk�

�M
�M � ���2M� (4)

To the first order, the mass bias on the isotopic ratio Ni /Nk can
be evaluated from:

ln ��Mi� � ln ��Mk� � ln
ni/nk

Ni/Nk
� ��Mi � Mk� (5)

We define the mass bias factor g � e� and finally obtain the
expression for the so-called mass-fractionation power law as:

ri � Rig
Mi�Mk (6)

2.3. The Exponential Law

The experimental law is evaluated similarly to the power
law, but ln �(M) is now expanded as a function of ln M:

ln ��Mi� � ln ��Mk� �
� ln ��Mk�

� ln M
�ln Mi � ln Mk�

� ���ln Mi � ln Mk�
2� (7)

To the first order, the mass bias on the isotopic ratio Ni /Nk is
evaluated from:

ln ��Mi� � ln ��Mk� � ln
ni/nk

Ni/Nk
�

� ln ��Mk�

� ln M
ln

Mi

Mk
(8)

The mass bias factor � is defined as:

� �
� ln ��Mk�

� ln M
� Mk� (9)

from which we get the mass-fractionation exponential as:

ri � Ri�Mi

Mk
� �

(10)
2.4. The Generalized Power Law

Maréchal et al. (1999) showed that the exponential and the
power laws are special cases of a more general mass-fraction-
ation law. This general law is obtained by expanding ln �(M)
as a function of Mq, where q is an arbitrary exponent:

ln ��Mi� � ln ��Mk�

� ln
ni/nk

Ni/Nk
�

� ln ��Mk�

�Mq �M i
q � M k

q� (11)

Defining the fractionation coefficient h as:

ln h �
� ln ��Mk�

�Mq (12)

Maréchal et al. (1999) obtained the general result:

ri � Ri h
M i

q�M k
q

(13)

and defined the fractionation factor f � q ln h. The power law
is obtained for q � 1. The exponential law is obtained as a limit
for q 3 0 (Maréchal et al., 1999) and then f � �. Other laws
are easily obtained, such as the law resulting from the distri-
bution of atom energy over vibrational quantum levels with
q � �1 (e.g., Criss, 1999). Kehm et al. (2003) suggest an
alternative mass-fractionation law:

ri � Ri�
	Mk

Mi MndM (14)

where � is the mass-fractionation parameter and n is an arbi-
trary exponent. The sum in the exponent can be exactly inte-
grated, which gives:

ri � Ri�
M i

n�1�M k
n�1

n�1 (15)

Replacing n � 1 by q and � by hq demonstrates that the
mass-fractionation law of Kehm et al. (2003) is identical to the
generalized power law of Maréchal et al. (1999).

A first property of the generalized power law and its power
and exponential special cases is that ratios of ratios follow
consistent mass-fractionation laws: if both 206Pb/204Pb and
207Pb/204Pb fractionate according to the generalized power law,
so does their ratio 207Pb/206Pb.

The second remarkable property of the generalized power
law is that linear alignments are obtained in log-log plots, in
which one measured isotopic ratio is plotted against another,
thereby reducing the need to determine which value of q and
therefore which particular mass fractionation law holds for the
measurements. Provided run conditions are left unchanged
between two runs of the same sample solution, the relationships
between the isotopic proportions of the two runs are simply
related. In a log-log plot, several runs of a same known solution
for various values of the mass-bias function h must form an
alignment with the slope Mi

q � Mk
q (Fig. 2). Taking the loga-

rithm of Eqn. 13 for two ratios i/k and j/k, we obtain:

ln ri � ln Ri

ln rj � ln Rj
�

M i
q � M k

q

M j
q � M k

q � sj/k
i/k (16)

207/204
For example, we obtain the expression of the slope s206/204 of
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the alignment of Pb isotopic ratios of a same lead solution in
the plot of log 207Pb/204Pb vs. log 206Pb/204Pb as:

s206/ 204
207/ 204 �

M 207Pb
q � M 204Pb

q

M 206Pb
q � M 204Pb

q (17)

with the limit solution for the exponential law:

s206/ 204
207/ 204 �

ln �M207Pb/M204Pb�

ln �M206Pb/M204Pb�
(18)

For mixed solutions of two elements, such as Zn and Cu, or
Pb and Tl, this linear property still holds provided their two
fractionation factors f are proportional (Fig. 3). For Pb and Tl
and an exponential law ( f � �), we can write the slope of the

Fig. 2. Plot of ln (143Nd/144Nd)meas vs. ln (146Nd/144Nd)meas of a Nd
solution run several times within a short time interval. s146/144

143/144 is the slope
(M143

q � M144
q )/ (M146

q � M144
q ) 
 �0.5 of the alignment. The position of

a given measurement along the mass fractionation line is a relative mea-
sure of the mass bias and does not evolve steadily through time.

Fig. 3. Plot of ln (207Pb/204Pb)meas vs. ln (205Tl/203Tl)m

over a period of 12 h. The linear relation holds even when
slope s205/203

207/204 of the alignment (1.513) is similar to the valu
207 204
such a difference may change the corrected Pb/ Pb ratio by
mass-fractionation line in an ln 207Pb/204Pb vs. ln 205Tl/203Tl
diagram as:

s205/ 203
207/ 204 �

�Pb

�Tl

ln �M207Pb/M204Pb�

ln �M205Tl/M203Tl�
(19)

We will see that, in principle, there is no need to determine
the actual value of q for a given series of runs, but should the
“ true” isotopic composition of a sample be known (e.g., for
gravimetrically prepared standards) or estimated from TIMS
measurements under conditions of well-controlled mass bias,
the value of q can be determined for the conditions at which the
MC-ICPMS is operated. In this way, Maréchal et al. (1999)
deduced from a series of Zn isotope measurements that the
exponential law accounts for the patterns of the Zn mass bias
on the Lyon Plasma 54.

A third property of the generalized power law is the mass
fractionation (�R/R)1 per mass unit difference for constant h at
a given q:

��R

R �
1

�
1

Mi � Mk
� ri

Ri
� 1� (20)

Expressions for (�R/R)1 have been tabulated for q in the range
[�2, �2] by Maréchal et al. (1999). For the power law (q � 1),
mass fractionation is constant across the mass range, while it
varies as M�1 for the exponential law (q � 0). Blichert-Toft et
al. (1997) used this particular feature to establish that the
exponential law is best suited for the Lyon MC-ICPMS.

For small extents of isotopic fractionation, the generalized
power law, and therefore also the other laws considered above,
reduces to the linear law and the linear fractionation coefficient
� is easily shown to converge towards Mk

q�1 f.

3. STANDARD BRACKETING METHODS

In a variety of techniques, notably gas-source mass spec-
trometry, standard bracketing methods have been used for

mixed Pb-Tl solution run several times between samples
ments appearing on each axis are different. Although the
ted from the mass relationship (1.489) of the exponential,
eas of a
the ele

e predic

almost 400 ppm.
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decades to interpolate the mass bias of an unknown sample
between the biases inferred from two standard runs, one pre-
ceding and one following the sample analysis (less stringent
orders of interpolation are also used). Let us divide Eqn. 10 for
the sample by the same equation for a standard (std1) run just
before the sample. We get:

�Ri�sple

�Ri�std
�

�ri�sple

�rk�std1
�Mi

Mk
� �std1��sple

(21)

with a similar equation for the standard (std2) run just after the
sample. We now assume that

�sple � �1 � � ��std
1 � ��std

2 (22)

in which � is a constant analogous to a time and chosen
between 0 and 1. We now get

�Ri�sple

�Ri�std
�

�ri�sple

�ri�std1
�Mi

Mk
� � ��std1��std2�

(23)

�Ri�sple

�Ri�std
�

�ri�sple

�ri�std2
�Mi

Mk
� �1�� ���std2��std1�

(24)

Raising the first of these equations to the power of 1 � � and
the second to the power of � and then multiplying them, the
terms in Mi/Mk cancel out and we obtain:

�Ri�sple � �Ri�std

�ri�sple

�ri�std1
1�� � �ri�std2

� (25)

This interpolation scheme requires a choice of the value of �,
which is commonly chosen to be equal to 0.5 (mid-point)
whenever samples and standards alternate regularly. This is a
fairly general approach, which amounts to linearly interpolating
the logarithms of the isotopic ratios.

Equation 22 shows that mass fractionation by simple inter-
polation between standards, i.e., without internal or external
isotopic normalization, is correct only when mass fractionation
changes smoothly upon alternating between standards and sam-
ples, which requires extremely strict sample purification. A
heavy sample matrix (typically more concentrated than the
element being analyzed) significantly changes fractionation
(e.g., Woodhead, 2002). The presence of sample matrix often
results in �sple falling outside the range [�std

1 � �std
2 ] and thus

nullifies the basic assumption of the method.

4. IMPLEMENTATION OF THE FIRST-ORDER MASS
BIAS CORRECTION

As shown by Maréchal et al. (1999) and White et al. (2000),
the linearity property of the isotopic array formed in log-log
plots by all the measurements of a same solution can be used to
obtain the isotopic ratio of a sample with respect to the same
ratio in a standard solution of known isotopic properties. Tak-

ing the logarithm of Eqn. 13 for both the sample and the
standard and dividing this equation by the same equation for
the ratio Nj /Nk, we obtain:

ln �Ri�sple � ln �ri�sple

ln �Rj�sple � ln �rj�sple
�

ln �Ri�std � ln �ri�std

ln �Rj�std � ln �rj�std

�
M i

q � M k
q

M j
q � M k

q � sj/k
i/k (26)

in which the slope sj/k
i/k can be calculated either from the frac-

tionation law that best describes the mass spectrometer used by
the analyst or determined by running standard solutions. We
will assume that the uncertainty on the slope does not induce a
significant error on the corrected ratios. Let us define the
intercept Isple of the mass fractionation line with the y-axis as:

Isple � ri � sj/k
i/krj (27)

We can rearrange Eqn. 26 as:

ln �Ri�sple � sj/k
i/k ln �Rj�sple � Isple (28)

with a similar equation for the standard. This equation provides an
analytic formulation of the principles developed by Maréchal et al.
(1999). These mass fractionation equations can be used to solve
two common types of problems. First, as for Sr, Nd, and Hf, a
common reference Rj is chosen for internal normalization (e.g.,
146Nd/144Nd � 0.7219). This amounts to removing all the mass-
dependent fractionation effects (both natural and analytical) so as
to preserve only radiogenic, cosmogenic, and/or nucleosynthetic
isotopic deviations, and to assuming that Rj is constant. By sub-
tracting Eqn. 28 for the sample from the same equation for the
standard, we get the key expression:

ln �Ri�sple � ln �Ri�std � Isple � Istd (29)

For Nd, for example, we would get

ln �143Nd/144Nd�sple
corr � ln �143Nd/144Nd�std

true � Isple � Istd (30)

in which the “ true” (accepted) value of the standard stands for
the corrected value. I defined as

I � ln �143Nd/144Nd�meas � s146/144
143/144 ln �146Nd/144Nd�meas (31)

is the intercept of the straight line with slope s146/144
143/144 drawn

through the point with coordinates x � ln (146Nd/144Nd)meas

and y � ln (143Nd/144Nd)meas. A different choice of normal-
ization ratio would give the same result. The difference be-
tween the logarithm of the mass-bias corrected ratios for the
sample and the standard is simply the vertical distance between
the parallel lines with a slope of s146/144

143/144 drawn through the
points representing the sample and the standard. The slope
s146/144

143/144 does not even have to be determined from the same
solution as the standard (Fig. 4). To avoid amplification of the
uncertainty on s146/144

143/144 and thereby to achieve high accuracy, it
is essential that the abscissas of the two runs (146Nd/144Nd)meas

are as similar to each other as possible and therefore that the
materials to be analyzed are extremely well purified. To a good

approximation and regardless of the reference material (chon-
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drites or other), Eqn. 30 relates the difference �I � Isple � Istd

to the difference in �	 � 	sple � 	std through:

�	 � 10,000�I (32)

A second situation arises when there is no stable ratio that can
be used as reference, which is the case for Pb, but also for
elements with only two isotopes (Cu, Rb, Lu). It may also be
that it is the mass-dependent isotopic fractionation itself that is
sought, e.g., for the stable isotope geochemistry of Zn, Fe, Ge,
and many other such elements. It is noteworthy that the previ-
ous equations do not require that the isotopic ratio used for
normalization (x-axis) and the ratio to be established (y-axis)
have to be for the same element. The original formulation of
this property by Longerich et al. (1987) assumed identical
isotopic fractionation factors for the two elements, but this is
not at all a necessary constraint and we will show below that,
in fact, the use of this very assumption may lead to significant
error. Let us consider a mixed Pb-Tl solution. Let us define
s205/203

206/204 as the slope of the isotopic analyses of standard solu-
tion alignment in a plot of y � ln 206Pb/204Pb vs. x � ln
205Tl/203Tl. The condition necessary for this array to be linear
is that (�Pb/�Tl)sple � (�Pb/�Tl)std, which is yet another call for
near-perfect Pb purification. For a same value of the normal-
izing 205Tl/203Tl ratio in the mixed standard solution and in the
sample doped with a Tl spike solution, a form similar to Eqn.
29 can be written:

ln �206Pb/204Pb�sple
corr � ln �206Pb/204Pb�std

true � Isple � Istd (33)

where:

I � ln �206Pb/204Pb�meas � s205/ 203
206/ 204 ln �205Tl/203Tl�meas (34)

For Pb, Cu, or Zn, the raw values of the standard used as a
reference to define the reference mass fractionation line (pri-
mary standard) should not be used for inter-laboratory compar-
isons. For Pb, the lack of secondary standards with isotopic

Fig. 4. Principle of the mass bias correction for a Nd sample. The
slope s146/144

143/144 is determined by measuring any Nd shelf solution suitable
as a reference (open circles), preferably, but not necessarily, a standard
solution. The difference between a particular sample and a standard is
equal to the vertical distance between the lines drawn through the
points representing the sample and the standard and with a slope equal
to s146/144

143/144.
compositions reasonably close to the composition of the NIST
981 standard is a serious limitation to the cross-calibration of
the relative precision of different instruments.

The slope sj/k
i/k is best estimated from the isotopic ln ri vs.

ln rj array for a shelf solution and should be carefully
determined for the interval during which the samples are
measured. Standards bracketing the measured samples do
not provide the best estimate of this slope: their isotope
compositions are either very similar, in which case the error
on the slope is large, or very different, which usually reflects
a heavy matrix in the intercalated sample solution that
abruptly changed the mass bias over an unknown period of
time. Provided the alignment is good, we therefore rather
suggest to use the slope determined on a large set of stan-
dards run over a period of several hours in alternation with
samples. Woodhead (2002) suggests to use reference solu-
tions doped with elements similar to those present in the
sample matrix. A less rigorous method is to assume that the
value of q is known, which may be true for a certain type of
mass spectrometers: on the Plasma 54 in Lyon, q could never
be shown to deviate significantly from 0 (exponential law).
A precise knowledge of the exponent q is, however, never a
prerequisite for obtaining precise measurements, although q
must be known for accurate results to be achieved.

The implicit assumption in this correction is that both of
the mass fractionation factors h, e.g., for Pb and Tl, or Cu
and Zn, are different, but that their ratio remains constant
upon switching between sample and standard solutions.
Again, this assumption stands better chances of being cor-
rect if purification of the sample has been efficient. For Cu,
Zn, and the Pb isotope ratios that are the closest to unity
(207Pb/206Pb and 208Pb/206Pb), a precision of 50 ppm can be
achieved (Maréchal et al., 1999; White et al., 2000). For
larger ratios, such as 206Pb/204Pb and 207Pb/204Pb, the ob-
tainable precision is 200 –400 ppm.

An important application of this theory is the precise
correction of both isobaric interferences and mass bias for
isotope dilution. Its application to the isotope dilution of Lu
in the presence of Yb is described in Blichert-Toft et al.
(2002) and Barfod et al. (2003). On the one hand, the
presence of Yb in the Lu fraction creates an interference on
mass 176, which, in principle, is a disadvantage, but Yb-Lu
separation is excruciatingly difficult. On the other hand, the
presence of Yb together with Lu can also be considered an
advantage in that it allows the analyst to control the instru-
mental mass bias. From the preceding discussion, it is un-
derstood that, once normalization to a “clean” isotope ratio
has been made, the difference in the other isotopic ratios
needs no further correction for mass bias. Let us thus write
that Lu and Yb overlap at mass 176, whereas Yb is inter-
ference-free at mass 171 and Lu is interference-free at mass
175 and note T as the total signal at a given mass:

176Lu
175Lu

�
176Lu
176T

176T
175Lu

� �1 �
176Yb
176T � 176T

175Lu

� �1 �
�176Yb/171Yb�Yb std

�176T/171T�Lu�Yb mix
� 176T

175T
(35)

When this expression evaluated for a run of a spiked sample

is divided by the same expression for an Yb � Lu standard
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mixture, it is possible to obtain the 176Lu/175Lu of the spiked
sample and thereby derive its concentration by the standard
equations of isotope dilution. The only requirement is that
all the ratios must be evaluated for a same extent of mass
fractionation. This is conveniently achieved by interpolating
in Fig. 5 the mass fractionation lines of the standard solu-
tions at the value of 174Yb/171Yb of the sample run. This, of
course, cannot be rigorously done for the isotopic composi-
tion of the pure spike solution, but unless the sample is
severely overspiked, the incidence on errors from assuming
that mass fractionation in the spike run is similar to the
average fractionation of a standard solution, is negligible.
Despite the low abundance of 176Lu, this technique allows
for the routine precision of 0.2–0.5 per mil to be obtained
for Lu/Hf ratios (as precise hafnium concentrations are
readily obtained on pure Hf fractions by isotope dilution
with internal correction of the mass bias).

5. IMPLEMENTATION OF THE SECOND-ORDER MASS
BIAS CORRECTION

Let us first describe an exact, single stage of second-order

Fig. 5. Principle of isotope dilution when both isobaric interfer-
ences and instrumental mass bias are present. A position along the
horizontal axis (dashed vertical line) corresponds to a unique value
of the mass bias. Solutions of pure Yb standard and mixed Yb-Lu
standards are run in between the spiked samples. Their slope is
consistent with the theoretical slope inferred from mass differences
(
5/3). The straight lines obtained on the standards can be inter-
polated at the sample value of 174Yb/171Yb. At this stage, compar-
ison between the ordinates of the sample and the interpolated Yb-Lu
mixture gives the 176Lu/175Lu of the spiked sample and therefore its
Lu concentration.
correction, which will be evaluated here for the exponential
law. Retaining the second-order term of Eqn. 7 and 9, we
obtain:

ln ��Mi� � ln ��Mk� � �� ln
Mi

Mk
�




2
ln2

Mi

Mk
� �� ln3

Mi

Mk
�

(36)

where �� and 
 are the first- and second-order coefficients,
respectively, of the ln � expansion with respect to M in the
neighborhood of Mk. From the way it is evaluated, the first-
order coefficient �� of the second-order expansion is different
from the equivalent coefficient � in the first-order expansion.
Using �i for ln (Mi/Mk), this equation can be simplified as:

ln
ri

Ri
� ���i � 


�i
2

2
(37)

Two normalization ratios Ri and Rj are required to solve this
equation in �� and 
, and the solution is:

�� �
�j

�i��j � �i�
ln

ri

Ri
�

�i

�j��j � �i�
ln

rj

Rj
�

�j�i � �i�j

�j � �i


 � �
2

�i��j � �i�
ln

ri

Ri
�

2

�j��j � �i�
ln

rj

Rj
� 2

�j � �i

�j � �i

(38)

where �i and �j are calculated using the standard first-order
exponential law for the ratios ri and rj. The last expression of 

indicates that a second-order correction is appropriate when-
ever the first-order �i values vary linearly with the mass dif-
ference.

A two-stage technique aimed at handling the second-order
effects was proposed by Thirlwall (1991) and subsequently
used by Vance and Thirlwall (2002) and Caro et al. (2003) for
Nd isotope analysis. These authors opted for two successive
steps of correction. In each case, the first step of correction uses
an exponential law with normalization to 146Nd/144Nd �
0.7219. Thirlwall (1991) and Vance and Thirlwall (2002) used
the correlation between the first-step corrected ratios of stan-
dard solutions to normalize 143Nd/144Nd to a fixed value of
142Nd/144Nd and succeeded in reducing the variance of their
measurements. Caro et al. (2003) used the same procedure to
refine the exponential correction of 143Nd/144Nd and 142Nd/
144Nd by assuming a constant 150Nd/144Nd. Figure 6 shows the
topology of this correction in three dimensions. We will now
show that a second-order correction can be implemented with-
out an a priori determination of a fractionation line on standard
solutions.

Two normalization ratios Ri(
146Nd/144Nd) and Rj(

142Nd/
144Nd) are used to correct the bias on an unknown ratio Rx

(143Nd/144Nd). After the first step of exponential correction
(Eqn. 10), the measured ratio rj becomes rj

e with:

ln
rj

rj
e � ��j �

�j

�i
ln

ri

Ri
(39)

Using Eqn. 37, this equation is rewritten as:

ln
rj

rj
e � �j��� �




2
�i� (40)
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and a similar expression holds for rx
e. Moreover, Eqn. 37 for Rj

reads:

ln
rj

Rj
� �j��� �




2
�j� (41)

Dividing the last two equations by �j and subtracting them
gives:

ln
rj

e

Rj
�




2
�j��j � �i� (42)

Writing a similar expression for Rx shows that the exponen-
tially corrected ratios rj

e and rx
e are correlated and that the

correlation line goes through the values of the “ true” Rj and Rx

ratios. The correction expression is:

Rx � rx
e �Rj

rj
e�

�x

�j

�x��i

�j��i

(43)

An application of this correction scheme will be presented
below. In the cases considered by Thirlwall (1991) and Vance
and Thirlwall (2002), the slope of the correlation between the
exponentially corrected values of 143Nd/144Nd and 142Nd/
144Nd is 
 0.2, which agrees with the predictions of this theory.

Regardless of the success of the two-stage scheme, utmost
care must be exercised in validating such a gain of precision: a

Fig. 6. Topology of Thirlwall’s (1991) two-stage correc
standard solution is analyzed several times and the data a
law. The points corrected after the first stage form an al
corrected to a reference value of 150Nd/144Nd. It is assum
is the same regardless of the sample and that the second-
two-stage correction based on the residuals of a single-stage
correction must improve the apparent precision regardless of
the underlying physics of mass fractionation. Such an improve-
ment is a straightforward statistical effect, which simply re-
flects that two free parameters always provide a better fit than
one. Checking that the slope between the exponentially cor-
rected values fits the predicted value is a good test of whether
a second-order correction is appropriate.

6. MASS-INDEPENDENT FRACTIONATION

Mass fractionation can be viewed as a combination of mass-
dependent and mass-independent effects. The former is what has
been dealt with so far and largely results from a spread in the ion
energy during ionization and transport in the mass spectrometer.
The latter can be viewed as a scatter of the actual transmission
around the dashed straight line shown in Figure 1. Mass-indepen-
dent biases arise as a consequence of a number of problems, of
which the most important are: (1) a sloping or rounded peak top
may result from the imperfect z-focusing of the ion beams; (2) the
ion beams may have cross sections so broad that they become
partially clipped along their trajectory in the flight tube, especially
for off-axis masses; (3) secondary electrons may not be suppressed
with a 100% efficiency; (4) scattered ions of various masses may
bounce around the collection system and be picked up by the
wrong detector; (5) collisions of ions in the flight tube behind the
magnet produce some energy scatter which results in a continuous

ng the 150Nd/144Nd ratio as a second reference. The same
corrected to 146Nd/144Nd � 0.7219 using an exponential
t in a 143Nd/144Nd vs. 150Nd/144Nd plot and can now be
the slope of the 143Nd/144Nd vs 150Nd/144Nd correlation

orrection is small.
tion usi
re first
ignmen
ed that
background affecting the true zero value; (6) the response of
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resistors may be nonlinear; and (7) counting statistics (see below).
Although these problems usually involve only a very small frac-
tion of the ion current (typically less than 500 ppm) for modern
mass spectrometers, they may nevertheless alter the precision of
the measurements in a way that is not a linear function of the mass
difference between the beams collected in the Faraday cups. In
addiition, 500 ppm is significant when aiming at �100 ppm
precision for isotopic measurements.

Let us illustrate the mass-independent fractionation issue
with the case of an imperfectly flat peak top: transmission at a
given mass changes with detector position independently of the
mass to be collected. Peak tops may be round, sloping, or both.
These imperfections will strongly affect the isotopic ratios. For
Sr and Nd, Thirlwall (1991) noted that, even after mass-frac-
tionation correction, a truncated peak could leave spuriously
correlated ratios, but asserted that a sloping peak should have
no effect. The effect of peak shape is therefore a fairly general
problem. Let us call M � Mi � �Mi the actual position of the
cup with respect to its ideal position at mass Mi. The measured
ratio must now be expanded as a function of mass and cup
position. Assuming for the sake of illustration that the mass
fractionation law is exponential and that the peak top is sloping,
a first-order expansion is sufficient. We obtain:

ri � Ri� Mi � �Mi

Mk � �Mk
� �

� Ri�Mi

Mk
� �� 1 � �Mi/Mi

1 � �Mk/Mk
� �

(44)

and the exponentially corrected ratio as:

ri
e � Ri� 1 � �Mi/Mi

1 � �Mk/Mk
� �

(45)

A deviation from the ideal first-order fractionation law will
appear as a residual correlation between the ratios corrected for
mass bias using the exponential law. It can be verified that even
very small �M/M in Eqn. 45 produces a potentially important
isotopic effect on the order of 1 � �(�Mi � �Mk)/Mk. The
alignment of the correlation between the corrected ratios x � ln
ri

e and y � ln rj
e produced by sloping peaks in a log-log plot has

a slope of 
�Mj/�Mi. For a round peak, a second-order term
should be included.

If the isotopic composition of a standard solution of the element
under consideration is known, at least for an adopted value of a
reference ratio, such as 146Nd/144Nd � 0.7219, mass-independent
isotopic fractionation can be conveniently dealt with by introduc-
ing correction factors (also known as efficiencies), which are
determined by measuring the standard and comparing its isotopic
abundances with the known values. Let us first demonstrate,
however, that although these mass-independent effects change the
measured isotopic compositions, they do so in a way that pre-
serves the slope of the linear alignments in log-log plots and
therefore allows isotopic variations among standards to be deter-
mined with an excellent precision.

Let the transmission �k

 at mass k in collector 
 be the

product of a mass-dependent bias �(Mk) and a cup-dependent
factor (efficiency) �


nk/Nk � �
��Mk� (46)

The symbol �(Mk) represents the mass bias when all the masses

are peak-jumped in the same cup, such as done by the standard
procedure still employed on all single-collector mass spectrome-
ters. If we assume that mass i is collected in cup � and the bias
�(M) follows the generalized power-law with exponent q, we
obtain the expression for the measured ratio of masses i to k as

ri �
��

�


Rih
M i

q�M k
q

(47)

Writing a similar equation for the ratio Nj /Nk with the assump-
tion that mass j is collected in cup �, we can write

ln Rj � ln rj � ln ��/�


ln Ri � ln ri � ln ��/�


�
M j

q � M k
q

M i
q � M k

q � si/k
j/k (48)

In other words, variable cup efficiencies change the intercept,
not the slope, of the mass-fractionation curves, and the proce-
dure for correcting mass fractionation with respect to a standard
is similar to the case in which no cup efficiencies are involved.

7. CORRECTION OF THE INSTRUMENTAL BIAS
IN DYNAMIC MODE

Mass-independent isotopic fractionation is most often corrected
for by running the samples in dynamic mode, i.e., by switching the
electromagnetic field and therefore the masses across the cups,
thus allowing the efficiencies to cancel out between different beam
configurations (Dodson, 1963; Ludwig, 1997; Wendt and Haase,
1998). Luais et al. (1997) and Blichert-Toft et al. (1997) published
solutions for the dynamic analyses of 143Nd/144Nd and 176Hf/
177Hf, respectively, using an exponential law for mass bias, but
these solutions are rather cumbersome. Similarly, Wendt and
Haase (1998) presented a solution to the problem of dynamic
analysis with cup efficiencies, but again the calculations are fairly
heavy to implement. An apparently simple method consists in
evaluating cup factors by simply commuting isotopic beams with
the same mass difference into the same pair of cups and comparing
their ratios, one of which is assumed to be known, e.g., 208Pb/
206Pb, as in Thirlwall (2000). Unfortunately, this method merges
two effects that obey different laws, mass-dependent fractionation
on the one hand and mass-independent fractionation by variable
cup efficiencies on the other hand. It therefore shifts in different
directions and by different increments the measured values with
respect to the true values in the space of isotopic ratios. These
independent effects cannot be described by a single measurement.
Therefore, we here develop new systems of equations that are
versatile, relax the restrictions on the mass fractionation law, and
lend themselves to easy error assessment through matrix analysis.
Let us start by rewriting Eqn. 47 in a log form:

ln ri � ln �� � ln �
 � �M i
q � M k

q� ln h � ln Ri (49)

with the usual exponential-form limit when q 3 0:

ln ri � ln �� � ln �
 � � ln
Mi

Mk
� ln Ri (50)

When written in full, the number of unknowns is the sum c
� e � r, where c is the number of active cups, e the number of
elements for which the value h is needed, and r the number of
ratios to measure. We further assume that q is known, but this
condition can be relaxed at the price of increasing the number
of unknowns by one.
We first show how to use a standard solution (or a mixture of



2734 F. Albarède et al.
standards of different elements) of known isotopic compositions
Ni/Nk to determine the cup efficiencies. The unknowns are the
efficiencies � for each cup and the mass fractionation factors � (or
h for other laws). The system of equations is particularly compact
since Eqn. 50 now reduces to:

ln
ri

Ri
� ln �� � ln �
 � � ln

Mi

Mk
(51)

This system can be conveniently written in a matrix form:

y � Ax (52)

where the lower-case symbols stand for vectors (x for the un-
knowns x � ln �� . . . ln �
, �, and y for the data) and the
upper-case symbol A for a rectangular matrix. In most cases, the
number of measurements (dimension of y) is larger than the
number of unknowns (dimension of x) and Eqn. 52 can be solved
by standard least-square methods giving x � (AT A)�1 ATy. The
errors on the unknown values x can simply be computed from the
diagonal entry of Wx � (ATWy

�1 A)�1, where Wy is the covari-
ance matrix of the measurements y. In most cases, an approxima-
tion of Wy by a diagonal matrix, in which the entries are the
squared “errors” , is sufficient.

Let us illustrate this method with the three-sequence dynamic
run of a Pb-Tl mixture as described in Table 1 and assume for
brevity that the exponential law holds. Efficiencies are known only
as relative values and, for simplicity, we will assume that the
efficiency factor of the axial cup is unity. For the best possible
precision, the ratios to be measured are 205Tl/203Tl, 206Pb/204Pb,
207Pb/206Pb, and 208Pb/206Pb. The efficiencies will be evaluated
for the cups L2, L1, H1, and H2. The mass fractionation coeffi-
cients �Pb and �Tl are assumed to be different.

Table 1. Sample configuration of dynamic Pb isotope analysis in
three sequences. Faraday cups are labeled L for low masses, H for high
masses, and Ax for the axial collector. The axial cup is the reference so
its efficiency is assumed to be unity.

Sequence L2 L1 (Ax) H1 H2 H3

1 202 203 (204) 205 206 207
2 203 204 (205) 206 207 208
3 204 205 (206) 207 208
�
ln

�205Tl/203Tl�1
meas

�205Tl/203Tl�1
ref

ln
�206Pb/204Pb�1

meas

�206Pb/204Pb�1
ref

ln
�207Pb/206Pb�1

meas

�207Pb/206Pb�1
ref

ln
�205Tl/203Tl�2

meas

�205Tl/203Tl�2
ref

ln
�206Pb/204Pb�2

meas

�206Pb/204Pb�2
ref

ln
�207Pb/206Pb�2

meas

�207Pb/206Pb�2
ref

ln
�206Pb/204Pb�3

meas

�206Pb/204Pb�3
ref

ln
�207Pb/206Pb�3

meas

�207Pb/206Pb�3
ref

ln
�208Pb/206Pb�3

meas

�208Pb/206Pb�3
ref

� � �
0 � 1 1 0 0 ln

M205Tl

M203Tl

0

0 0 0 1 0 0 ln
M206Pb

M204Pb

0 0 0 � 1 1 0 ln
M207Pb

M206Pb

� 1 0 0 0 0 ln
M205Tl

M203Tl

0

0 � 1 1 0 0 0 ln
M206Pb

M204Pb

0 0 � 1 1 0 0 ln
M207Pb

M206Pb

� 1 0 0 0 0 0 ln
M206Pb

M204Pb

0 0 1 0 0 0 ln
M207Pb

M206Pb

0 0 0 1 0 0 ln
M208Pb

M206Pb

� � ln �L2

ln �L1

ln �H1

ln �H2

ln �H3

�Tl

�Pb

� (53)
In the present case, the system has more equations (9) than
unknowns (7) and may be conveniently solved for x �
�L2 . . . �H3, �T1, and �Pb by the least-square solution
alluded to above.

The most useful extension of this method cuts down
on the very cumbersome equations normally used for
dynamic measurements of isotope compositions. The
unknown isotopic ratios are added to the unknowns. For
Nd isotope analysis, we may assume for example that
146Nd/144Nd is normalized to 0.7219 and use the cup
configuration described in Table 2. We obtain the fol-
lowing system of linear equations in seven unknowns
(�L2, �L1, �H1, �Nd, and the corrected values of 142Nd/
144Nd, 143Nd/144Nd, and 145Nd/144Nd) to be solved by least-
squares:

Table 2. A sample configuration for dynamic Nd isotope analysis in
three sequences. Focusing and peak centering are carried out on the
second sequence configuration.

Sequence L2 L1 (Ax) H1

1 142 143 (144) 145
2 143 144 (145) 146
3 144 145 (146)
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�
ln � 142Nd

144Nd�
1

meas

ln � 143Nd
144Nd�

1

meas

ln � 145Nd
144Nd�

1

meas

ln � 143Nd
144Nd�

2

meas

ln � 145Nd
144Nd�

2

meas

ln
�146Nd/144Nd�2

meas

0.7219

ln � 145Nd
144Nd�

3

meas

ln
�146Nd/144Nd�3

meas

0.7219

� � �
1 0 0 ln �M142Nd

M144Nd
� 1 0 0

0 1 0 ln �M143Nd

M144Nd
� 0 1 0

0 0 1 ln �M145Nd

M144Nd
� 0 0 1

1 � 1 0 ln �M143Nd

M144Nd
� 0 1 0

0 � 1 0 ln �M145Nd

M144Nd
� 0 0 1

0 � 1 1 ln �M146Nd

M144Nd
� 0 0 0

� 1 1 0 ln �M145Nd

M144Nd
� 0 0 1

� 1 0 0 ln �M146Nd

M144Nd
� 0 0 0

�� ln �L2

ln �L1

ln �H1

�Nd

ln � 142Nd
144Nd�

corr

ln � 143Nd
144Nd�

corr

ln � 145Nd
144Nd� corr

� (54)
On 10 measurements of the La Jolla Nd standard, we obtained the
results listed in Table 3. The 142Nd/144Nd, 143Nd/144Nd, and
145Nd/144Nd ratios agree within error bars with literature values
(Wasserburg et al., 1981). The larger errors obtained on the 142Nd/
144Nd ratio result from (1) the much smaller amount of data
collected for this ratio, which appears only in the first sequence,
(2) the measurement of mass 142 on this shifted sequence while
the peaks are focused and centered in the configuration of the
second sequence, and (3) the unfavorable propagation of errors on
this ratio. The exponentially corrected 142Nd/144Nd and 143Nd/
144Nd ratios are strongly correlated with a correlation coefficient
of 0.95, and the slope of the correlation (
0.2) suggests that the
second-order correction described by Eqn. 43 is applicable. Such
a second step leaves the mean values essentially unchanged,
but improves the precision by a factor of three on 143Nd/
144Nd and a factor of two on 145Nd/144Nd. If the slope of the
correlation between standard values is used, as in Thirlwall
(1991) and Vance and Thirlwall (2002), the gain in precision
is comparable.

The system described above for Pb isotope measurements
can be expanded by treating the 206Pb/204Pb and 207Pb/206Pb of
the standard as unknown variables. As Doucelance and Manhès
(2001), we assume that the less variable 208Pb/206Pb ratio is
constant, but, contrary to these authors, we adopt the value of
2.1677, which is more consistent with double- and triple-spike
results. The system of linear equations becomes:
�
ln

�205Tl/203Tl�1
meas

�206Tl/203Tl�1
ref

ln � 206Pb
204Pb�

1

meas

ln � 207Pb
206Pb�

1

meas

ln
�205Tl/203Tl�2

meas

�205Tl/203Tl�2
ref

ln � 206Pb
204Pb�

2

meas

ln � 207Pb
206Pb�

2

meas

ln � 206Pb
204Pb�

3

meas

ln � 207Pb
206Pb�

3

meas

ln
�208Pb/206Pb�3

meas

�208Pb/206Pb�3
ref

� � �
0 � 1 1 0 0 ln

M205Tl

M203Tl

0 0 0

0 0 0 1 0 0 ln
M206Pb

M204Pb

1 0

0 0 0 � 1 1 0 ln
M207Pb

M206Pb

0 1

� 1 0 0 0 0 ln
M205Tl

M203Tl

0 0 0

0 � 1 1 0 0 0 ln
M206Pb

M204Pb

1 0

0 0 � 1 1 0 0 ln
M207Pb

M206Pb

0 1

� 1 0 0 0 0 0 ln
M206Pb

M204Pb

1 0

0 0 1 0 0 0 ln
M207Pb

M206Pb

0 1

0 0 0 1 0 0 ln
M208Pb

M206Pb

0 0

��
ln �L2

ln �L1

ln �H1

ln �H2

ln �H3

�Tl

�Pb

ln � 206Pb
204Pb�

corr

ln � 207Pb
206Pb�

corr

� (55)
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On 10 measurements of the NIST 981 Pb standard solution
taken in the present study as an example, we obtain 206Pb/
204Pb, 207Pb/204Pb, and 207Pb/206Pb values consistent with the
triple-spike TIMS values of Mainz (Eisele et al., 2002), the
double-spike MC-ICPMS and TIMS values of Egham (Thirl-
wall, 2002), and the high-precision TIMS data of Paris

Table 3. Comparison with literature data of 10 dynamic runs of the
La Jolla Nd standard on the MC-ICPMS (Plasma 54) of Lyon after
normalization to 146Nd/144Nd � 0.7219. Each run represents about 45
min of acquisition with the three sequences measured 60 times each
with a settling time of 10 s.

Lyon Caltech RHBC

Method ICPMS TIMS ICPMS
AL2 0.998314 (226)
AL1 0.999950 (69)
AH1 1.000317 (47)

�Nd 2.38 (0.03)

142Nd/144Nda 1.141834 (321) 1.141827 1.141509 (63)
143Nd/144Nda 0.511853 (54) 0.511861
143Nd/144Ndb 0.511859 (17)
143Nd/144Ndc 0.511852 (17) 0.511856 (13)
145Nd/144Nda 0.348414 (17) 0.348415
145Nd/144Ndb 0.348413 (9)
145Nd/144Ndc 0.348421 (9)

ICPMS � inductively coupled plasma mass spectrometry;
RHBC � Royal Holloway Bedford College; TIMS � thermal ioniza-
tion mass spectrometry.

a One-stage mass fractionation correction using an exponential lau
b Second-order mass fractionation correction using the second-order

correction of Eqn. 43.
c Two-stage mass fractionation correction based on the correlation be-

tween the first-stage values of 142Nd/144Nda and 143Nd/144Nda and a
normalization to 142Nd/144Nda � 1.14187 (Thirlwall, 1991; Vance and
Thirlwall, 2002) The first-stage precision on the 142Nd/144Nd ratio is
inferior to that on the other ratios because mass 142 is measured only once
every third sequence and only in a shifted sequence (Table 2). For the
Lyon column, errors in parentheses represent twice the unweighted stan-
dard deviation of the 10 individual run values. TIMS data from Wasser-
burg et al. (1981). RHBC data are from Vance and Thirlwall (2002).

Table 4. Comparison of dynamic runs (February–July 2003) of t
normalization to 208Pb/206Pb � 2.1677 with triple-spike results from M
et al., 2001), and Brisbane (Collerson et al., 2002). Errors in parenth
values.

Laboratory Lyon

Instrument ICP-MS

run # 10 20 20

AL2 0.99982 (6) 1.00031 (15) 1.00017 (17)
AL1 1.00041 (13) 1.00051 (11) 1.00061 (9)
AH1 0.99912 (17) 1.00064 (34) 1.00106 (18)
AH2 0.99803 (29) 1.00056 (38) 1.00086 (26)
AH3 0.99667 (28) 0.99953 (36) 0.99972 (31)

�T1 1.928 (49) 2.005 (26) 1.877 (35)
�Pb 1.896 (47) 1.897 (30) 1.775 (37)

206Pb/204Pb 16.9435 (30) 16.9434 (27) 16.9418 (27)
207Pb/204Pb 15.5007 (27) 15.5003 (25) 15.4994 (25)
207Pb/206Pb 0.914845 (23) 0.914832 (16) 0.914865 (14)
(Doucelance and Manhès, 2001) (Table 4). In addition, we
confirm through this calculation that the mass fractionation
factors of Pb and Tl are indeed different. This difference, which
is commonly on the order of 5% to 10%, varies from day to day
and is large enough to account for the poor reproducibility of
Pb isotope measurements obtained with the assumption that Pb
and Tl have identical fractionation factors (Belshaw et al.,
1998; Rehkämper and Mezger, 2000; Thirlwall, 2002). The
difference between �Pb and �Tl (0.033  21) produces a bias of
ca. 160 ppm per unit of mass difference, which is comparable
to the bias reported by the aforementioned authors between
straightforward “Tl spiking” and other methods, including the
use of a double-spike. The bias recorded with Tl spiking is
therefore not the result of a deficiency of the MC-ICPMS
instrument itself, but is rather due to the inadequacy of the
assumption of a common extent of fractionation for Pb and Tl
(Maréchal et al., 1999; White et al., 2000). It is quite satisfac-
tory that once the ratios have been corrected for mass fraction-
ation and cup efficiencies, a plot of 207Pb/204Pb vs. 206Pb/204Pb
shows correlated ratios with a slope of 
1, whereas a plot of
207Pb/206Pb vs. 204Pb/206Pb shows no correlation at all (Fig. 7).
We will see below that this is a strong indication that variation
is dominated by counting statistics and not by residual mass
fractionation. Assuming that the Lu and Yb isotope composi-
tions obtained by TIMS are not fractionated by more than a few
per mil, the difference in � between the two neighboring
elements is in excess of 50%, which we ascribe primarily to the
greatly different ionization energies. The fluctuation of this
difference, if not properly dealt with, is a source of uncertainty
on the values of Lu concentrations obtained by isotope dilution
(Blichert-Toft et al., 2002).

8. MEMORY EFFECTS

Background from previous runs varies from instrument to
instrument, from laboratory to laboratory, and from day to day.
For example, on the Plasma 54 in Lyon, we found that switch-
ing between the two Pb isotope standards NIST 981 and NIST
982 degrades the precision, which simply reflects that their

NIST 981 standard on the MC-ICPMS (Plasma 54) of Lyon after
Eisele et al., 2002), Egham (Thirlwall, 2002), IPG Paris (Doucelance
resent twice the unweighted standard deviation of the individual run

Mainz RHBC Paris Brisbane

S TIMS DS ICP-MS TIMS ICP-MS Tl doping

9425 (19) 16.9417 (29) 16.9406 (15) 16.941 (6)
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isotopic compositions are very different. We found similar
effects for Tl, when we tried to alternate a standard with natural
isotopic proportions (i.e., rich in 205Tl) and samples spiked with
203Tl. At least for these two “sticky” elements, the instrument
can never be completely cleaned over the time allocated to
cleaning, which is typically 10–15 mn maximum.

It has been suggested that the On-Peak Zero (OPZ) proce-
dure, which is the measurement of a blank solution before
sample or standard analysis, can be used as a reference to
correct for memory (e.g., Collerson et al., 2002; Thirlwall,
2002). We contend that memory is highly unstable and even
OPZ does not account well enough for its isotopic composition
to warrant high-precision measurements. The following exam-
ple is taken from a recent attempt made in Lyon to compare the
204Pb-207Pb double-spike and the Tl doping methods. The
washout solution of a heavily spiked sample was analyzed for
25 min through different rinse solutions, first concentrated
(0.65 N) nitric acid, then dilute hydrofluoric acid, and then
again concentrated nitric acid (Fig. 8). Hydrofluoric acid is
helpful in removing a thin layer from the contaminated glass-
ware. Returning next to the dilute nitric acid (0.05 N, not
shown) used for sample and standard analysis, the blank at each
mass was brought into the 10�16 A range, indistinguishable
from the blank in dilute HF. At first sight, this result seems
excellent, since the original sample signal is reduced by 5–6

Fig. 7. A plot of 207Pb/206Pb vs. 204Pb/206Pb (bottom) corrected for
mass fractionation for the 10 dynamic runs of Table 4 shows no
residual correlation, which would reveal that the mass bias has not been
adequately accounted for. In contrast, the plot of 207Pb/204Pb vs.
206Pb/204Pb (top) corrected for mass fractionation shows a strong
correlation, which is due to the poor counting statistics on the smaller
isotope 204.
orders of magnitude. The instrument blank should therefore be
negligible with respect to any sample run right after such a
cleaning procedure. The memory level of the Plasma 54 is at
least an order of magnitude lower than the level quoted for
some Isoprobe instruments (Thirlwall, 2002; Collerson et al.,
2002). The situation seems less favorable for the 204 signal:
this, however, cannot be attributed to residual mercury as the
202 signal is observed to decrease together with the heavier Pb
isotopes. Rather, various “species” in the memory with differ-
ent isotope compositions appear to be present and reacting
differently to different cleaning media. The assumption that the
level of signal at which these isotopic variations exist is too low
to affect sample runs is incorrect: alternating spiked and un-
spiked standard solutions demonstrates that the presence of Pb
in the solution enhances the leaching of a component that was
not visible in the post-wash blank (Fig. 9). The result is a
significant isotopic drift, both from spiked to unspiked and
from unspiked to spiked runs. The seriousness of this memory
problem is exacerbated by the fact that it is the rare isotope
204Pb which is used as a spike. As shown in the bottom panel
of Fig. 9, this problem does not exist for unspiked rock sam-
ples, namely when using the Tl doping technique.

Although such memory effects are not critical for isotope
dilution measurements aiming at 2–5 per mil precision, they
may have an adverse effect on the accuracy and precision of
isotopic compositions in the 100 ppm range. The intensities of
the background peaks are not reproducible since they depend
on the recent history of a particular mass spectrometer. Let us
consider the case of Pb isotope measurements when samples
doped with Pb double spike with a high 204Pb abundance are
routinely run on the same instrument. A 2 10�16 A beam
equivalent to a 20-�V signal on a standard 1011 � resistor
would still be within the thermal (Johnson) noise of the resistor
and therefore escape detection on a Faraday cup. In compari-
son, a 7-V total signal of normal lead would come with about
100 mV at mass 204 and memory would contribute with a bias
of about 200 ppm to 204Pb. Because the 204 isotope in Pb
double spike is fairly abundant, the bias rapidly becomes sig-
nificant. For example, expressing that the raw (total) 206Pb and
204Pb signals are the sum of a sample and a background signal,
we get

� 206Pb
204Pb�

total

� � 206Pb
204Pb�

sple

� �� 206Pb
204Pb�

bkgd

� � 206Pb
204Pb�

sple� 204Pbbkgd

204Pbtotal (56)

Not correcting the apparently negligible contribution of the
background would create a bias of

�206Pb/204Pb

�206Pb/204Pb�sple � � �206Pb/204Pb�bkgd

�206Pb/204Pb�sple � 1� 204Pbbkgd

204Pbtotal (57)

In the particular case just discussed, the requirement of �50
ppm bias necessitates that both the 206Pb/204Pb ratio of the
background and the 204Pbbkgd/ 204Pbtotal ratio be known for this
particular run with a precision of 25%, which is a difficult goal
to achieve on such a small signal. Isobaric interferences, such
as 204Hg on 204Pb, and the coexistence of several memory
“species” with different isotope compositions complicate mat-

ters even further, in particular when complex desolvating sys-
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tems are used, which offer many potential sites and mecha-
nisms of contamination. The amount of mercury present in
argon may vary from batch to batch. In the blank of the Plasma
54 of Lyon, Hg contributes to less than 10�4 of the residual 204
signal (e.g., White et al., 2000) which, as shown above, is very
small, while this proportion can reach several percent on other
instruments (Thirlwall, 2002; Collerson et al., 2002). Again,
using the OPZ for correction will only help if the Hg/Pb ratio
and the Pb isotope composition of the memory signal can be
clearly demonstrated to remain constant upon sample introduc-
tion. Assessing the impact of an imperfect knowledge of the
memory on double-spike and dynamic methods is a particularly
daunting challenge.

9. COUNTING STATISTICS

The central assumption of ion counting is that ions arrive
at the detector “at random” , i.e., that the probability of
arrival of an ion is the same for any time interval of a same
length. The number ni of ions i arriving at any collection
device during the time interval �t is therefore subject to
Poisson statistics: ni is proportional to �t, the average count
rate is ni/�t, and its variance is also equal to ni/�t. The

Fig. 8. Wash-out of a Pb NIST 981 standard sample s
confidence level. Concentrated nitric acid removes mos
intended to strip off the contaminated surface of the glass
that found in the dilute nitric acid (0.05 N) used for sampl
bounces back. The signal of the wash-out solution there
obtained on rock samples. Note the large changes in appare
at mass 204 is not due to mercury, since the 202 signal is
“species” with different isotope compositions. This probl
standard deviation of an ion beam Ii measured in ions per
second is proportional to the square-root of the beam inten-
sity and the relative error is �Ii /Ii � 1/�Ii. Smaller beams
therefore fluctuate more than larger beams. The noise due to
counting statistics, known as shot noise, accounts for a 250
ppm (2 level) error on a typical 1-V signal collected in 1 s
through a 1 � resistor or in 10 s on a 100-mV signal. This
noise is not to be confused with the thermal (Johnson) noise
of the resistor A

2 
 4kT/R�t where k is the Boltzmann
constant, T the temperature, R the resistance, and �t the
integration interval (Nyquist, 1928). Shot noise imposes
strong correlations on some isotopic plots that may easily be
mistaken for mass-dependent fractionation effects. This is a
familiar problem for Pb in particular (e.g., Hamelin et al.,
1985; Powell et al., 1998) because of the common usage of
the minor 204Pb isotope as the reference isotope, but it exists
to a variable extent for all elements. Let us consider two
measured isotopic ratios ri � ni /nk and rj � nj /nk. Taking the
first-order expansion of ln ri around its mean value (noted by
an overbar) gives:

ni/nk � ni/nk

ni/nk
�

ni � n� i

ni
�

nk � n� k

nk
(58)

ith 204Pb and 207Pb. Open symbols: outliers at the 95%
signal within a few minutes. Dilute hydrofluoric acid

wers the residual signal further down to a level similar to
is. With concentrated nitric acid (0.65 N), the blank level
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with a similar expression for rj. By squaring these two expres-
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sions, taking their expectation, and noting that statistical noise
on different peaks is independent, we obtain:

var�ri�

�ri�
2 �

var�ni�

ni
2 �

var�nk�

nk
2 �

1

ni
�

A
2

ni
2 �

1

nk
�

A
2

ni
2 (59)

with a similar expression for nj /nk. The covariance between the
ratios is similarly:

cov �ri,rj�

rirj
�

var �nk�

nk
2 �

1

nk
(60)

Because the emphasis of this section is on counting statis-
tics, we will at this point consider that the thermal noise of
the resistor can be neglected, which is an acceptable assump-
tion for signals higher than about 10�12 A. For ratios with
the same denominator, e.g., 204Pb for 205Pb/204Pb and 207Pb/
204Pb, the slope of the noise correlation line in a ratio-ratio

Fig. 9. Evidence that Pb memory is enhanced by introducing a
Pb solution into the mass spectrometer. The instrument is thor-
oughly cleaned using the protocol illustrated in Fig. 8 until the total
Pb signal is reduced to less than 10�15 A (0.1 mV). Standard
solutions of NIST 981 Pb either unmodified or spiked with a
204Pb-207Pb tracer are then introduced into the mass spectrometer.
The total Pb signal is typically in the range of 10�11 to 10�10 A
(1–10 V). Despite thorough cleaning, enough memory is present to
induce a significant drift in isotopic ratios. Bottom panel: switching
between samples with similar isotopic ratios does not show this
problem.
plot is the ratio of the standard deviations j/k and i/k along
each axis (e.g., Albarède, 1995, p. 202):

j/k

i/k
� �rj

ri

1 � rj

1 � ri
(61)

while the correlation coefficient between the errors on the two
ratios is:

� i/k
j/k � � ri

1 � ri
�

rj

1 � rj
(62)

Typical values of the correlation coefficients are 0.5 for two
isotopic ratios equal to unity and quickly tend to unity for large
ratios, such as 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb (Fig.
10). Correlations between errors due to counting statistics are
clearly minimized by using ratios with values �1.

The slope si/k
j/k of the noise correlation line in a log-log plot (or

in an 	 � 	 plot) is approximated by:

si/k
j/k � �1 � sj

sj
�1 � si

si
(63)

These expressions are important for separating immediately the
correlations between isotopic ratios introduced by mass-depen-
dent discrimination from those introduced by mass-indepen-
dent counting fluctuations. Residual correlations between the
mass-bias corrected isotopic ratios and the mass-bias index are
expected. A correlation with a slope equal to the difference
between the slope of the noise line and that of the fractionation
line is expected between the ratios corrected for mass bias,
which should not necessarily be taken as an indication that the
instrumental mass-fractionation law should be amended. For a
number of systems, Table 5 lists the slopes between some
critical ratios and the particular ratio used to assess the mass
bias. A test for unambiguously separating the effect of counting
statistics from that of instrumental mass discrimination is to
plot isotopic ratios with no common isotope, e.g., 146Nd/144Nd
vs. 145Nd/142Nd, 207Pb/206Pb vs. 208Pb/204Pb, or 206Pb/204Pb

205 203

Fig. 10. Example of a strong noise-induced correlation observed on
Pb isotopes within a block of 40 cycles. The solid line corresponds to
mass-dependent fractionation, while the dotted line is defined by count-
ing statistics and is essentially controlled by the small 204Pb beam.
vs. Tl/ Tl (Fig. 11): any correlation in these diagrams must
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be due to instrumental mass fractionation. Thus, the absence of
correlations in plots of mass-fractionation corrected ratios with
no common isotope shows that mass fractionation was cor-
rected efficiently.

10. IMPROVING PRECISION BY POOLING RUNS

Making the standard error of the mean more precise by
pooling runs is common practice in TIMS (Harper and Jacob-
sen, 1992), but has nevertheless occasionally been criticized
(Sharma et al., 1996). The arguments against pooling notably
involve observations of matrix effects and machine drift. Ma-
trix effects can be rigorously handled by checking that sample
solutions contain no detectable matrix, e.g., by running test
samples on a quadrupole ICPMS across the entire mass range.

Effects of machine drift can be tested by comparing succes-
sive runs of the same solution and testing whether the set of
isotopic deviations from one run to the next belongs to a single
population, which, for convenience, will be assumed to be
normal. The most powerful of normality tests is the quantile-
quantile (QQ) plot, which involves comparing the sorted re-

Table 5. Comparison of apparent fractionation induced by counting
statistics and mass-dependent bias.

x y �

log-log slope

noise mass bias

56Fe/54Fe 57Fe/54Fe 0.50 1.87 1.49
66Zn/64Zn 68Zn/64Zn 0.32 1.14 1.97
66Zn/64Zn 67Zn/64Zn 0.17 2.17 1.49
142Nd/144Nd 143Nd/144Nd 0.43 1.25 0.50
146Nd/144Nd 143Nd/144Nd 0.38 1.11 �0.51
146Nd/144Nd 142Nd/144Nd 0.47 0.89 �1.01
150Nd/144Nd 148Nd/144Nd 0.19 1.01 1.49
148Nd/142Nd 143Nd/142Nd 0.23 0.75 0.17
179Hf/177Hf 176Hf/177Hf 0.31 1.39 �0.50
179Hf/177Hf 180Hf/177Hf 0.53 0.80 1.50
206Pb/204Pb 208Pb/204Pb 0.94 1.00 1.50
206Pb/204Pb 207Pb/204Pb 0.96 0.98 1.99
204Pb/206Pb 207Pb/206Pb 0.16 0.34 �0.50
207Pb/206Pb 208Pb/206Pb 0.57 0.84 2.00

Fig. 11. When the ratios on each axis have no isotope in common and
in the absence of mass-dependent fractionation, they are statistically
independent. These data represent a run of 40 cycles, in which 206Pb/
204Pb and 205Tl/203Tl were measured. The horizontal array (uncorre-
lated variables) indicates that, in the present case, the variability of the
isotopic ratios can be ascribed to counting statistics and not to mass-

dependent fractionation.
duced residuals, i.e., (value-average)/standard deviation, be-
tween the measured samples and an ideal sample from a normal
population with the same average and standard deviation (Fig.
12). Such a standard method (e.g., Johnson and Winchern,
1992) tests the “spacing” (inverse frequency) between the or-
dered residuals with respect to a normal population. We plotted
the data for a 16-h period of Nd standard runs, during which
both the 142Nd/144Nd and 143Nd/144Nd ratios were measured,
and tested the normality of the relative deviation between
successive standards. Because the isotopic compositions of
rock samples are referred to the standard solution run immedi-
ately before and after, this test is crucial to the true method
precision and should allow the analyst to decide whether the
sample-standard deviations can be pooled within a single pop-
ulation. Each run takes a set of 80 measurements of 15 s each.
We found that, during the 16-h period, the mean value of these
deviations was �0.1 ppm with a standard deviation of 18 ppm
for 142Nd/144Nd and 24 ppm for 143Nd/144Nd. More significant
is that these deviations form a normal population with a misfit
from normality of less than a few ppm (Fig. 12). This obser-
vation demonstrates that sample runs can be pooled for im-
proved precision without infringing on the assumption of a
common population. Pooling is one of the bases for the preci-
sion of 10–15 ppm obtained on 142Nd/144Nd for 3.8 Ga old
rocks from Greenland, that show evidence of the existence of

146

Fig. 12. Quantile-quantile (QQ) plot of isotope results on a Nd
standard solution measured over a period of 16 hs. The variables to be
tested are the deviations of the mean 142Nd/144Nd and 143Nd/144Nd of
each run with respect to the mean of the preceding and following runs.
The mean value of both variables is �0.1 ppm. The observed devia-
tions are centered and reduced, then sorted in ascending order. The
observed quantiles are compared with the theoretical quantiles pre-
dicted from a normal population with the same mean and variance. This
plot demonstrates that the distribution of the sample-standard differ-
ences does not deviate from a normal population by more than a few
ppm. This observation justifies the pooling of different runs for im-
proved precision.
short-lived Sm in the early Earth (Boyet et al., 2003).
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11. DISCUSSION

Vigorous discussion about the potential precision and accu-
racy of MC-ICPMS has been playing out in the literature over
the last few years (e.g., Thirlwall, 2000, 2002). The advantage
of TIMS instruments over MC-ICPMS remains the smaller
mass fractionation of the former. Typical values of � � 2 are
observed on some MC-ICPMS instruments, while others have
a wider range. It is inevitable, however, that as improved
transmission gets close to unity, mass fractionation diminishes
( f and �3 0). The bad news then become that mass fraction-
ation will change with transmission, even with the same instru-
ment configuration.

We consider, however, that if signal intensity is kept within
a narrow range, MC-ICPMS should become the instrument of
choice. Here we assert that in order to achieve high precision
and accuracy, utmost care must be exercised to comply with a
set of relatively simple rules:

(1) The matrix of samples must be reduced to trace amounts,
typically of a far smaller total concentration than the ele-
ment to be analyzed. This requirement is most critical when
the mass bias is inferred, not internally from the sample
itself, but externally from bracketing standards. Even the
most dilute heavy species may drastically affect mass dis-
crimination (Niu and Houk, 1996) and create interfering
double-charged species (such as 48Ca2� on 24Mg). Species
lighter than the element may create molecular isobaric
interferences with Ar, O, N, and C, such as 12C2 on 24Mg
or 155Gd16O on 171Yb. Evidence that a cold trap placed on
the sample pathway efficiently removes species interfering
with the Nd spectrum at the 10–100 ppm level has been
presented elsewhere (Boyet et al., 2003).

(2) Cup efficiencies must be evaluated regardless of the instru-
ment. In static mode, an incorrect isotopic composition of
the standard changes the value of the mass fractionation
coefficient and will harm accuracy if there is no reference
ratio of stable isotopes. If cup factors are properly cali-
brated, e.g., by running a standard in either static or dy-
namic mode, accurate ratios can be retrieved from even a
significantly biased array of Faraday cups. The method
described in Blichert-Toft et al. (1997) and Luais et al.
(1997) and based on Eqn. 10 is illustrated in Fig. 13. As
shown in the introductory sections on mass fractionation, ln
ri /Ri should form a linear alignment when plotted against
Mi

q � Mk
q. This can be illustrated for the exponential law,

for which the abscissa is ln (Mi/Mk). The slope, which is
calculated by linear regression so as to minimize the devi-
ation of all the ratios from their accepted value, determines
a mean fractionation factor �� . The residual for each mass is
then ascribed to cup efficiencies. For Nd, �� is different
from the �146 inferred from the 146Nd/144Nd ratios. This
method is essentially equivalent to selecting the mean
fractionation coefficient �� , which would minimize the sum
of the squared ��i values of Eqn. 44 over all the plotted
isotopic ratios instead of normalizing with respect to a
unique reference ratio. When only the deviation of the
sample isotopic ratios from their values in the standard is
sought (which covers most geochemical needs), an excel-

lent external precision (15 ppm or less) competing with the
precision achieved on TIMS is obtainable in static mode
(Vance and Thirlwall, 2002; Boyet et al., 2003). The dy-
namic mode is the method of choice for accuracy and
control, especially for Pb, but, as visible from Table 3,
precision is heavily taxed because of excessively slow data
acquisition. For Pb, the isotopic compositions of unknown
samples cannot be obtained in dynamic mode without
assuming that at least one ratio is known. We therefore
rather suggest the use of an indirect (“vicarious” ) dynamic
method: the cup efficiencies and the difference �Pb � �T1

are determined from the compositions of the bracketing Pb
standards run in dynamic mode, and these values are then
used to correct the bracketed samples run in static mode.
Table 6 shows some results obtained in vicarious mode on
the NIST 981 Pb standard and on the CRPG basaltic rock
standard BEN. Since the conditions of TIMS runs are
variable from one sample to the next, essentially as a result
of variable positions and temperatures of the hot spot on
each filament, this method is restricted to MC-ICPMS
measurements only.

(3) Memory must be assessed by running not only wash solu-
tions but also a variety of elements, starting with the

Fig. 13. The open circles represent the ratio between measured and
“ true” ratios. Isotope 144 is used as the reference, although this is not
critical. A second-order correction of the mass bias is only requested at
masses 142 and 150 because the cup efficiencies (solid symbols), which
are essentially the residue after a least-square regression through the
open symbols, do not vary smoothly with mass. The data shown are a
block of 40 cycles measured on a standard solution. The cup efficien-
cies are only known relative to an arbitrary reference.

Table 6. Vicarious (indirect) dynamic measurements of NIST stan-
dard 981 and of the basalt rock standard BEN.a

n NBS 981 8 BEN 6

206Pb/204Pb 16.9443 (47) 19.2363 (49)
207Pb/204Pb 15.5020 (50) 15.5994 (50)
208Pb/204Pb 36.734 (16) 39.038 (16)
207Pb/206Pb 0.91488 (11) 0.81094 (7)
208Pb/206Pb 2.16792 (53) 2.02939 (38)

a Every second measurement is a NIST 981 standard which is run in
dynamic mode and used to determine cup efficiencies and a fPb/fTl ratio.
These values are applied to the next sample (either another NIST 981
or Pb separated from the BEN rock standard) which is run in static
mode. n-number of samples; the uncertainties in parentheses are two

standard deviations.
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element to be measured itself, that may enhance leaching in
the entire instrumental setup (glassware, cones, plates).
Double-spike techniques (Dodson, 1963; Hamelin et al.,
1985; Galer, 1999) involve the addition of an isotope which
is usually minor in natural samples, such as 204Pb, imply-
ing that the risk introduced by memory effects on these
spike isotopes must be carefully weighed against the added
gain in precision from using the double spike (Woodhead,
2002). For Pb, memory is likely to jeopardize the quality of
double- and triple-spike measurements because the abun-
dances of the isotopes used for the spike are normally small
in natural samples. Such a risk is clearly more present with
MC-ICPMS than with TIMS, yet the dilemma familiar to
many geochemistry groups applies to both techniques: is
the analyst willing to commit routinely the same mass
spectrometer to the isotopic analysis of Pb for zircon U-Pb
dating and small amounts of unradiogenic Pb from mete-
orites? If the answer is negative, memory is certainly an
issue. With respect to this problem, we contend that the T1
doping technique is viable with the caveat that alternating
samples with similar isotope compositions will give more
precise results than switching between samples with wildly
variable isotope compositions.

(4) When mass discrimination is absolutely stable, standard
bracketing is the method of choice. In other cases, how-
ever, mass discrimination can be evaluated using a second
element (e.g., Tl on Pb, Cu on Zn, Yb on Lu), but the
assumption that the two elements fractionate to the same
extent is incorrect (Table 4) and results in systematic errors
of a few hundred ppm or more (Rehkämper and Mezger,
1997; Thirlwall, 2002). Rehkämper and Halliday (1998)
chose to alter the accepted value of the 205Tl/203Tl ratio,
which amounts to forcing the accepted values onto a frac-
tionation line with �Pb � �Tl (Fig. 14). This practice does
minimize short-term misfits on a particular instrument, but
the modified 205Tl/203Tl ratio neither remains constant

Fig. 14. Graphical description of the effect of changing the reference
205Tl/203Tl ratio of a standard solution used to normalize Pb isotope
measurements (Rehkämper and Halliday, 1998) (sketchy and exagger-
ated). The measured 205Tl/203Tl and 206Pb/204Pb ratios of the standard
solutions plot on the solid line for which �Pb � �Tl. In order to force
�Pb � �Tl, the 205Tl/203Tl of the Tl spike solution is adjusted to plot on
the dashed line for the “ true” (accepted) value of the 206Pb/204Pb of the
standard solution.
through time (Rehkämper and Mezger, 2000) nor agrees
between different instruments (see an extensive discussion
in Thirlwall, 2002), clearly reflecting that �Pb � �Tl. The
above theory clearly indicates that such an artifice is not
necessary. When mass fractionation varies too little for the
slope of the mass fractionation line to be evaluated with
precision, it still remains to be checked that stability is
preserved upon introduction of rock samples: these are
never totally matrix-free, even after a thorough purification
chemistry. This can be conveniently tested by adding some
of the elements present in the sample to a reference solu-
tion (Woodhead, 2002) or by running the same dissolution
of a sample reasonably abundant in the element to be
analyzed through distinct chemical extractions.

(5) The necessity of a second-order correction should be es-
tablished by showing that the bias left after a first-order
correction still depends smoothly on the mass or by testing
the slope of the correlation between exponentially cor-
rected ratios. A quasi-linear dependence of the exponential
fractionation factor with mass indicative of second-order
effects is clearly visible on some Isoprobe instruments
(e.g., Fig. 3 in Vance and Thirlwall, 2002). On the Plasma
54 in Lyon (Fig. 15), a second-order correction using the
142Nd/144Nd ratio improves the precision of the 143Nd/
144Nd data and, to a lesser extent, the 145Nd/144Nd and
148Nd/144Nd data as well. The second-order coefficient 

is, however, smaller at intermediate masses, thereby sug-
gesting some degradation of transmission away from the
optical axis of the instrument.

(6) A correlation between isotopic ratios corrected for mass
fractionation may also reveal imperfectly-flat peak tops and
effects of counting statistics, which are both mass-indepen-
dent fractionation effects. The two-stage correction intro-
duced by Thirlwall (1991) for Nd isotopic analysis, and
applied by Vance and Thirlwall (2002) and Caro et al.

Fig. 15. Variation of � � ln (ri /Ri)/ ln (Mi /M144) as a function of Mi

for two MC-ICPMS instruments, the Isoprobe of RHBC in Egham
(Vance and Thirlwall, 2002) and the Plasma 54 in Lyon. Ti refers to raw
measured ratios. The instrument in Lyon can be tuned to less distortion
at mass 142, but this would be at the expense of performance at mass
150. The second-order correction term is proportional to the slope of
the observed array (Eqn. 39). The quasi-linear array obtained in Egham
is amenable to a smooth second-order correction of the mass bias. In
contrast, such a correction is variable across the mass range on the
Plasma 54 of Lyon.
(2003), handles both second-order effects and mass-inde-
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pendent fractionation due to the peak shape surprisingly
well (Fig. 6). A simple test, which still needs to be con-
ducted on rock samples, would be to compare the results
upon exchange of the order of normalization to the two
reference isotope ratios. For the lack of more than two T1
isotopes, this method is unfortunately not applicable to
lead.

(7) Abundance sensitivity (tailing) has been extensively dis-
cussed by Rehkämper and Mezger (2000), White et al.
(2000), and Thirlwall (2002), among others, and seems to
be an issue for Pb isotopes when Tl is used to correct mass
fractionation on Pb. For Isoprobe instruments, Thirlwall
(2002) quotes an abundance sensitivity of up to 25 ppm,
while Rehkämper and Mezger (2000) show a change of Pb
isotopic ratios with the Tl/Pb ratio. We found on the
Plasma 54 of Lyon, for which the abundance sensitivity is
about 2–5 ppm, that decreasing the Tl signal to the 10�12

A range and avoiding to measure zeroes on the tails of
large peaks suffices to alleviate this problem.

12. CONCLUSIONS

Because of the complex trajectories of ion beams, obtaining
precise and accurate isotopic data by MC-ICPMS still requires
an adequate understanding of instrumental fractionation pro-
cesses, both mass-dependent and mass-independent. In this
paper, we have presented a unifying phenomenological theory
for mass-dependent fractionation in mass spectrometers. Accu-
racy is related to what is known as cup efficiencies, but actually
involves the complexity of ion paths. Although these can be
calibrated by running known isotopic standards, we derive a
straightforward, though very general method to calculate accu-
rate ratios from dynamic measurements. Additional conclu-
sions from this work are:

● The assumption of similar mass bias for neighboring ele-
ments (notably Pb and Tl, and Yb and Lu) is both unneces-
sary and incorrect.

● Straightforward standard-sample bracketing with no inde-
pendent correction of the mass bias can only be applied when
the sample and standard solutions are identical, which as-
sumes near-perfect chemical separation procedures.

● Pooling runs to improve precision is an acceptable procedure
provided the pooled measurements are shown to be part of a
single population.

● Failure to produce flat-top peaks introduces a significant bias
and spurious correlations between corrected ratios.

● Two-stage mass fractionation correction deals with both sec-
ond-order effects and slightly imperfect peak tops and is
capable of improving the ultimate precision of the measure-
ments.

● Counting statistics introduce significant correlations, which
should not be mistaken for residual mass fractionation ef-
fects.

● Because double-spike methods use minor isotopes, they are
limited in precision by memory effects.

Repetitive calibration of cup efficiencies and rigorous assess-
ment of mass bias combined with standard-sample bracketing
are required for high-precision and accurate measurements by

MC-ICPMS. We suggest that, once these simple guidelines are
followed, MC-ICPMS is able to produce data precise and
accurate to 15 ppm and possibly even better with the new
generation of mass spectrometers.
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APPENDIX A: TABLE OF SYMBOLS

A: matrix of coefficients used for dynamic runs
�k: cup-dependent factor (efficiency) of Faraday cup k
f: mass bias factor for the generalized power law (�q ln h)
�i: closure condition for the isotopic ratio Ni /Nref in sample-spike

mixtures (must be zero)
g: mass bias factor for the power law (�e�)
h: mass bias factor for the generalized power law
Mi: atomic mass of nuclide i
Ni: number of nuclides i introduced into the mass spectrometer
ni: number of nuclides i detected by the mass spectrometer
q: exponent of the atomic mass in the generalized power law (1 for

the power law, 0 for the exponential law)
R2: correlation coefficient of a regression line
Ri: true isotopic ratio Ni/Nref

ri: measured isotopic ratio ni/nref

ri
e: isotopic ratio ni/nref corrected for an exponential bias

s i/k
j/k: slope of the mass fractionation curve in a log-log plot

�i
y: transmission for isotope i in cup 


W: covariance matrix
x: vector of unknown parameters calculated from dynamic runs
y: vector of data used in dynamic runs
�: mass bias factor for the power law of Kehm et al. (2003)
�i: mass bias for isotope i
�: first-order mass bias factor for the exponential law (�Mref� and

identical to f when q � 0)

: second-order mass bias factor for the exponential law
�: mass bias factor for the linear law
�i: ln Mi /Mref

A: thermal (Johnson) noise of the resistor (in A)
�: interpolation parameter used for standard bracketing (0 � � � 1)
	i: deviation of the isotopic ratio from the reference value in part per

10,000 (ri /Ri � 1) � 10,000
�R/R: Mass fractionation per atomic mass unit

APPENDIX B: ANALYTICAL CONDITIONS

The data presented here were acquired on the Fisons Instruments
Plasma 54 of Lyon. The main features of this instrument are described
by Walder et al. (1993). It is equipped with one axial collector and four
lateral collectors on each side. The resistors (1011 �) are calibrated
daily against a stable current source. The Glass Expansion nebulizer is
fitted to microbore PFA tubing and is operated in free aspiration mode.
Its uptake rate is about 50 microliters per minute. None of the results
presented here were acquired with a desolvating nebulizer. A transmis-
sion of 30 V per ppm of Pb is routinely achieved. Off-line reduction of
the data has now supplemented the original factory software. Samples
are run in 0.05 N nitric acid. Concentrated (0.65 N) nitric acid and
dilute hydrofluoric acid are used at the cleaning stage until the original

�14
signal declines to less than 10 A.
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