УДК 553.061.2:546.59'98:549.383(470.5)

МИНЕРАЛОГО-ГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА ЗОЛОТО-ПАЛЛАДИЕВОГО ОРУДЕНЕНИЯ В ВОЛКОВСКОМ ГАББРО-ДИОРИТОВОМ МАССИВЕ (ПЛАТИНОНОСНЫЙ ПОЯС УРАЛА)

© 2010 г. Е. В. Аникина, А. В. Алексеев

Институт геологии и геохимии УрО РАН 620075, г. Екатеринбург, пер. Почтовый, 7 E-mail: elena.anikina@igg.uran.ru Поступила в редакцию 08.02.2010 г.

В работе приводится геологическое описание Баронского золото-палладиевого рудопроявления, приуроченного к габброидам и ультрамафитам эндоконтактовой зоны Волковского габбро-диоритового массива на Среднем Урале. Детально рассматриваются геохимические особенности пород и руд в приложении к проблеме рудогенеза. Анализ полученных данных позволяет существенно сузить круг возможных моделей формирования орудененения. В частности, присутствие в составе рудовмещающего габброидного комплекса пострудных жильных габбро, родственных рудоносным, но секущих их, указывает на узкий временной диапазон образования Au-Pd оруденения, ограниченный временем становления рудовмещающих оливиновых габбро и связанных с ними клинопироксенитов и оливинитов. Это дает возможнеость исключить из рассмотрения модели, предполагающие существенный временной разрыв между формированием вмещающих пород и рудообразованием. Вместе с тем, характер распределения благородных металлов, состав рудных парагенезисов, морфологические особенности минеральных скоплений и взаимоотношения рудных минералов с силикатной матрицей свидетельствуют о метасоматическом генезисе оруденения при существенной рудогенерирующей роли флюида, имевшего на ранних стадиях изотопный состав, соответствующий магматической воде, а на поздних – смеси магматической и метаморфогенной воды.

Ключевые слова: Платиноносный пояс Урала, габбро, клинопироксениты, оливиниты, золотопалладиевое оруденение, редкие и редкоземельные элементы, минералы благородных металлов, стабильные изотопы О и Н.

ВВЕДЕНИЕ

Преобладающим типом пород в Платиноносном поясе Урала (ППУ) являются габброиды разного состава. Обычно они образуют самостоятельные массивы, пространственно сближенные, частично или полностью интегрированные с ультраосновными дунит-клинопироксенит-тылаитовыми блоками [6]. С габбровыми массивами связано титаномагнетитовое, медносульфидное и золотопалладиевое оруденение. Медносульфилные руды с золотом и платиноидами являются объектом промышленной добычи на Волковском месторождении, приуроченном к верхней части одноименного габбро-диоритового массива. В юго-западной эндоконтактовой части массива, сложенной такситовыми оливиновыми габбро, переслаивающимися с апатитовыми клинопироксенитами и оливинитами, находится Баронское золото-палладиевое рудопроявление. Специфической чертой последнего является то, что при однотипной благороднометальной специализации (Pd > Au > Pt) с рудами Волковского месторождения и сходном видовом составе сульфидов (халькопирит, борнит, редкие сульфиды Ni, Co) его руды обычно содержат менее 0.1 мас. % S

и характеризуются более широким разнообразием минералов палладия.

Многие черты геологии и генезиса обоих типов оруденения остаются до сих пор дискуссионными. В настоящее время обсуждается несколько гипотез с противоположными взглядами на роль и соотношение магматических и метаморфических процессов в рудогенезе. Одни исследователи связывают образование медносульфидного оруденения с процессом дифференциации базальтового расплава и кристаллизацией остаточного, обогашенного Cu. Te. Ti и V флюидонасыщенного расплава [10, 18], другие с метасоматическими процессами различной природы [7, 15, 31]. Высказывалось предположение об образовании Баронского золото-палладиевого оруденения в результате переотложения более ранней медносульфидной минерализации (Волковского типа) под воздействием флюидов, связанных с более молодыми диоритовыми интрузиями [9]. Ряд исследователей рассматривает возможность образования и самого медносульфидного оруденения в результате метасоматического воздействия внедряющихся кварцевых диоритов [16].

Перечисленные гипотезы не выходят за рамки основных модельных представлений о форми-

ровании малосульфидного, существенно палладиевого оруденения в различных типах габброгипербазитовых комплексов. Наиболее крупные проявления такого типа оруденения известны в Норильском районе, в массиве Скаергаард, в Джон-Мэлвил рифе массива Стиллуотер и ряде других. Комплексы, вмещающее Pd-Pt оруденение, имеют различную геодинамическую позицию, возраст и состав пород. Характер сульфидной и благороднометальной минерализации также в значительной степени варьирует. Вместе с тем, ряд повторяющихся существенных особенностей строения таких комплексов свидетельствует о сходстве механизмов формирования в них благороднометального оруденения. К таким общим особенностям могут быть отнесены следующие: 1) приуроченность к верхним (габбровым) частям разреза; 2) связь с неоднородными по строению горизонтами такситов и пегматитов (критическими зонами), нарушающими упорядоченность стратификации массивов; 3) в различной степени проявленное несовпадение в пространстве максимальных концентраций Pt-Pd и Си-Аи ("расщепленные рифы"); 4) широкое развитие породообразующих минералов, обогащенных летучими компонентами. С учетом перечисленных особенностей, участие флюидной фазы в формировании Pt-Pd "рифов" представляется вполне очевидным, однако происхождение флюида и его роль в накоплении платиновых металлов трактуются по-разному.

Специфический состав обогащенных палладием, золотом и медью малосульфидных руд, действительно трудно объяснить в рамках системы расплав-сульфидная жидкость, поскольку в процессах плавления, кристаллизационной дифференциации и фракционирования сульфидного расплава Pd и Pt имеют сходное геохимическое поведение. Как известно, в большинстве расплавов мантийного происхождения, независимо от геодинамических обстановок их формирования, соотношения Pt и Pd близки к единице [52]. Экспериментально установлено [2], что присутствие флюида в расплаве не только существенно повышает растворимость Pt и Pd, но и в значительной степени влияет на величину Pd-Pt отношения в породах и рудах в зависимости от окислительно-восстановительных условий. Поэтому процессы, связанные с эволюцией остаточных флюидонасыщенных расплавов, могут приводить к формированию "критических зон" с существенно палладиевой минерализацией [2, 4]. В других моделях роль флюида ограничивается постмагматическим окислением, десульфуризацией и преобразованием рассеянной сульфидной вкрапленности, сформированной на магматическом этапе [33, 42].

Модели, предполагающие существенную роль флюида в накоплении благородных металлов (БМ) и формировании "малосульфидного" оруденения, по сравнению с магматическими моделями, менее подкреплены экспериментальными данными и недостаточно обоснованы в ряде проблем, касающихся, в частности, источников, состава и свойств природных флюидов, участвующих в петрогенезисе и рудообразовании. И хотя на качественном уровне установлено, что флюидная фаза при магматических температурах способна концентрировать БМ в количествах, достаточных для формирования экономически значимых скоплений [2, 34, 37, 40, 45], многие аспекты флюидного рудогенеза остаются неясными.

Для медносульфидного и золото-палладиевого оруденения Волковского габбро-диоритового массива участие флюида в процессе рудообразования не вызывает сомнений, но многие вопросы, касающиеся природы флюида и его роли в рудогенезе требуют дополнительного изучения. Основу работы составляет анализ новых данных о геологическом строении и минералого-геохимических особенностях пород и руд Баронского золото-палладиевого рудопроявления.

ГЕОЛОГИЧЕСКАЯ ПОЗИЦИЯ И СОСТАВ РУДОВМЕЩАЮЩИХ ПОРОД

Волковский габбро-диоритовый массив расположен на Среднем Урале, в 20 км к северу от г. Нижний Тагил. Он является северным продолжением крупного Тагило-Баранчинского массива, сложенного преимущественно габбро-норитами и амфиболовыми габбро и прорванного на востоке интрузиями гранитоидов Тагильского комплекса [22]. Волковский массив залегает среди вулканогенных и метаморфических пород Тагильской островодужной зоны. К западу от массива – это метаморфизованные позднеордовикские базальты с прослоями гиалокластитов и туфопесчаников, а также амфиболиты, роговики и кытлымиты по нерасчлененным базальтам и субвулканитам (мариинская свита). Восточнее залегают силурийско-раннедевонские вулканогенно-осадочные комплексы.

геологического картирования, По данным Волковский массив состоит из серии блоков или интрузивных тел, имеющих собственную концентрически-зональную структуру с центриклинальным залеганием пород. Наиболее ранними породами массива являются оливиновые габброиды, локализованные по его периферии. Полосчатость и трахитоидность в габбро не совпадает с зональностью, выражающейся в увеличении основности плагиоклаза от центральных частей габбровых блоков к их краям. Строение эндоконтактовой габбровой зоны осложнено наличием крупных линейно вытянутых тел и шлиров пироксенитов и оливинитов. Кварцевые диориты образуют крупное тело в центральной части массива. Они являются более молодыми образованиями по отношению к габброидам, прорывают последние и образуют зо-

Рис. 1. Положение Волковского габбро-диоритового массива в Платиноносном поясе Урала (а) и схема геологического строения Волковского габбро-диоритового массива (б), по [26].

1 – туринская свита (S₂-D₁): трахибазальты, трахиандезиты, трахиты, туфоалевриты туфопесчаники, известняки; 2 – мариинская свита (O₃): метаморфизованные базальты с прослоями гиалокластитов и туфопесчаников, амфиболиты, роговики и кытлымиты по нерасчлененным базальтам и субвулканитам; 3 – эпидот-альбитовые метасоматиты по породам основного состава; 4 – клинопироксениты, оливиниты; 5 – лабрадоровые амфибол-пироксеновые и гиперстен-биотитовые габбро; 6 – оливиновые и пироксеновые габбро битовнитовые; 7 – кварцевые диориты, биотит-роговообманковые; 8 – кварцевые диориты, пироксен-роговообманковые; 9 – габбро-диориты; 10 – сиено-диориты; 11 – сиениты; 12 – тектонические нарушения; 13 – плоскостная ориентировка минералов и полосчатость.

ны эруптивных брекчий с габбровыми ксенолитами и диоритовым цементом. Ряд исследователей [10, 31] рассматривали диориты как продукты магматической дифференциации единой габбровой интрузии. Однако, есть предположения и об отсутствии генетической связи между этими породами [13].

Возраст габбро определен в 445 млн. лет U-Pb методом по цирконам [21]. Более молодые интрузии сиенитов и монцогаббро Кушвинского комплекса прорывают габброиды на северо-западе и юго-востоке массива. Для них по цирконам получена U-Pb датировка в 428 млн. лет [21]. Ранее К-Аг методом возраст сиенитов определен как верхний девон–средний карбон (340–380 млн. лет) [17].

ЛИТОСФЕРА № 5 2010

Детальные исследования внутреннего строения центрального блока Волковского массива по керну глубоких разведочных скважин, проведенные В.И. Маеговым и Д.Г. Берлимбле, показали, что преобладающим типом пород массива являются оливиновые габбро, обладающие скрытой расслоенностью. Сверху вниз по разрезу в габбро падает железистость оливина и растет основность плагиоклаза. Характерные для массива высокие концентрации фосфора наблюдаются только в верхней части разреза и возрастают, при крайне неравномерном его распределении, в краевой части массива. Содержания стронция в породе и в плагиоклазе также увеличиваются в этом направлении [13].

Рис. 2. Зависимость концентраций петрогенных и редких элементов от содержания MgO, мас. %, в породах Баронского рудопроявления.

оливин-анортитовые габбро, 2 – клинопироксениты, 3 – верлиты, 4 – жильные лабрадоровые габбро и габбро-нориты,
– жильные амфиболовые габбро, 6 – поле составов жильных ("пострудных") габбро.

ЛИТОСФЕРА № 5 2010

Таблица	1. Содерж	ание петр	огенных (мас. %) и	редких (г/	т) элемент	ов в главн	ых типах	пород Бар	онского р.	удопроявл	ения			
	Bepr	INTЫ	Клин	нопироксе	НИТЫ	Олив	иновые га	<u> 6</u> 6po		Жил	пьные габ	бро		Плагиог	раниты
	B 24/17	MP 6	Kl 14/81	KI 5/62	B 34/70	B 30/54	B 30/80	IIE 589	Kl 5/50	Kl 5/60	B 31/41	B 30/54	B 13/67	B 31/58	B 13/110
SiO_2	35.85	43.28	35.41	40.03	43.56	37.16	37.56	39.31	45.29	48.88	46.24	48.39	50.88	69.51	68.64
TiO_2	0.229	0.040	1.319	1.367	1.165	0.42	0.83	0.744	0.854	0.925	1.131	0.798	0.613	0.194	0.251
Al_2O_3	2.50	0.86	5.59	6.73	6.87	14.94	14.51	16.53	16.77	19.54	15.58	19.92	22.54	15.24	15.72
$Fe_2O_3^*$	12.26	16.99	15.17	13.75	10.18	10.78	10.80	10.8	13.47	12.09	14.19	11.337	10.17	3.09	1.72
MnO	0.184	0.059	0.154	0.158	0.121	0.17	0.12	0.115	0.205	0.215	0.203	0.1894	0.237	0.08	0.04
MgO	27.81	27.33	15.27	11.97	12.44	11.90	11.52	7.88	7.04	4.17	7.57	4.32	2.32	0.92	0.84
CaO	16.92	8.68	19.84	18.85	20.57	16.52	17.75	19.26	14.43	10.50	11.27	10.71	8.61	2.96	4.78
Na_2O	He onp.	0.01	0.02	0.50	2.00	1.80	1.70	2.40	3.20	5.80	6.70				
$\rm K_2O$	0.03	He onp.	He onp.	0.06	He onp.	0.03	0.24	0.07	0.18	0.13	0.44	0.44	0.49	1.80	0.17
P_2O_5	4.03	3.51	5.88	1.28	1.07	2.68	2.20	2.21	0.03	0.26	0.06	0.28	0.40	0.116	0.07
f	0.18	0.24	0.33	0.36	0.29	0.31	0.32	0.41	0.49	0.59	0.48	0.57	0.69	0.63	0.50
Li	1.464	0.827	1.519	2.850	1.181	3.144	1.454	0.563	1.175	1.144	0.998	0.219	0.283	0.292	0.317
Be	0.082	0.016	0.045	0.162	0.090	0.101	0.036	0.074	0.229	0.167	0.226	0.678	0.433	1.259	0.798
Sc	23.802	3.709	57.428	95.746	116.724	9.912	32.543	20.944	28.780	32.092	41.549	23.071	3.512	1.088	1.553
>	203.294	104.939	889.927	856.364	696.168	286.698	442.639	577.192	387.776	420.082	466.148	245.724	35.936	26.771	22.137
Cr	0.889	1.614	48.362	67.464	16.192	28.388	25.618	4.143	386.818	260.211	82.985	86.807	181.955	97.897	188.412
Mn	1578.270	328.318	1376.525	1506.636	1117.264	1029.046	815.878	841.307	1397.485	1541.021	1334.104	1228.614	1276.837	315.357	85.784
Co	129.917	139.557	79.045	67.044	58.197	63.521	53.006	41.783	35.706	41.353	61.133	47.378	10.578	72.811	77.946
Ni	108.794	140.256	60.416	61.234	48.781	31.713	26.481	18.639	29.229	36.041	21.420	13.623	8.104	4.619	7.190
Cu	164.50	25468.64	74.24	117.52	60.05	99.22	137.25	880.70	70.81	118.99	248.52	24.61	8.96	162.62	5.50
Zn	39.759	39.577	78.206	70.394	56.122	84.177	54.041	43.030	58.026	62.775	85.486	64.601	27.882	49.470	5.768
Ga	3.662	0.750	15.346	17.466	15.641	15.069	16.766	15.950	13.574	11.945	15.704	20.928	15.052	15.490	14.987
Ge	0.254	0.105	0.366	0.260	0.087	0.837	1.192	0.925	1.099	1.168	1.346	1.434	0.790	1.153	0.839
Rb	1.149	0.042	0.176	1.027	0.327	0.448	4.043	0.998	3.281	2.238	5.198	4.279	4.359	13.523	2.100
\mathbf{Sr}	1176.074	650.402	549.268	577.538	648.417	2238.296	2220.375	2484.701	786.892	612.629	847.183	868.178	1000.907	263.099	814.440
Y	29.089	15.484	18.718	17.165	16.811	8.023	7.255	7.712	6.190	8.278	8.411	22.078	9.062	7.568	8.566
Zr	4.213	0.414	7.992	13.065	11.835	3.131	4.807	5.208	7.933	9.517	10.962	17.353	5.632	158.134	156.055
qN	0.132	0.027	0.189	0.375	0.187	0.092	0.096	0.181	0.290	0.311	0.319	1.951	1.366	2.331	3.042
Mo	0.113	0.091	He onp.	He onp.	0.066	Не опр.	He onp.	0.112	1.216	1.031	0.001	0.264	0.746	0.194	1.105
Ag	0.080	13.933	0.060	0.092	0.043	0.144	0.206	0.903	0.058	0.085	0.221	0.187	0.030	0.410	0.190
Cd	0.039	0.024	0.050	0.092	0.055	0.053	0.053	0.041	0.073	0.081	0.124	0.053	0.020	0.101	0.079
Sn	He oпp.	He onp.	He onp.	Не опр.	Не опр.	0.300	0.574	0.566	0.615	0.451	0.311	0.743	0.390	0.698	0.680
Sb	0.103	0.059	He onp.	He onp.	0.017	0.049	0.114	0.071	0.073	0.062	0.013	0.025	0.048	0.036	0.051
Te	He onp.	He onp.	He onp.	He onp.	Не опр.	0.071	0.121	0.776	0.000	Не опр.	0.028	0.011	Не опр.	0.070	0.019
C_{S}	0.039	0.026	0.039	0.042	0.031	0.049	0.068	0.030	0.071	0.090	0.101	0.101	0.145	0.351	0.073
Ba	34.981	1.221	7.031	34.933	13.924	20.986	114.124	55.801	153.043	80.328	129.508	166.781	265.837	673.391	102.015
La	24.822	14.397	11.053	7.522	4.758	7.020	4.446	7.184	2.403	3.220	2.109	6.634	8.444	7.780	17.996
Ce	70.217	40.874	32.779	18.921	13.126	20.767	13.827	21.508	6.119	9.221	5.756	18.581	19.720	13.474	29.106
Pr	11.542	6.717	5.702	4.033	3.222	3.430	2.393	3.542	0.918	1.413	0.920	2.798	2.591	1.673	3.604
Nd	65.522	37.862	30.381	23.955	19.974	19.561	14.300	20.564	4.857	7.595	5.067	14.512	12.069	6.752	14.078

ЛИТОСФЕРА № 5 2010

102.015 17.996 29.106 3.604 14.078

958 5.	4.735 3.	6.382 4.735 3.	6.944 6.382 4.735 3.	9.012 6.944 6.382 4.735 3.	9.094 9.012 6.944 6.382 4.735 3.
28 1.275 1.	1.4	1.933 1.42	1.939 1.933 1.42	2.469 1.939 1.933 1.42	2.399 2.469 1.939 1.933 1.42
61 3.697 4.	4.2	5.941 4.2	6.181 5.941 4.2	7.996 6.181 5.941 4.2	7.947 7.996 6.181 5.941 4.2
459 0.417 0.	0.4	0.791 0.4	0.796 0.791 0.4	0.910 0.796 0.791 0.4	0.848 0.910 0.796 0.791 0.4
130 2.015 2.	2	3.726 2	3.880 3.726 2	4.225 3.880 3.726 2	3.650 4.225 3.880 3.726 2
).345 0.316 0.		0.669 (0.669 0.669 (0.734 0.669 0.669 0.	0.603 0.734 0.669 0.669 0
0.731 0.691 0.		1.373	1.473 1.373	1.523 1.473 1.373	1.223 1.523 1.473 1.373
0.079 0.076 0.		0.153	0.166 0.153	0.175 0.166 0.153	0.117 0.175 0.166 0.153
0.435 0.393 0.3		0.847	0.959 0.847	0.878 0.959 0.847	0.593 0.878 0.959 0.847
0.060 0.053 0.		0.111	0.128 0.111	0.112 0.128 0.111	0.076 0.112 0.128 0.111
0.170 0.326 0.		0.943	0.874 0.943	0.572 0.874 0.943	0.023 0.572 0.874 0.943
0.022 0.008 0.		0.038	0.035 0.038	0.052 0.035 0.038	0.017 0.052 0.035 0.038
0.294 0.302 0.		0.094	1.135 0.094	1.607 1.135 0.094	0.254 1.607 1.135 0.094
0.122 0.065 0.		0.003	0.002 0.003	0.029 0.002 0.003	0.005 0.029 0.002 0.003
0.544 0.093 0.		He onp.	Не опр. Не опр.	Не опр. Не опр. Не опр.	He onp. He onp. He onp. He onp.
0.006 0.008 0.		0.011	0.021 0.011	0.010 0.021 0.011	0.797 0.010 0.021 0.011
0.169 0.114 0.		Не опр.	He onp. He onp.	He onp. He onp. He onp.	He onp. He onp. He onp. He onp.
0.028 0.030 0.		Не опр.	Не опр. Не опр.	Не опр. Не опр. Не опр.	Не опр. Не опр. Не опр. Не опр.

Среди однородных габбро с субофитовой или гранобластовой структурой наблюдаются зоны развития такситовых пород с неравномернозернистой "пятнистой" текстурой, выражающейся в незакономерном чередовании пород различной меланократовости и зернистости. С такими зонами структурных такситов в габбро связано медь-железо-ванадиевое оруденение, промышленные концентрации которого приурочены преимущественно к северной структуре массива. Разрабатываемое в настоящее время Волковское месторождение представлено рядом согласных с псевдостратификацией вмещающих габбро кулисообразно расположенных сложных по строению рудных тел протяженностью от нескольких десятков до 500 м. Рудные тела сложены густовкрапленными, реже сплошными апатит-титаномагнетитовыми рудами, постепенно переходящими в крупнозернистые клинопироксениты или участки с повышенной вкрапленностью титаномагнетита. Медная минерализация пространственно совпадает с титаномагнетитовым оруденением, но развивается неравномерно - от незначительной сульфидной вкрапленности до формирования халькопирит-борнит-титаномагнетитовых и халькопирит-борнитовых руд.

С медным оруденением связана благороднометальная минерализация, представленная теллуридами палладия (меренскитом, котульскитом и кейтконнитом) и мелкими зернами самородного золота. Кроме того, в редких случаях встречается гессит – (Ag,Pd)₂Te. По данным Ю.А. Волченко с соавторами [3], в медносульфидных рудах (Cu = 0.6– 4.6 мас. % и S = 1.0–1.5 мас. %) суммарное содержание платиноидов и золота колеблется от 1 до 7 г/т, а в медносульфидно-апатит-титаномагнетитовых рудах (Cu = 0.3–0.7 мас. % и S = 0.5–1.2 мас. %), соответственно – 0.1–0.3 г/т. Минералы БМ находятся в виде включений размером 0.001–0.025 мм в сульфидах (борните, халькопирите), титаномагнетите, клинопироксене [15, 18].

В западном эндоконтакте юго-западного блока Волковского массива, в пределах зоны развития такситовых амфиболовых оливин-анортитовых габбро залегают тела клинопироксенитов, верлитов и оливинитов, выходы которых прослежены по поверхности на расстояние около 6 км, при видимой мощности 0.6 км (рис. 1). С этими породами связано Баронское магнетитовое месторождение, представляющее собой субсогласную с простиранием вмещающих пород протяженную рудную зону, сложенную пластообразными крутопадающими маломощными телами сплошного и вкрапленного малотитанистого (1-4% TiO₂) магнетита [23, 32]. На ранние титаномагнетитовые руды накладывается локально проявленное позднее магнетитовое оруденение, связанное с маломощными зонами гранат-эпидотовых скарнов [23].

Восточнее полосы титаномагнетитовых руд в клинопироксенитах и габбро развито золото-

палладиевое оруденение, образующее прерывистую рудную зону, в плане вытянутую субпараллельно телам клинопироксенитов. Рудная зона выделяется только по результатам опробования, поскольку повышенные концентрации БМ не сопровождаются какими-либо изменениями во внешнем облике или составе вмещающих пород.

Вмещающими породами для золото-палладиевого оруденения, так же как и для магнетитовых руд, служат амфиболсодержащие оливиновые габбро и клинопироксениты с развитыми в подчиненном количестве прослоями (линзами) верлитов и оливинитов. Все перечисленные породы характеризуется постепенными переходами одной в другую, широкими структурно-текстурными вариациями, развитием пегматитов и полосчатых такситов, повышенными концентрациями БМ. Для рудовмещающих пород характерны интенсивные вторичные преобразования, среди которых наиболее широко распространены зеленокаменные изменения, выражающиеся в полной соссюритизации плагиоклаза, замещении оливина лизардитом, развитии актинолита и хлорита по клинопироксену. Помимо зеленокаменных изменений в пределах рудопроявления локально проявлен метасоматический процесс, по характеру преобразований исходных пород родственный скарнированию или родингитизации. Этот процесс выражается в развитии по оливину талька или антигорита в сопровождении магнетита или граната гроссуляр-андрадитового ряда, пренит-эпидотового или эпидот-хлоритового со сфеном и кальцитом агрегата по плагиоклазу (соссюриту), агрегата хлорита, сфена и рутила по титаномагнетиту.

В пределах рудопроявления присутствуют маломощные (до 10 м) протяженные тела габбро с резкими контактами, секущими структурные элементы пород габбро-клинопироксенитовой такситовой зоны. Эти породы практически не затронуты вторичными изменениями, обладают мелко-, среднезернистой, нередко порфировидной структурой и массивной, однородной текстурой. Уровень содержания БМ в них близок к фоновым значениям. Дайки различного состава – амфиболовые микрогаббро и микрогаббро-порфириты, амфибол-биотитовые лейкогаббро и плагиоклазиты, диориты и плагиограниты, пересекают не только рудовмещающие породы, но и жильные лабрадоровые габбро.

По химическому (рис. 2), модальному и нормативному составу рудовмещающие и секущие их жильные габбро заметно различаются. В первом приближении рудовмещающие породы можно классифицировать как оливиновые габбро с довольно выдержанным суммарным количеством нормативных оливина и клинопироксена около 40%. Ортопироксен либо отсутствует в норме, либо его доля не превышает первых процентов. Жильные габбро соответствуют габбро-норитам или двупироксеновым габбро с незначительной примесью оливина. Эти породы содержат плагиоклаз An_{55-65} , в то время как в оливиновых габбро плагиоклаз представлен анортитом (An $_{95-100}$). Железистость двупироксеновых лабрадоровых габбро и габбро-норитов (f = 0.47–0.52) также существенно выше, чем у рудоносных оливиновых габбро (f = 0.33–0.39), а в жильных амфиболовых габбро может достигать значений f = 60–70 (табл. 1). Специфика минерального состава оливиновых габбро определяется высоким содержанием магнетита и апатита. В жильных лабрадоровых габбро, габбро-норитах и амфиболовых габбро содержание кремнезема не опускается ниже 42 мас. %, а содержание P_2O_5 не превышает 1 мас. %.

Концентрации фосфора в рудовмещающих оливиновых габбро и ассоциированных с ними клинопироксенитах и верлитах варьируют в интервале 1.5-15% P₂O₅. Средние содержания фосфора в каждой группе пород оказываются близкими, что отражает отсутствие зависимости его концентраций от состава породы, хотя максимальные содержания апатита (до 15%) все же отмечаются в оливинитах (рис. 2).

Все рудовмещающие породы существенно обогащены редкоземельными элементами. Для оливиновых габбро, клинопироксенитов и верлитов характерно однотипное распределение РЗЭ (рис. 3), выражающееся в существенном преобладании легких лантаноидов над тяжелыми ($La_{CN}/Yb_{CN} = 4-16$). Величина La_{CN}/Yb_{CN} связана прямой зависимостью с количеством фосфора в породе (рис. 4).

Спектр распределения РЗЭ в жильных лабрадоровых габбро, габбро-норитах и амфиболовых габбро по сравнению с рудовмещающими породами, характеризуется меньшей степенью дифференцированности ($La_{CN}/Yb_{CN} = 2-8$) и наличием отчетливой положительной Еи аномалии (рис. 3). La/Sm и Gd/Yb варьирует в интервале 1–3.5 (рис. 4).

В оливиновых габбро, клинопироксенитах и верлитах наблюдаются довольно существенные вариации тяжелых РЗЭ (Gd/Yb = 6.5–12) при незначительном изменении степени дифференцированности в легкой части спектра (La/Sm = 1–2) (рис. 4).

Для всех пород Баронского рудопроявления характерны высокие концентрации стронция (табл. 1). Максимальные значения, достигающие 3000 г/т, зафиксированы в оливиновых габбро. В клинопироксенитах и верлитах высокие концентрации Sr (170– 850 г/т) определяются, главным образом, присутствием существенного количества апатита, содержащего 2500–3500 г/т Sr.

Во всех габбро концентрации легких РЗЭ, стронция и бария в 10 и более раз превышают содержания этих элементов в примитивной мантии, тогда как концентрации высокозарядных элементов (Nb, Ta, Zr и Hf) существенно ниже мантийных (рис. 5). Сходный характер распределения редких и редко-

Рис. 3. Распределение РЗЭ в породах Баронского рудопроявления.

1–5, как на рис. 2; 6 – жильные плагиограниты. На рис. За и в: светло-серое поле – жильные лабрадоровые габбро и габбро-нориты; на рис. б: серое поле – оливин-анортитовые габбро и связанные сними клинопироксениты и оливиниты. Состав хондрита по [50].

земельных элементов наблюдается чаще всего в островодужных базальтах [48 и др.] и интерпретируется как результат метасоматизирующего воздействия на породы флюида мантийного клина и/или расплава, отделяющегося от погружающегося в зону субдукции слэба. Высокие значения La/Nb, Th/ Nb, (La/Sm)_N и (La/Yb)_N, на фоне низких значений Ba/La, Ba/Nb, Ba/Th рассматриваются обычно как индикаторные для данного процесса.

Однако, островодужная геодинамическая обстановка не единственная, в которой может быть реализован описанный выше характер распределения. Обогащение элементами с большим ионным радиу-

Рис. 4. Вариации (La_{CN}/Yb_{CN}) в зависимости от концентрации P_2O_5 , и La/Sm в зависимости от Gd/Yb.

Условные обозначения, как на рис. 2. Состав примитивной мантии (PM) и базальта срединно-океанических хребтов (MORB) по [53].

сом (Ba, Sr, Th, U и легкими P3Э) и обеднение высокозарядными элементами (Nb, Ta, Zr, Hf и Ti) может происходить в литосферной мантии при метасоматизирующем воздействии небольших порций просачивающегося щелочного расплава [35]. При этом процессе происходит также интенсивное обогащение мантийных пород кальцием и фосфором. Спектр распределения редких и редкоземельных элементов метасоматизированных лерцолитов (рис. 5), сходен со спектром распределения в габбро Баронского рудопроявления при более низких значениях нормированных концентраций всех элементов.

Характерной особенностью пород Баронского рудопроявления является необычная геохимия хрома. Содержание этого элемента в жильных габбро близко к установленному в разных типах габброидов ППУ [20, 30] и составляет 200-400 г/т. Эти значения близки к концентрациям хрома в океанических базальтах СОХ или островных дуг [53]. В рудовмещающих оливиновых габбро концентрация хрома существенно ниже - до 150 г/т. При переходе к клинопироксенитам она не меняется и остается на "габбровом" уровне, а в оливинитах уменьшается до первых десятков грамм или даже первых грамм на тонну (рис. 6). В процессах дифференциации основных расплавов, как известно, происходит интенсивное обогащение хромом по мере возрастания в породе количества MgO. Например, в последовательности верлит-клинопироксенит-габбро в Платиноносном поясе Урала концентрация хрома

Рис. 5. Распределение редких и редкоземельных элементов в габброидах Баронского рудопроявления.

оливин-анортитовые габбро, 2 – жильные лабрадоровые габбро и габбро-нориты, 3 – жильные амфиболовые габбро;

а – темно-серым полем показан состав апатитовых лерцолитов из ксенолитов в щелочных базальтах Восточно-Африканского рифта [35], б– светло-серым полем показан состав клинопироксена из апатитовых лерцолитов Восточно-Африканского рифта [35]. Состав примитивной мантии по [50].

снижается от 2500–3000 г/т в верлитах, до 1500 г/т в клинопироксенитах и до 200–300 г/т – в оливиновых габбро. Как мы видим, сходные породы Баронского рудопроявления проявляют прямо противоположную тенденцию, не отвечающую процессу магматической кристаллизации.

СОСТАВ ПОРОДООБРАЗУЮЩИХ МИНЕРАЛОВ

Клинопироксен является сквозным породообразующим минералом для всех типов пород рудовмещающего разреза. Кроме того, это практически единственный минерал раннего парагенезиса, сохраняющийся при интенсивных изменениях пород, тогда как оливин и плагиоклаз часто полностью замещены вторичными минералами.

Клинопироксен рудовмещающих оливиновых габбро и ассоциированных с ними клинопироксе-

ЛИТОСФЕРА № 5 2010

Рис. 6. Вариации меди и хрома в зависимости от Mg# в породах Баронского рудопроявления.

Условные обозначения, как на рис. 2. $Mg#=Mg/(Fe^{2+}+Mg)$.

нитов, верлитов и оливинитов это глиноземистый и титанистый диопсид, характеризующийся высокими концентрациями СаО при пониженных количествах SiO₂ (табл. 2). Состав клинопироксена значительно варьирует по железистости (от 0.13 до 0.24), содержанию алюминия (3.63-8.57 мас. % Al₂O₃) и титана (0.63-1.56 мас. % TiO₂). Он характеризуется низкими концентрациями натрия, не превышающими 0.26 мас. % и крайне малыми содержаниями Cr₂O₃, которые в большинстве анализов находится на пределе обнаружения (<0.07% Cr₂O₃). Доля алюминия в тетраэдрической координации примерно в 2-3 раза выше, чем доля алюминия в октаэдрической позиции, а расчетное количество кальцийчермакитового минала варьирует от 5 до 20 мол. %. Состав клинопироксена при широких вариациях основных компонентов не обнаруживает зависимости ни от положения в разрезе, ни от состава пород. На диаграммах (рис. 7) поля клинопироксена из верлитов, клинопироксенитов и оливиновых габбро полностью перекрываются.

Клинопироксен жильных лабрадоровых габбро существенно отличается по составу от клинопироксена рудовмещающих пород. Он представлен диопсидом с более высокой железистостью

5
5
Ξ
8
E
õ
ā
E
ō
Ĕ
⇒`.
þ
\sim
Ĕ
0
X
<u> </u>
Ŧ
Q
9
Ω,
щ
×
8
Ĥ
O`
þ
0
~
Ξ.
<u>1</u> 23
1
8
2
5
ŏ.
Æ
E
Ξ
¥
1
11
5
1
В
g
5
ž
$\vec{\nabla}$
\cup
<u>i</u>
<u> </u>
8
3
5
Ó
3

%

mac.

		Клинопи	роксенит			Оливинон	зое габбро			Лабр	адоровое га	<u> </u>	
	K119/96	B30/65	B30/32	B39/40	K119/55	B39/28	B39/109	ПЕ-589	K15/17	Kl16/1	Kl16/2	Kl16/3	K118/1
SiO_2	48.58	47.4	46.99	48.24	48.21	47.74	50.58	47.94	51.86	50.77	51.07	51.33	51.48
TiO_2	1.22	1.21	1.19	1.1	1.28	1.15	0.93	1.17	0.36	0.52	0.6	0.49	0.52
Al_2O_3	6.33	7.49	7.9	6.51	6.96	7.04	4.35	7.18	1.53	1.38	2.6	2.28	2.13
MgO	12.64	14.1	13.74	14.36	13.91	13.7	15.09	13.84	14.61	15.34	14.77	14.17	14.57
FeO*	5.99	5.54	5.96	5.42	5.91	5.96	4.55	5.94	8.82	8.27	7.89	7.97	8.03
MnO	0.23	0.11	0.17	0.14	0.2	0.14	0.13	0.17	0.55	0.36	0.26	0.33	0.41
CaO	24.6	23.82	23.73	24.02	23.27	24.22	24.13	23.68	22	22.83	22.52	22.93	22.61
Na_2O	0.18	0.17	0.2	0.21	0.19	0.15	0.15	0.26	0.36	0.32	0.32	0.37	0.34
сумма	77.66	99.84	99.88	100	99.93	100.1	99.91	100.19	100.14	99.79	100.03	99.87	100.09
				Þ	ормульные	коэффицие	енты в перес	зчете на 6 (((C				
Si	1.813	1.763	1.752	1.791	1.790	1.776	1.866	1.779	1.938	1.908	1.904	1.920	1.920
Al	0.279	0.328	0.347	0.285	0.305	0.309	0.189	0.314	0.067	0.061	0.114	0.101	0.094
Ti	0.034	0.034	0.033	0.031	0.036	0.032	0.026	0.033	0.010	0.015	0.017	0.014	0.015
$\mathrm{F}\mathrm{e}^{2^+}$	0.187	0.172	0.186	0.168	0.183	0.185	0.140	0.184	0.276	0.260	0.246	0.249	0.251
Mn	0.007	0.003	0.005	0.004	0.006	0.004	0.004	0.005	0.017	0.011	0.008	0.010	0.013
Mg	0.703	0.782	0.763	0.794	0.770	0.760	0.830	0.765	0.814	0.859	0.821	0.790	0.810
Ca	0.984	0.949	0.948	0.955	0.926	0.965	0.954	0.941	0.881	0.920	0.900	0.919	0.904
Na	0.013	0.012	0.014	0.015	0.014	0.011	0.011	0.019	0.026	0.023	0.023	0.027	0.025
f	0.21	0.18	0.20	0.17	0.19	0.20	0.14	0.19	0.25	0.23	0.23	0.24	0.24
Примеч	ание. Анализ	зы выполнен	ы на микроа	нализаторе J	XA-5 (ИГТ У ₁	о РАН) и С	ameca SX-10	0 (ГЕОХИ РА	VH). FeO* – 1	зсе железо в	форме FeO. 1	$f = Fe^{2+}/(Fe^{2+})$	- Mg).

(f = 0.26–0.27), более высоким содержанием натрия (0.3–0.4 мас. % Na₂O) при более низких концентрациях алюминия и титана (1.20– 2.60 мас. % Al₂O₃, 0.30–0.60 мас. % TiO₂). На диаграммах состава (рис. 7) клинопироксен жильных габбро образует поле, обособленное от клинопироксена рудовмещающих пород.

Оливин из рудовмещающих оливинанортито-вых габбро и ассоциированных с ним клинопироксенитов, верлитов и оливинитов представлен умеренно железистой разновидностью (f = 0.14–0.18). В жильных лабрадоровых габбро железистость оливина возрастает до f = 0.33–0.35.

Практически все породы рудовмещающего разреза содержат помимо главных породообразующих минералов переменные количества амфибола, апатита и титаномагнетита.

Амфибол представлен, как правило, несколькими генерациями. Ранний амфибол присутствует либо в виде интерстициальных обособлений и кайм вокруг клинопироксена или титаномагнетита, либо в виде крупных пойкилитовых зерен с включениями апатита, магнетита и оливина. По составу – это умеренно титанистый (до 2.5 мас. % TiO₂) паргасит или магнезиогастингсит с железистостью f = 0.20-0.30. Вариации его состава в разных породах незначительны (табл. 3). Амфибол более поздних генераций представлен темно-зеленой роговой обманкой переменной железистости или актинолитом.

Концентрации апатита могут достигать 20 об. % в апатитовых оливинитах и титаномагнетитовых рудах, в клинопироксенитах и оливин-анортиторых габбро его количество находится на уровне 5–10 об. %. Апатит большей частью развивается в межзерновом пространстве главных породообразующих минералов – оливина, клинопироксена и плагиоклаза в ассоциации с более поздними минералами – амфиболом и титаномагнетитом, но иногда присутствует в виде включений в клинопироксене. Очевидно, что его образование происходило и на ранних, и на поздних этапах становления пород.

Апатит представлен фтористой разновидностью с содержанием F = 2.3-3.4 мас. % и Cl/F = 0.1-0.3 [9]. Он обогащен стронцием (2700–3500 г/т Sr) при умеренных суммарных концентрациях РЗЭ, составляющих не более 1000 г/т и низких концентрациях Y = 120-130 г/т. Линия распределения нормированных к хондриту РЗЭ характеризуется заметным отрицательным наклоном (Ce/Yb)n = 20). Сравнение геохимических

ЛИТОСФЕРА № 5 2010

Рис. 7. Состав клинопироксена из пород Баронского рудопроявления и Платиноносного пояса Урала. Условные обозначения, как на рис. 2.

№ обр.	ПЕ-589	B-30/47.7	Kl-16/58	Kl-16/22.9	K1-7/38	K1-7/30-1	k15-62.4
№ пп	1	2	3	4	5	6	7
SiO ₂	43.22	41.11	42.28	39.87	40.54	43.01	41.25
TiO ₂	1.56	1.94	1.28	2.40	2.20	2.43	2.42
Al ₂ O ₃	13.22	15.11	15.57	14.75	14.75	12.77	14.19
MgO	16.04	16.17	16.39	15.07	15.24	14.40	14.12
FeO	9.04	7.33	7.50	9.71	8.86	10.47	10.36
MnO	0.15	0.04	0.00	0.13	0.10	0.13	0.15
CaO	12.81	12.64	12.48	12.28	13.54	12.04	12.70
Na ₂ O	2.07	2.07	1.95	2.06	1.94	2.11	2.03
K ₂ O	0.78	0.78	1.18	1.23	1.06	0.93	1.42
сумма	98.89	97.19	98.63	97.5	98.23	98.29	98.64
		Формульные	коэффициенты	в пересчете на	a 24 (O, OH, F)		
Ca	1.973	1.969	1.914	1.939	2.115	1.877	1.987
Na	0.577	0.584	0.541	0.589	0.548	0.595	0.575
K	0.143	0.145	0.215	0.231	0.197	0.173	0.264
Mg	3.437	3.504	3.495	3.310	3.312	3.122	3.072
Fe ²⁺	1.087	0.891	0.898	1.197	1.080	1.274	1.265
Mn	0.018	0.005	0.000	0.016	0.012	0.016	0.019
Ti	0.169	0.212	0.138	0.266	0.241	0.266	0.266
Al(VI)	0.454	0.568	0.677	0.439	0.446	0.446	0.464
Al(IV)	1.787	2.022	1.950	2.124	2.089	1.744	1.978
Si	6.213	5.978	6.050	5.876	5.911	6.256	6.022
Al _{общ.}	2.241	2.590	2.627	2.563	2.535	2.190	2.442
			Значения і	параметров			
f	0.24	0.20	0.20	0.27	0.25	0.29	0.29
(Na + K)a	0.693	0.698	0.670	0.759	0.861	0.644	0.826

Таблица 3. Химический состав паргасита из различных пород Баронского рудопроявления (мас. %)

Примечание. Анализы 1–3 и 7 выполнены на микроанализаторе Cameca CX-100 (ГЕОХИ РАН), анализы 4–6 выполнены на микроанализаторе JXA-5 (ИГГ УрО РАН); 1.2 – оливиновое габбро; 3 – апатитовый оливинит; 4–7 – клинопироксенит. FeO* – все железо в форме FeO; f = Fe²⁺/(Fe²⁺ + Mg).

ЛИТОСФЕРА № 5 2010

Рис. 8. Вариации концентраций Sr, Ce, Y и Yb в апатитах Баронского рудопроявления и в апатитах различных породных комплексов.

 апатит из оливиновых габбро Баронского рудопроявления, 2 – апатит из карбонатитовых комплексов (n = 61), 3 – апатит из сиенитов (n = 34), 4 – апатит из якупирангитов (n = 14), 5 – апатит долеритов (n = 11), 6 – апатит из метасоматизированных лерцлитов, 7 – апатит из клинопироксенитов Суроямского массива.
2–5 по [36], 6 – по [47, 51], 7 – по [28].

особенностей апатита Баронского рудопроявления и апатита из различных комплексов пород выявило ряд существенных особенностей его состава. От апатита, для которого предполагается магматическое происхождение (карбонатиты, щелочные комплексы и апатит-магнетитовые руды), апатит Баронского рудопроявления отличается более высоким (Sr/Ce)n и (Y/Yb)n отношением (рис. 8). От апатита в метасоматизированных лерцолитах он отличается слабо дифференцированным спектром РЗЭ и более низким (Sr/Y)n отношением, близким к таковому в карбонатитах. При сходных соотношениях Sr и РЗЭ и однотипном характере распределения апатит Баронского рудопроявления отличается от апатита Суроямского массива более высоким содержанием У при более низких суммарных значениях РЗЭ.

Титаномагнетит присутствует во всех разновидностях пород в количествах, варьирующих от первых процентов до десятков процентов. В жильных габбро его содержание, как правило, не превышает 5%. Он образует мелкие включения в клинопироксене или интерстициальные зерна, окаймленные роговой обманкой. Для него характерны высокие содержания TiO₂-от 5.94 до 8.19% и V₂O₃-от 0.75 до 0, 82%. По составу титаномагнетит жильных лабрадоровых габбро идентичен титаномагнетиту Волковского месторождения [32]. Титаномагнетит в клинопироксенитах образует, как правило, сидеронитовую вкрапленность различной интенсивности. Его состав детально изучался в процессе геологоразведочных работ на Баронском титаномагнетитовом месторождении. Как показывают результаты этих исследований [23], титаномагнетит представлен малотитанистой (1-4% TiO₂) разновидностью "качканарского типа".

РАСПРЕДЕЛЕНИЕ БЛАГОРОДНЫХ МЕТАЛЛОВ, МЕДИ И СЕРЫ В ПОРОДАХ

Рудовмещающие породы характеризуются крайне неравномерным распределением меди (рис. 6), концентрации которой меняются в широких пределах от среднего "габбрового" уровня (100–150 г/т) до значений до 1000–2000 г/т и выше. Отношение Cu/(Cu + Ni) варьирует в пределах от 0.7 до 0.98. В жильных габбро концентрация меди не превышает 80–150 г/т при несколько более низком, чем в рудовмещающих породах Cu/(Cu + Ni) = 0.6-0.7. Эти значения чуть выше указанных параметров для океанических базальтов COX [52].

Повышенные концентрации БМ фиксируются в оливин-анортитовых габбро, клинопироксенитах, верлитах и оливинитах, при этом разброс значений весьма значителен и составляет 1–2 порядка по каждому петрографическому типу (табл. 4). Pd/Pt отношение варьирует от 10 до 100, возрастая по мере увеличения суммарных концентраций БМ. Среднестатистические суммарные содержания БМ нарастают от габбро к клинопироксенитам, достигая максимальных значений в верлитах и оливинитах. Жильные габбро характеризуются фоновыми концентрациями БМ, не превышающими 50 мг/т.

Результаты сплошного опробования по скважинам показывают, что концентрации БМ не обнаруживают корреляции ни с концентрациями серы и меди, ни с петрологическим типом пород (рис. 9). Низкотемпературные метасоматические, метаморфические и гипергенные процессы, приводящие, в частности, к перераспределению серы и меди в разрезе, не оказывают заметного влияния на распределение БМ. В участках наиболее интенсивных гидротермальных преобразований, часто сопровождающихся пирит-халькопиритовой минерализацией, во всех наблюдаемых случаях отмечались

Порода	Рd, г/т	Pd/Pt	#Au*	S,%	Число проб
Габбро лабрадоровое (жильное)	0.01-0.05	1–11	0.20	0.03	23
Габбро оливин-анортитовое	0.01-0.67	5-42	0.26	0.04	56
Клинопироксенит	0.01-9.10	4-108	0.15	0.02	120
Верлит, оливинит	0.01-10.00	2-80	0.10	0.04	126

Таблица 4. Вариации концентраций серы и благородных металлов в различных типах пород Баронского рудопроявления

Примечание. Анализы выполнены в лаборатории корпорации ALS Chemex (Ванкувер, Канада).* # Au = Au/(Au + Pd + Pt).

низкие концентрации БМ, тогда как интервалы пород с повышенной БМ минерализацией в отдельных случаях оказываются практически незатронутыми низкотемпературными преобразованиями.

МИНЕРАЛЫ ЗОЛОТО-ПАЛЛАДИЕВЫХ РУД

Минералы БМ в рудах тесно ассоциированы с медь-железо-кобальтовыми сульфидами при широко варьирующих количественных соотношениях обеих групп минералов. Основные сульфидные минералы, сопровождающие золото-палладиевую минерализацию, представлены борнитом, халькопиритом и пиритом. В подчиненных количествах присутствуют минералы группы линнеита, халькозин и дигенит. В единичных зернах встречен сфалерит, Se-галенит, молибденит, клаусталит и кобальтин. Общее количество сульфидных минералов в породах большей частью не превышает 0.1% при очень неравномерном их распределении. Сульфиды изредка присутствуют в виде мелких единичных включений в оливине и клинопироксене, а более часто образуют мелкие зерна или агрегаты зерен размером до 1–3 мм в межзерновом пространстве породообразующих силикатов. В таких случаях сульфиды сопровождаются амфиболом, хлоритом и эпидотом. Участками наблюдается обрастание и замещение халькопирита магнетитом – от об-

Рис. 9. Вариации концентраций благородных металлов, меди и серы в скважине КІ-16.

1 – клинопироксениты, 2 – верлиты, 3 –апатитовые оливиниты, 4 – амфиболовые микрогаббро, 5 – лабрадоровые габбро жильные, 6 – кварц-эпидотовые жилы.

ЛИТОСФЕРА № 5 2010

АНИКИНА, АЛЕКСЕЕВ

Мицеран	Формула	I	п
минерал	Dd (Au) (Hg) As To Sh	1	11
Duuuuaumum (I)	(Au)-(Au)-(As-Ic-Su)		
Бинцентит (I) Дененалист (II)	$(Pu_{2.9}Pe_{0.07}Uu_{0.02})_{2.97}(As_{0.54}Pe_{0.47})_{1.02}$		_
	$Pd_{2.97}(AS_{0.48} Pc_{0.34} SU_{0.21})_{1.03}$	_	Ŧ
Арсенопалладинит	$Pd_{7.97}(AS_{3.01} Ie_{0.02})_{3.03}$	-	_
Ie-арсенопалладинит (I)	$(Pd_{7,79}Ag_{0.04}Fe_{0.11}Cu_{0.06})_{8}(As_{1.52}Ie_{1.46}S_{0.02})_{3}$	++	+
Ie-арсенопалладинит (II)	$Pd_{7.88}(As_{2.37}Sb_{0.48}Ie_{0.26})_{3.11}$	-	+
Au-арсенопалладинит	$(Pd_{7.63}Au_{0.25})_{7.88}As_{3.12}$	_	+
Au-Hg-арсенопалладинит	$(Pd_{7.42}Au_{0.27}Hg_{0.18})_{7.86}As_{3.14}$	-	++
Гуанглинит	$Pd_{2.96}As_{1.04}$	+	+
Hg-гуанглинит	$(Pd_{2.73}Hg_{0.22})_{2.95}As_{1.05}$	-	+
Мертиит	$Pd_{7.97}(Sb_{1.60}As_{1.43})_{3.03}$	-	+++
Те-мертиит	$Pd_{7.96}(As_{1.45}Sb_{1.36}Te_{0.23})_{3.04}$	-	+++
Стибиопалладинит	$Pd_{4.97}(Sb_{1.57}As_{0.46})_{2.01}$	-	+
Теллуропалладинит	$Pd_{8.97}Te_{3.93}$	++	-
Котульскит (I)	$Pd_{1.03}Te_{0.97}$	+	-
Котульскит (II)	$Pd_{102}Te_{0.88}Bi_{0.10}$	_	++
Кейтконнит	$Pd_{301}Te_{0.99}$	++	+
Темагамит	$Pd_{316}Hg_{0.86}Te_{2.98}$	_	++
	Pd-Pt-S-Se	1	
Высоцкит	$(Pd_{0.94}Pt_{0.01}Fe_{0.01}Cu_{0.02})_{0.98}S_{1.02}$	+++	+
Se-высоцкит	$(Pd_{1,00}Pt_{0,02})_{1,02}(S_{0,95}Se_{0,03})_{0.98}$	+++	+
S-палладсеит (?)	$(Pd_{1582}Cu_{1.75}Pt_{0.03})_{17.60}(Se_{10.38}S_{3.37}Bi_{0.65})_{14.40}$	+	+
S-Те-палладсеит (?)	$(Pd_{15,61}Cu_{1,06})_{16,60}(Se_{8,05}S_{3,18}Te_{3,18})_{15,31}$	+	_
Бреггит	$(Pt_{0.60}Pd_{0.28})_{0.07}S_{1.03}$	_	+
1	Pd-Ni-Te	I	
Рd-мелонит	$(Ni_{0.62}Pd_{0.27}Fe_{0.06})_{0.06}Te_{2.04}$	+	_
	Pt-As	I	
Сперрилит	$Pt_{1,01}As_{1,00}$	_	+
- II ·	Au-Ag-Pd	I	
Электрум	$Au_{0.70}Ag_{0.30}$	+	+
Рд-электрум (I)	$Au_{0.76}Ag_{0.14}Pd_{0.11}$	++	_
Рд–электрум (II)	$Au_{0.82}Ag_{0.12}Pd_{0.05}$	_	++
Рд-Си-золото	$\begin{array}{c} A u_{0.05} + g_{0.15} + g_{0.05} \\ A u_{0.05} P d_{0.05} + g_{0.05} \\ A g_{0$	+	+
1 M CM 3001010	1 1 100.901 00.00 00.031 100.01		

Таблица 5. Ассоциации минералов благородных металлов в рудах Баронского рудопроявления

Примечание. +++ – главные минералы, ++ – второстепенные минералы; + – редкие минералы. **I – сульфидная (высоцкито-**вая) минеральная ассоциация; II – арсенидно-антимонидная (мертиитовая) минеральная ассоциация.

разования "рубашек" до полных псевдоморфоз с редкими реликтами исходного минерала. В участках гипергенного окисления такие "рубашки" и псевдоморфозы по халькопириту преобразуются в зональные коломорфные агрегаты гидроксидов железа и меди с примесью кремнезема.

В составе ассоциации минералов золота и палладия установлены сульфиды, теллуриды, сульфоселениды, арсениды, арсеноантимониды, арсенотеллуриды палладия, сульфиды и арсениды платины, самородное золото и серебро – всего 28 минералов и их разновидностей [1, 56]. При большом многообразии минералов и их крайне неравномерном распределении в пределах рудоносной зоны намечается две устойчивые минеральные ассоциации – сульфидная, с преобладающим высоцкитом и арсенидно-антимонидная, с преобладающим мертиитом и его теллуровой разновидностью (табл. 5).

В сульфидной минеральной ассоциации высоцкит составляет около 50 об. %, а арсенотеллуриды, теллуриды палладия и палладистый электрум относятся к второстепенным минералам. Их количество составляет соответственно 25 и 20 об. **%. Редки**ми минералами в этой ассоциации являются арсениды палладия. Их количество не превышает 5 об. **%**.

Арсено-антимонидная минеральная ассоциация сложена на 70–90% арсеноантимонидами палладия – мертиитом и его разновидностями. Доля арсенидов палладия может достигать 20 об. %, количество теллуридов – 12 об. %, минералов золота – не более 5 об. %, а собственных минералов платины – на уровне 1 об. %. Характерной особенностью минеральной ассоциации является появление ртутьсодержащих минералов. Зерна БМ-минералов образуют, как правило, неравномерную тонкую вкрапленность, "пропитывающую" породу и сопровождающуюся незначительным количеством хлорита.

Минералы системы Pd-(Au)-(Hg)-As-Te-Sb. К данной химической группе принадлежит большинство минералов и их разновидностей, извест-

-me Me
Kt Te
, H
изв. II) Te
(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
Hen (I
I) F
-elc I) Tp
-bd bd-
ý þ
e- D q
ys ap (1 (1
I I
∧ ⊖ (
in(I) A
Kt Vi
Vys
. Te- (I)
Vys

Таблица 6. Химический состав минералов благородных металлов, вес. %

ЛИТОСФЕРА № 5 2010

89

Продолжение
6.
Таблица

Проба	KI 4/32	Kl 16/86		KI 1	6/22			CI 18/97		X	J 16/86					Kl 18	8/40			
Минерал	Ktc	Tmg	Kt	Hg-gu	Me	Hg-gu	Kt	Te- apd(I)	Gu	Me	Spr	Me	Pd-elc (II)	Spr	Gu	Brg	Vys	Pd- Te-O	Pd-elc (II)	Kt
№ пп	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
Ni	I	Ι	I	Ι	I	I	Ι	I	I	I	I	I	I	I	I	I	I	I	I	Ι
Cu	1	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.6	I	I	0.6	Ι	I	Ι	I	I	Ι	Ι
Fe	I	I	I	I		I		I	I	I	I		I	I	I	I	I	I	I	I
Pd	70.3	36.7	43.4	70.9	73.9	70.1	45.5	74.2	80.6	73.4	I	74.0	7.7	I	80.1	23.9	38.7	61.4	5.4	47.0
Pt		Ι	I	I	I	I	I	I	I	I	55.8	1	I	55.6	I	57.6	41.1	I	I	I
Au		Ι	I	I	I	I	I	I	I	I	I	I	85.6	I	I	I	I	I	83.8	I
Ag		Ι	I	I	I	I	I	I	I	I	I	I	5.3	I	I	I	I	I	10.6	I
S		Ι	I	I	I	I	I	I	I	I	I	I	I	I	I	17.9	19.7	I	I	I
As	I	Ι	I	19.0	8.5	18.9	1.0	10.0	19.0	9.0	44.2	9.2	I	44.3	19.3	I	I	I	I	Ι
Sb	I		I	I	16.9	I	I	I	I	16.7	I	16.6	I	I	I	I	I	I	I	1.1
Te	29.1	42.2	42.0	I	I	I	53.2	15.8	I	I	1	I	I	I	I	I	I	18.2	I	51.5
Hg		20.5	I	9.6	I	10.6	I	I	I	I	I	I	I	I	I	I	I	I	I	I
Bi			14.6	I	I	I		I	I	I		I	I	I	I	I	I	I	I	I
Сумма	99.4	99.4	100.0	99.5	99.3	9.66	7.99	100.0	9.66	99.7	100.0	8.66	99.2	9.66	99.4	99.4	99.5	79.6	99.8	9.66
				-			0.	рормул	bhbie KC	пиффес	иенты		-						-	
Ni	Ι	Ι	I	Ι	Ι	Ι	Ι	Ι	I	I	I	I	I	Ι	I	Ι	Ι	Ι	I	Ι
Cu	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	Ι	0.10	I	Ι	0.02	Ι	Ι	Ι	Ι	Ι	Ι	Ι
Fe	Ι	Ι	I	Ι	I	Ι	I	Ι	I	I	I	I	I	Ι	I	Ι	Ι	Ι	Ι	Ι
Pd	2.97	3.105	1.011	2.75	8.08	2.74	1.00	8.04	3.00	7.94	1	8.02	0.13	I	2.98	0.42	0.61	I	0.09	1.03
Pt	1	I	I	I	I	Ι	Ι	I	I	I	0.98	I	I	0.98	I	0.55	0.35	I	I	I
Au		I	I	I	I	I	I	I	I	I	I	I	0.77	I	I	I	I	I	0.74	I
Ag D				I	I	I	I	I				I	0.08		I	I	I	I	0.17	I
م م				I	I	I	I	I				I	I		I	1.03	1.03	I		I
AS EPA		Ι	I	1.05	1.31	1.04	0.03	1.54	1.00	1.38	2.02	1.40	I	2.02	1.02	I	I	I	I	I
Sb	I		I	I	1.61	I			I	1.58	I	1.58	I	I	I	I	I	I	I	0.02
Te	1.03	2.975	0.816	Ι	Ι	Ι	0.97	1.42	Ι	I	I	Ι	Ι	Ι	I	Ι	Ι	Ι	Ι	0.95
BH	I	0.919		0.20	Ι	Ι	Ι	Ι	I	I	I	I	I	Ι	I	Ι	I	I	Ι	Ι
Bi		I	0.173	I	Ι	0.22	Ι	1	I	I		I	Ι	I	I	Ι	I	Ι	Ι	Ι

90

				_				_																						
	Vin(II)	60	I	Ι	Ι	74.8	Ι	Ι	Ι	Ι	7.8	7.1	10.3	I	Ι	100.0		I	Ι	Ι	2.98	Ι	Ι	I	I	0.44	0.24	0.34	Ι	I
Kl 6/25	Vin(I)	59	I	Ι	Ι	75.8	Ι	Ι	Ι	Ι	8.2	Ι	15.8	I	Ι	99.8		Ι	Ι	Ι	3.015	Ι	I	Ι	I	0.461	Ι	0.523	Ι	Ι
	Se-vys	58	I	Ι	Ι	75.2	I	I	I	21.8	I	I	I	I	2.6	99.60		Ι	I	Ι	1.00	Ι	I	Ι	0.96	I	I	I	I	0.05
	Pd- Cu-Au	57	I	2.5	Ι	4.3	Ι	90.7	1.6	Ι	I	I	I	I	Ι	99.1		Ι	0.07	I	0.07	Ι	0.83	0.03	I	Ι	I	I	Ι	I
KI 30/73	Te-me	56	I	Ι	Ι	73.4	I	I	Ι	I	7.9	14.8	3.3	I	Ι	99.4		Ι	I	I	8.05	Ι	Ι	Ι	I	1.23	1.42	0.30	Ι	I
	Vin(II)	55	I	Ι	Ι	74.4	Ι	I	Ι	Ι	8.00	7.20	9.70	Ι	Ι	99.30		I	Ι	I	2.98	Ι	Ι	I	I	0.45	0.25	0.32	Ι	Ι
	Vin(II)	54	1	Ι	I	73.50	I	I	I	I	9.90	6.50	9.50	1	Ι	99.40		I	I	I	2.91	Ι	I	Ι	I	0.56	0.22	0.31	I	I
6/22	Te- apd(II)	53	1	I	I	75.5	I	I	I	I	16.00	5.30	3.0	I	I	99.8		I	I	I	7.88	I	I	Ι	I	2.37	0.48	0.26	I	I
KI 1	Au- apd	52	I	I	I	73.00	I	4.70	I	I	22.00	I			I	99.70	ITЫ	I	I	I	7.75	I	0.24	I	I	3.01	I		I	I
	Au- Hg- apd	51	1	Ι	I	68.70	I	4.10	I	I	19.80	I	I	6.50	Ι	99.10	фициен	I	I	I	7.36	Ι	0.24	Ι	I	3.01	I	I	0.38	I
31.2	Ktc	50	I	Ι	I	71.50	I	I	I	I	I	I	26.51	I	Ι	98.01	ые коэф	I	I	I	3.05	Ι	I	Ι	I	I	I	0.95	I	I
KI 9/	Se-vys	49	I	Ι	I	76.59	I	I	I	22.35	I	I	I	I	0.57	99.51	рмульн	I	I	I	1.01	Ι	I	Ι	0.98	I	I	I	I	0.01
Kl 9/37	Pd- mln	48	11.20	Ι	0.82	9.38	I	I	Ι	I	I	I	76.59	I	Ι	97.99	Ф0	0.64	I	0.05	0.30	Ι	Ι	Ι	I	Ι	I	2.01	I	I
	Ktc	47	I	Ι	Ι	69.66	Ι	Ι	Ι	I	I	I	26.54	I	Ι	96.20		Ι	Ι	Ι	3.04	Ι	Ι	Ι	I	Ι	Ι	0.96	I	I
7/46	Apd	46	I	Ι	Ι	78.54	Ι	I	Ι		21.10	Ι	I	I	Ι	99.54		Ι	I	Ι	7.96	Ι	Ι	Ι	I	3.04	Ι	I	Ι	I
KI	Au- Hg- apd	45	I	Ι	Ι	70.59	I	4.31	Ι	Ι	19.02	I	I	3.66	Ι	97.56			I	Ι	7.62	Ι	0.25	Ι	I	2.92	I	I	0.21	I
	Se-vys	44	0.06	0.21	0.38	52.89	22.78	0.00	0.00	12.99	0.00	I	0.00	0.18	11.90	101.4		Ι	Ι	Ι	0.85	0.20	Ι	Ι	0.69	Ι	Ι	I	Ι	0.26
4/81	Se-vys	43	I	Ι	0.29	66.22	8.39	I	Ι	19.3	I	I	I	I	6.28	100.5		I	I	Ι	0.924	0.064	Ι	Ι	0.89	Ι	I	I	Ι	0.12
KI 1	S-pds (?)	42	I	2.69	0.33	60.91	1.67	Ι	Ι	8.67	Ι	I	Ι	Ι	23.96	98.2		Ι	1.12	I	15.36	0.16	I	Ι	7.20	Ι	I	Ι	Ι	8.16
Проба	Минерал	№ пп	Ni	Cu	Fe	Pd	Pt	Au	Ag	s.	\mathbf{As}	\mathbf{Sb}	Te	Hg	Se	Сумма		Ni	Cu	Fe	Pd	Pt	Au	Ag	s	\mathbf{As}	\mathbf{Sb}	Te	Hg	Se

Таблица 6. Окончание

ЛИТОСФЕРА № 5 2010

Т

91

Hg-gu – ртутистый гуанглинит, Gu – гуанглинит, Spr – сперрилит, Pd-elc (II) – палладистый электрум (II), Brg – брегтит, S-pds (?) – сернистый палладсеит (?), Au-apd – золотосодержащий арсенопалладинит, Te-apd(II) – теллуристый арсенопалладинит (II), Vin(II) – винцентит (II), Pd-Cu-Au – медь-палладистое золото.

Примечание. Анализы 1–12 выполнены на микроанализаторе ARL-SEMQ (Университет Модена, Италия), 13–43 и 51–60 – на электронном микроскопе с ЭДС Link ISIS

соцкит, Te-apd(I) – теллуристый арсенопалладинит (I), Арd – арсенопалладинит, Vin(I) – винцентит (I), Кt – котульскит, Pd-elc (I) – палладистый электрум (I), Аu-Hg-apd - золого-ртутистый арсенопалладинит, Elc – электрум, Ktc – кейтконнит, Pd-mln – палладистый мелонит, Me – мертиит, Te-me – теллуристый мертиит, Tmg – темагамит,

(ИГД РАН, Санкт-Петербург); 44–50 – на микроанализаторе Сатеса SX-100 (ГЕОХИ РАН, Москва). Трd – теллуропалладинит, Se-vys – селенистый высоцкит, Vys – вы-

Рис. 10. Состав (ат. %) минералов системы Pd-As-Te-Sb.

ных в рудах Баронского рудопроявления: мертиит, стибиопалладинит, винцентит, котульскит, теллуропалладинит, кейтконнит, темагамит, арсенопалладинит, гуанглинит и фазы с химическим составом Pd₇(As,Te)₂ и Pd₉(As,Te)₄. Химический состав минералов приведен в табл. 6.

Большинство анализов мертиита соответствует стехиометрии ($Pd_8(Sb,As)_3$) при отношении Sb/As = 1.07–1.16. Те-мертиит содержит от 1.9 до 3.5 мас. % Те при Sb/As = 0.82–1.30 и отвечает стехиометрии ($Pd_8(As,Sb,Te)_3$).

Винцентит (I) отвечает стехиометрии Pd_3 (As, Te) и может содержать в своем составе примесь меди (от 0.1 до 0.5 мас. %) и железа (от 0.1 до 2 мас. %). Винцентит (II) содержит от 4 до 10 мас. % Sb.

Винцентит (II) и Те-мертиит образуют на диаграмме составов (рис. 10) компактные изолированные поля. При одинаковой доле мышьяка (0.46 и 0.45 соответственно) в составе анионной группировки, отношение сурьмы к теллуру в винцентите (II) составляет в среднем 0.64, а в Те-мертиите 5.60.

Составы арсенотеллуридов палладия образуют на тройной диаграмме (рис. 10) ряд с конечными членами от (Pd₇(As,Te)₂) до (Pd₉(As,Te)₄) и соотношением As к

Те, уменьшающимся от 1.35 до 0.7. Фазы со стехиометрией (Pd₇(As,Te)₂) и (Pd₉(As,Te)₄) не имеют аналогов среди известных минералов системы Pd-As-Te.

Арсениды палладия представлены гуанглинитом (Pd₃As) и арсенопалладинитом (Pd₈As₃). Последний может содержать примесь теллура (1.6–1.9 мас. %), теллура (3 мас. %) и сурьмы (5.3 мас. %), золота (4.1–4.7 мас. %), золота (3.68– 6.99 мас. %) и ртути (0.98–6.50 мас. %). На основании стехиометрических соотношений главных элементов нами выделено три разновидности арсенопалладинита – Те-арсенопалладинит, Аиарсенопалладинит близок по сотаву Те-мертииту и винцентиту (II). От последних его отличает более высокая доля мышьяка в составе анионной группировки при промежуточном значении отношения сурьмы к теллуру.

Теллуриды палладия представлены котульскитом (PdTe) и кейтконнитом (Pd_{3-x}Te). Котульскит может содержать примесь висмута от 3 до 17 мас. %.

Минералы системы Pd-Pt-S-Se. К этой химической группе относится высоцкит, бреггит и палладсеит (?). Химический состав минералов приведен в табл. 6. Высоцкит чаще всего наблюдается в срастании с халькопиритом (рис. 11а) или борнитом, реже - в виде самостоятельных зерен в срастании с другими палладиевыми минералами. Размеры зерен могут достигать 500 мкм. В составе высоцкита отмечается примесь железа (< 1.35 мас. %) и меди (< 0.45 мас. %). Характерны низкие концентрации никеля (0.07-3.95 мас. %) и платины (<1.00 мас. %), отражающие крайне ограниченную долю бреггита и миллерита в твердом растворе. Высоцкит может содержать селен в количестве от 0.5 до 1.5 мас. %, в редких случаях – до 6 мас. % (табл. 6). В единичных зернах отмечаются минералы со стехиометрией, близкой палладсеиту, но содержащие помимо селена серу, теллур и висмут в различных соотношениях (табл. 5).

Минералы системы Pd-Ni-Te. К этой химической группе относится Pd-мелонит, присутствующий в виде включений в практически полностью окисленных зернах халькопирита (рис. 12ж). Состав минерала приведен в табл. 6.

Минералы системы Pt-As. К этой химической группе относится спериллит – редкий минерал, встречающийся в виде мелких неправильных зерен в срастании с арсенидами и арсено-антимонидами палладия. Состав минерала приведен в табл. 6.

Минералы системы Au-Ag-Pd. К этой химической группе относится электрум, палладистый электрум и медисто-палладистое золото. Pd-электрум сопровождает все ассоциации минералов платиновых металлов. Он образует мелкие (до 50 мкм) включения в халькопирите и высоцките (рис. 11г), в борните, минералах группы линнеита, в теллуридах и арсенидах палладия. Довольно часто золото образует самостоятельные зерна размером до 100 и более

Рис. 11. Морфология минералов благородных металлов, проба KI-16/58 Апатитовый оливинит.

а – два зерна высоцкита в срастании с халькопиритом, халькопирит замещается магнетитом, по границам зерна высоцкита развивается Те-арсенопалладинит (I); б – высоцкит с эмульсионными выделениями котульскита, серое – магнетит, на контакте магнетита и серпентина – срастание винцентита (I) и арсенопалладинита; в – сложное многофазное срастание высоцкита, Те-арсенопалладинита, халькопирита и арсенопалладинита; г – каплевидные и неправильной формы обособления Pd-электрума (I) в халькопирите, высоцките и по границам фаз. Изображения минералов благородных металлов в обратно-рассеянных электронах. СЭМ Philips XL40 (Университет Модена, Италия). Полированный шлиф. Цифры в скобках соответствуют номерам анализов в табл. 6. Ср – халькопирит, Мt – магнетит, Ant – антигорит; остальные обозначения минералов – как в табл. 6.

микрон (рис. 12а) и микропрожилки в ассоциации с вторичными силикатами. Рd-электрум содержит от 3.5 до 9 мас. % палладия и от 1.0 до 10.0 мас. % серебра. Электрум, не содержащий палладия, встречается значительно реже. Он наблюдался преимущественно в виде микропрожилков и отдельных зерен среди вторичных силикатов. Медисто-палладистое золото состава Au_{0.90}Pd_{0.06}Cu_{0.03} в срастании с палладсеитом установлено в оливин-магнетитовом габбро.

Как показывает анализ взаимоотношений минералов БМ в рудах, высоцкит является наиболее ранним минералом и парагенетически связан с халькопиритом и/или борнитом, обладая рядом признаков одновременного с ними образования (рис. 11). Котульскит и палладистый электрум, образующие структуры распада твердого раствора в

ЛИТОСФЕРА № 5 2010

высоцките, свидетельствуют, что рудообразующая система, находяшаяся в поле стабильности Pd-Cu сульфидной фазы изначально содержала в себе золото и теллур. Тесные срастания бреггита с высоцкитом доказывают, что платина так же изначально присутствовала в системе. Позиция арсенотеллуридов палладия по отношению к сульфидам допускает их более позднюю кристаллизацию и означает, что на следующем этапе минералообразования в системе доминировали Те и As. Арсениды палладия обладают морфологическими признаками более позднего образования как по отношению к сульфидам, так и к арсенотеллуридам (рис. 11б, в). В формировании ассоциации минералов, концентрирующих сурьму, мышьяк и ртуть намечается последовательность кристаллизации, в которой

Рис. 12. Морфология минералов благородных металлов.

а – арсениды палладия и самородное золото в гранат-хлоритовом агрегате; б – в зерне Hg-Au-арсенопалладинита видны симплектитовые выделения самородного золота с примесью платины; в – зерно Hg-Au-арсенопалладинита на стыке полностью окисленного халькопирита (замещен коломорфным агрегатом Fe,Cu,Si) и апатита; г – мелкое неправильной формы зерно в срастании с Hg-Au-арсенопалладинитом по составу отвечает кейтконниту; д – мелкие зерна арсенидов палладинитом по составу отвечает кейтконниту; д – мелкие зерна арсенидов палладия и халькопирита развиваются по микротрещинам в клинопироксене, вдоль контактов зерен образуется хлорит; е – трехфазное зерно, сложенное арсенопалладинитом, Hg-Au-арсенопалладинитом и кейтконниток; ж – зерно палладиевого мелонита, сохранившегося в практически полностью окисленном зерне халькопирита. Изображения минералов благородных металлов в обратно-рассеянных электронах. СЭМ JEOL JSM-6400 (ИГ Коми НЦ УрО РАН, Сыктывкар). Полированные шлифы. Цифры в скобках соответствуют номерам анализов в таблице 6. Gar – гранат; Срх – клинопироксен, Ер – эпидот, Chl – хлорит, Fe-Cu-Si (?) – коломорфный агрегат, замещающий сульфиды в зоне окисления. Остальные обозначения – как в табл. 6 и на рис. 11.

от ранних этапов к поздним возрастает роль ртути. Ртутьсодержащие минералы часто слагают периферические части минеральных агрегатов и образуют каймы обрастания на теллуридах и арсенидах палладия.

В процессе гипергенного окисления руд разрушение сульфидов происходит более интенсивно, тогда как теллуриды сохраняются дольше (рис. 12ж). Мелкие зерна частично резорбированных и окисленных теллуридов палладия сохраняются даже в прожилках "медной зелени" и коломорфных агрегатах Cu-Fe-Si в интенсивно выветрелых участках минерализованных пород.

СОСТАВ ИЗОТОПОВ ВОДОРОДА И КИСЛОРОДА В ПОРОДООБРАЗУЮЩИХ МИНЕРАЛАХ

Вариации значений δ^{18} О плагиоклаза, клинопироксена, амфибола, апатита, магнетита и хлорита из габбро и клинопироксенитов показаны на рис. 13.

Значения δ¹⁸О плагиоклаза составляют 6.5−7.1‰ в жильных лабрадоровых габбро и 5.5‰ в оливинанортитовых габбро. Поскольку при магматической кристаллизации в интервале температур 1000– 1300°С Δ_{РІ-расплав} не превышает значения +0.2‰ [46], такой плагиоклаз мог кристаллизоваться из расплава, имеющего значения δ¹⁸О – 5.3–6.9‰. Близкий изотопный состав кислорода рассчитан для родоначальных расплавов расслоенных комплексов платформенных областей [38] и в целом для неконтаминированных базальтоидных расплавов мантийного происхождения ($\delta^{18}O = 5.7\%$) [54].

Как было показано [46], $\Delta_{\text{Pl-cpx}}$ при магматической кристаллизации изменяется от 0.58‰ (1150°С) до 1.74 ‰ (550°С – минимальная температура, при которой продолжаются диффузионное переуравновешивание кислорода в закрытой системе). В оливин-анортитовых габбро $\Delta_{\text{Pl-cpx}} = 1\%$ находится внутри диапазона значений, соответствующего магматическому процессу. В лабрадоровых габбро Δ_{Pl-cpx} оказывается значительно выше – от2.5 ‰ до 3.2‰. Такие значения $\Delta_{\text{Pl-cpx}}$ соответствуют температуре равновесия плагиоклаза и клинопироксена при температуре около 300°С, но в присутствии воды при такой температуре они должны быть полностью или частично преобразованы в хлорит и глинистые минералы. Вместе с тем, лабрадоровые габбро практически не затронуты низкотемпературными преобразованиями и сохраняют свежий плагиоклаз и клинопироксен. Присутствие высокоглиноземистой роговой обманки указывает на участие флюидной фазы в процессе их кристаллизации. В зернах клинопироксена наблюдаются зоны, обогащенные микровключениями магнетита в виде структур распада твердого раствора, располагающиеся по зонам роста. Возникновение таких зон связано с субсолидусным окислением при участии флюида. Возможно, в жильных лабрадоровых габбро наличие микровростков магнетита является причиной пониженных значений δ^{18} O клино-

Рис. 13. Изотопный состав кислорода минералов габбро и клинопироксенитов Баронского рудопроявления.

1 – плагиоклаз (n = 4); 2 – клинопироксен (n = 8), 3 – амфибол (n = 2), 4 – апатит (n = 3), 5 – хлорит (n = 1), 6 – магнетит (n = 7), 7 – габбро (n = 3). Вертикальные линии – диапазон изотопного состава кислорода мантийных перидотитов и океанических базальтов NMORB [39].

ЛИТОСФЕРА № 5 2010

пироксена, составляющих 3.9–4‰ и, как следствие, завышенных значений $\Delta_{\text{Pl-cpx.}}$

 δ^{18} О магнетита в габбро и клинопироксенитах имеет значения около 2‰, что примерно в два раза ниже, чем расчетное значение δ^{18} О для магнетита в равновесии с базальтовым расплавом [57]. Магнетит из массивных прожилков в габбро характеризуется еще более низким значением δ^{18} О – 0.0‰. δ^{18} О апатита составляет 4.6–5.5‰, что так же существенно ниже расчетных значений в сухой магматической системе [57]. Возможно, отсутствие высокотемпературного изотопного (О) равновесия между породообразующими минералами габбро и клинопироксенитов обусловлено участием флюидной фазы на поздне- и постмагматической стадии эволюции пород при низком соотношении вода-порода.

Изотопный состав водорода и кислорода амфибола (паргасита) и хлорита (клинохлора) незначительно варьирует в интервале δD – от –81.0 до –68.5‰, $\delta^{18}O$ – от 4.8 до 5.8‰. Такие же значения, но при несколько более широких вариациях характерны для амфиболов из различных "водных" пород Платиноносного пояса Урала – иситов, горблендитов и амфиболовых габбро. В последних δD варьирует от –83.4 до –56.8‰, а $\delta^{18}O$ – от 4.2 до 5.5‰ [14].

Данные по изотопному составу водосодержащих минералов позволили рассчитать вероятные изотопные характеристики равновесного с ними флюида. Для расчета $\delta^{18}O_{H_{2}O}$ использованы равновесия: паргасит-вода [58], клинохлор-вода [44]; для расчета $\delta D_{H_{2}O}$ – паргасит-вода [43], хлорит-вода [55]. Принятые диапазоны температуры для кристаллизации амфибола – 600–800°С, хлорита – 300–500°С.

Как показывают расчеты, амфибол из клинопироксенитов Баронского рудопроявления находился в равновесии с флюидом с $\delta^{18}O_{H_2O-\phi\pi} = 7.2...8.6\%$ и $\delta D_{H_2O-\phi\pi} = -65...-46\%$, близким магматической воде (рис. 14, поле 1). Такие же значения $\delta^{18}O_{H_2O-\phi\pi}$ характеризуют равновесный с амфиболом флюид в других массивах Платиноносного пояса (6.8...8.2‰), однако, при более широких вариациях $\delta D_{H_2O-\phi\pi} = -74...-34\%$ (рис. 14, поле 2).

Отложение крупночешуйчатого хлорита в породах Баронского рудопроявления происходило в равновесии с флюидом с метаморфогенными метками – с несколько облегченным $\delta^{18}O_{H20-x\pi} = 4.6...6.2\%$ и утяжеленным $\delta D_{H20-x\pi} = -33...-39\%$ (рис. 12, поле 3). Учитывая минераграфические данные о частом сонахождении зерен минералов БМ с хлоритом, можно предполагать, что именно такой флюид участвовал в процессе формирования золотопалладиевых руд Баронского рудопроявления. Близкие изотопные характеристики имеет флюид, ответственный за формирование массивных сульфидных руд Волковского месторождения $\delta^{18}O_{H20-x\pi} = 5.0...6.4\%$, $\delta D_{H20-x\pi} = -54...-32\%$ (рис. 12, поле 4).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Природа рудовмещающих пород

При изучении Баронского золото-палладиевого рудопроявления было установлено наличие двух типов габброидов, имеющих различные взаимоотношения с оруденением. Первый можно условно назвать рудовмещающим, а второй – пострудным. Рудовмещающее оливин-анортитовое габбро, слагающее большую часть разреза, переслаивается с оливинитами, верлитами, клинопироксенитами и плагиоклазитами. С этими породами габбро имеет постепенные переходы, характеризуется широкими структурно-текстурными вариациями, развитием пегматитов и полосчатых такситов. Все перечисленные породы в разной степени обогащены благородными металлами. Пострудное габбро практически не затронуто вторичными изменениями, образует жильные тела, секущие рудовмещающие породы. Оно обладает мелко-, среднезернистой, нередко порфировидной структурой и массивной, однородной текстурой. Уровень содержания БМ в этих породах близок к фоновым значениям. Следовательно, можно утверждать, что формирование благороднометального оруденения связано со становлением сложного разреза оливин-анортитовых габбро, клинопироксенитов и оливинитов, а не является поздним, наложенным на все типы пород, развитых в юго-западном блоке Волковского габбрового массива. Пострудные жильные лабрадоровые габбро определяют верхний возрастной предел развития оруденения.

Как было показано, клинопироксен во всех типах рудовмещающих пород Баронского рудопроявления – это высокоглиноземистый, низкокремниевый диопсид. Близкий по составу клинопироксен слагает рудные амфиболсодержащие клинопироксениты Качканарского [24] и Тагило-Баранчинского массива [29], а так же массива Солт-Чак на юговостоке Аляски [49].

Как известно, кальциевый (более 50% Wo), обогащенный алюминием преимущественно в тетраэдрической координации, низкокремниевый клинопироксен, в котором Fe^{3+} преобладает над Fe^{2+} (фассаит) является типоморфным минералом магнезиальных скарнов и контактовых роговиков [5, 19]. Образование клинопироксена с отчетливо проявленной фассаитовой тенденцией в кальциевых ультрабазитах Платиноносного пояса Урала интерпретируется либо как результат метасоматического преобразования дунитовых блоков под воздействием базальтового расплава [24], либо как результат твердофазовой реакции между дунитом и габбро под воздействием водного флюида [8]. С другой стороны, формирование клинопироксена такого состава могло быть результатом кристаллизации водонасыщенной магмы при сравнительно низко-

Рис. 14. Расчетный изотопный состав кислорода и водорода флюида в равновесии с водосодержащими силикатами.

1 – с амфиболом из клинопироксенитов Баронского рудопроявления; 2 – с амфиболом горнблендитов, иситов, амфибол-пироксеновых габбро Платиноносного пояса; 3 – с прожилковым клинохлором Баронского рудопроявления; 4 – с амфиболом сульфидных руд Волковского месторождения. На диаграмму нанесены поля изотопного состава водных резервуаров, участвующих в гидротермальном рудообразовании по обобщенным литературным данным [25, 27].

температурных (ниже 1000°С) условиях и при высокой фугитивности кислорода (на уровне буфера Ni-NiO) [49].

Состав клинопироксена из ультрабазитов и оливин-анортитовых габбро Баронского блока (рис. 7) при довольно широких вариациях в нем основных компонентов не обнаруживает зависимости ни от положения в разрезе, ни от магнезиальности и меланократовости пород. При магматической кристаллизации из расплава должно происходить закономерное увеличение железистости клинопироксена по мере увеличения железистости пород. В рудовмещающих породах Баронского рудопроявления оливинит, верлит, клинопироксенит и оливиновое габбро имеют один и тот же состав клинопироксена, что не находит объяснения с точки зрения магматической кристаллизации этих пород из расплава. Отсутствие прямой зависимости концентрации хрома от магнезиальности пород (рис. 6) также не согласуется с магматической моделью образования последовательности оливинит-верлит-клинопироксенит-оливин-анортитовое габбро.

В качестве вероятного механизма формирования такой последовательности может рассматриваться синдеформационная метаморфическая дифференциация оливиновых габбро при участии водного флюида, сопровождавшаяся перекристаллизацией пород и формированием горизонтов такситов и пегматитов. Аналогичный механизм рассматривался ранее как один из вероятных для объяснения генезиса такситовых габбро Волковского массива и связанных с ними клинопироксенитов [31] и магнетитовых оливинитов, околорудных анортозитов и такситовых габбро в Кытлымском массиве [11].

При такой интерпретации нет необходимости относить оливин-анортитовые габбро и ультрабазиты Баронского блока к нижней части габбрового дифференцированного разреза, что не имеет никаких геологических обоснований, кроме предположения, что ультрабазиты являются ранними кумулятивными образованиями. Напротив, зоны флюидного обогащения могут возникать на разных уровнях кристаллизации интрузий, и чаще всего, в верхних их частях. Такая интерпретация снимает основные противоречия, возникающие при сопоставлении Волковского и Баронского оруденения. Последнее, по всем признакам, является более низкотемпературным как в отношении медносульфидного с платиноидами, так и в отношении титаномагнетитового оруденения [18].

Природа рудных концентраций

Как известно. В дунит-клинопироксениттылаитовых сериях Платиноносного пояса Урала для дунитов характерна платиновая специализация. Pd/Pt отношение постепенно увеличивается от клинопироксенитов к тылаитам и оливиновым габбро, но даже в последних оно не превышает 1 [9, 41]. Повышенное значение Pd/Pt отношения характерно для Качканарского массива, в котором оно возрастает от 4-5 в клинопироксенитах, до 9-16 в габбро. Все рудовмещающие породы Баронского блока, независимо от их состава, характеризуются резким преобладанием палладия и золота над платиной при практически полном отсутствии остальных платиноидов и преобладанием меди над никелем. Значение Pd/Pt-отношения может достигать 80–100, а отношение Cu/(Cu + Ni) составляет в среднем 0.98. Экспериментальные исследования свидетельствуют, что отсутствие в минералообразующей системе никеля и ее обогащенность Cu, Pd и Аи характерны для месторождений, сформировавшихся при участии флюида [34].

Как было показано, концентрации БМ не обнаруживают корреляции ни с концентрациями серы и меди, ни с составом рудовмещающих пород. Характер распределения БМ также не зависит от типа вмещающих пород. Вариации концентраций БМ и Pd/Pt отношения одинаковы в оливинитах, верлитах, клинопироксенитах и оливин-анортитовых габбро. Это является еще одним доводом в пользу метасоматической (гидротермальной) природы оруденения. Особенности состава минеральных парагенезисов руд, форма минеральных зерен и особенности их нахождения в породах согласуются с их метасоматическим происхождением.

Верхний возрастной предел развития рудообразующего процесса определяется временем внедрения жильных лабрадоровых габбро. В последних отсутствуют признаки БМ-минерализации, тогда как в контактирующих с ними клинопироксенитах наблюдаются повышенные концентрации золота и палладия. Поскольку ясно, что к моменту внедрения жильных габбро оруденение уже было сформировано, представляется вполне очевидным, что его формирование происходило одновременно с образованием оливинит-клинопироксенит-габбровых такситов.

На основе математического моделирования, учитывающего большие различия в коэффициентах распределения в системах расплав-сульфид, расплав-флюид и флюид-сульфид, показано, что при высвобождении всего 1% воды при дегазации кристаллизующегося расплава магматические сульфиды становятся неустойчивыми и растворяются во флюиде. При создании условий для дальнейшей миграции такого флюида (деформационные процессы различной природы) и вследствие различий в химической подвижности элементов становится возможной реализация механизм хроматографического разделения ЭПГ и S, Cu (Au). Степень разделения является функцией длины пути, пройденного флюидом [37]. Широкое развитие в рудовмещающих породах водосодержащих минералов и пегматоидных разновидностей пород указывает на существенную роль флюида в процессах петрогенезиса. Результаты изучения стабильных изотопов минералов из рудовмещающих пород не противоречат представлениям о магматическом происхождении такого флюида. В то же время, флюид, участвующий в образовании золото-палладиевых руд Баронского рудопроявления, так же как и богатых сульфидных руд Волковского месторождения, вероятнее всего, был смесью магматической и метаморфогенной воды, поступающей по ослабленным зонам. Роль последней значительно возрастала в пострудных процессах, сопровождающихся развитием клиноцоизита, кварца, хлорита и кальцита.

Авторы благодарны руководству ОАО "Евразия Майнинг" и лично С.Я. Берсеневу за содействие и предоставленный материал для исследований, В.В. Мурзину и Е.В. Пушкареву за конструктивное обсуждение материалов в ходе подготовки статьи к публикации.

Работа выполнена при финансовой поддержке РФФИ (гранты 09–05–00911-а;09–05–12035 офи_м), Программы ОНЗ № 2 (проект № 09-Т 5–1011), Интеграционного проекта 09-И-5–2001 и Программы ОФИ УрО РАН (проект № 10-5-14-НДР).

СПИСОК ЛИТЕРАТУРЫ

- Аникина Е.В., Заккарини Ф., Кнауф В.В. и др. Минералы палладия и золота в рудах Баронского рудопроявления (Волковский габбро-диоритовый массив) // Вестник Уральского отделения Российского минералогического общества. Екатеринбург: ИГГ УрО РАН, 2005. С. 5–25.
- Безмен Н.И., Горбачев П.Н., Шалынин А.И. и др. Растворимость платины и палладия в силикатных расплавах под давлением воды в зависимости от окислительно-восстановительных условий // Петрология. 2008. Т. 16, № 2. С. 174–190.
- Волченко Ю.А., Коротеев В.А., Золоев К.К. и др. Малосульфидное платинометальное оруденение в ультрамафитах Волковского массива (Средний Урал) // Ежегодник-1995. Екатеринбург: ИГГ УрО РАН, 1996. С. 135–140.
- Дистлер В.В., Дюжиков О.А., Кравцов В.Ф. и др. Малосульфидная платинометальная формация Норильского района // Геология и генезис месторождений платиновых металлов. М.: Наука, 1994. С. 48–65.
- Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А. Породообразующие пироксены. М.: Наука, 1971. 452 с.
- 6. Ефимов А.А. Платиноносный пояс Урала: тектонометаморфическая история древней глубинной зоны, записанная в ее фрагментах // Отечественная геология. 1999. № 3. С. 31–39.
- Ефимов А.А., Ефимова Л.П., Волченко Ю.А. О платиноносности медносульфидных руд Серебрянского Камня (Платиноносный пояс Урала) // Ежегодник-2001. Екатеринбург: ИГГ УрО РАН, 2002. С. 219–222.
- Ефимов А.А., Потапова Т.А., Берлимбле Д.Г. Химическая эволюция пироксенов уральских габбро: роль барического, термического, кислородного и химического факторов // Геохимия. 1999. № 5. С. 466–485.
- Золоев К.К., Волченко Ю.А., Коротеев В.А. и др. Платинометальное оруденение в геологических комплексах Урала. Екатеринбург: ДПР по Уральскому округу, ОАО УГСЭ, ИГГ УрО РАН, УГГГА, 2001. 199 с.
- Кашин С.А. Медно-титаномагентитовое оруденение в основных интрузивных породах Урала. М.: Изд-во АН СССР, 1948. 132 с.
- Маегов В.И. О генезисе магнетитовых оливинитов среди габброидов сухогорской ассоциации Кытлымского массива (Платиноносный пояс Урала) // Докл. АН СССР. 1983. Т. 271, № 5. С. 1210–1213.
- Маегов В.И. Пироксены в полосатой габброгипербазитовой серии Денежкина Камня (Северный Урал) // Новые и малоизученные минералы и минеральные ассоциации Урала. Свердловск: ИГГ УНЦ АН СССР, 1986. С. 27–34.
- Маегов В.И. К петрологии Волковского месторождения медносульфидных и апатит-титаномагентитовых руд (Средний Урал) // Уральский геологический журнал. 1999. № 5. С. 57–71.
- 14. Мурзин В.В., Аникина Е.В., Пушкарев Е.В., Викентьев И.В. Изотопный состав флюида при форми-

ровании золото-палладиевого оруденения Волковского массива в Платиноносном поясе Урала // Ежегодник-2006. Екатеринбург: ИГГ УрО РАН, 2007. С. 239–244.

- 15. *Мурзин В.В., Молошаг В.П., Волченко Ю.А.* Парагенезис минералов благородных металлов в медножелезо-ванадиевых рудах волковского типа на Урале// Докл. АН СССР. 1988. Т. 300, № 5. С. 1200–1202.
- Николайченков Ю.С. Некоторые особенности размещения рудных тел Волковского медно-железованадиевого месторождения // Геология, поиски и разведка рудных месторождений. Иркутск: СФАН АН СССР, 1977. С. 50–58.
- Овчинников Л.Н., Дунаев В.А., Краснобаев А.А. Материалы к абсолютной геохронологии Урала // Матлы МГК. XXII сессия. Докл. сов. геологов. М.: Наука, 1964. С. 88–101.
- Полтавец Ю.А., Сазонов В.Н., Полтавец З.И., Нечкин Г.С. Закономерности распределения благородных металлов в рудных парагенезисах Волковского габбрового массива (Средний Урал) // Геохимия. 2006. № 2. С. 167–190.
- 19. *Туровцев Д.М.* Контактовый метаморфизм Норильских интрузий. М.: Научный мир, 2002. 319 с.
- 20. Ферштатер Г.Б., Беа Ф., Пушкарев Е.В. и др. Новые данные по геохимии Платиноносного пояса Урала: вклад в понимание петрогенезиса // Геохимия. 1999. № 4. С. 352–370.
- Ферштатер Г.Б., Краснобаев А.А., Беа Ф. и др. Геодинамические обстановки и история палеозойского интрузивного магматизма Среднего и Южного Урала (по результатам датирования цирконов) // Геотектоника. 2007. № 6. С. 52–77.
- Феритатер Г.Б., Малахова Л.В., Бородина Н.С. и др. Эвгеосинклинальные габбро-гранитоидные серии. М.: Наука, 1984. 264 с.
- Фоминых В.Г., Клевцов Е.И. Закономерности локализации и соотношение различных типов железных руд в Баронской группе месторождений // Эндогенные рудообразующие процессы. Свердловск: УНЦ АН СССР, 1980. С. 55–61.
- 24. Фоминых В.Г., Краева Ю.П., Ларина Н.В. Петрология и рудогенезис Качканарского массива. Свердловск: УНЦ АН СССР, 1987. 184 с.
- Фор Г. Основы изотопной геологии. М.: Мир, 1989. 590 с.
- Формации титаномагнетитовых руд и железистых кварцитов: Железорудные месторождения Урала. Свердловск: УНЦ АН СССР, 1984. 264 с.
- Хевс Й. Геохимия стабильных изотопов. М.: Мир, 1983. 200 с.
- Шагалов Е.С., Холоднов В.В., Пучков В.Н. и др. Апатит пироксенитов Суроямского массива // Ультрабазит-базитовые комплексы складчатых областей и связанные с ними месторождения: матлы. Междунар. конф. Екатеринбург; ИГГ УрО РАН, 2009. Т. 2. С. 270–272.
- Шмелев В.Р. К особенностям минерального состава кальциевых гипербазитов Платиноносногопояса Урала // Ежегодник-1999. Екатеринбург: ИГГ УрО РАН, 2000. С. 161–165.
- 30. Шмелев В.Р. Магматические комплексы зоны Главного Уральского разлома (Приполярный сектор) в

ЛИТОСФЕРА № 5 2010

свете новых геохимических данных // Литосфера. 2005. № 2. С. 41–59.

- Штейнберг Д.С., Еремина М.В. Новые данные по петрологии Волковского месторождения // Магматизм, метаморфизм и металлогения Урала. Свердловск: УНЦ АН СССР, 1963. Т. 1. С. 431–438.
- Штейнберг Д.С., Фоминых В.Г., Еремина М.В. и др. Состав титаномагнетитов в базитах и ультрабазитах Урала. Свердловск: УФАН СССР, 1965. 99 с.
- 33. *Andersen J.C.* Postmagmatic sulphur loss in the Skaergaard Intrusion: Implications for the formation of the Platinova Reef // Lithos. 2006. V. 92. P. 198–221.
- Ballhaus C., Ryan C., Mernagh T.P., Green D.H. The partitioning of Fe, Ni, Cu, Pt and Au between sulfide, metal and fluid phases: A pilot study // Geochim. Cosmochim. Acta. 1994. V. 58. P. 811–826.
- Bedini R.M., Bodinier J.-L., Dautria J.-M., Morten L. Evolution of LILE-enriched small melt fractions in the lithospheric mantle: a case study from the East African Rift // Earth Planet. Sci. Lett. 1997. V. 153, № 1-2. P. 67–83.
- Belousova E.A., Griffin W.L., O'Reilly S.Y., Fisher N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type // J. Geochem. Explor. 2002. V. 76. P. 45–69.
- Boudreau A.E., Meurer W.P. Chromatographic separation of the platinum-group elements, gold, base metals and sulfur during degassing of a compacting and solidifying igneous crystal pile // Contrib. Mineral. Petrol. 1999. V. 134. P. 174–185.
- Chalokwu C.I., Ripley E.M., Park Y-R. Oxygen isotopic systematics of an open-system magma chamber: An example from the Freetown Layered Complex of Sierra Leone // Geochim. Cosmochim. Acta. 1999. V. 63, № 5. P. 675–685.
- Eiler J.M. Oxygen isotope variations of basaltic lavas and Upper mantle rocks // Stable Isotope Geochemistry / eds. J.W. Valley, D.R. Cole. Reviews in Mineralogy and Geochemistry. 2001. V. 43. P. 319–364.
- 40. Fleet M.E., Wu T-W. Volatile transport of precious metals at 1000°C: speciation, fractionation and effect of base-metal sulfide // Ceochim. Cosmochim. Acta. 1994. V. 59, № 3. P. 487–495.
- 41. *Garuti G., Fershtater G.B., Bea F. et al.* Platinumgroup elements as petrological indicator in maficultramafic complexes of the central and southern Urals: Preliminary results // Tectonophysics. 1997. V. 276. P. 181–194.
- 42. *Godel B., Barnes S.-J.* Platinum-group elements in sulfide minerals and the whole rocks of the J-M Reef (Stillwater Complex): implication for the formation of the reef // Chem. Geol. 2008. V. 248. P. 272–294.
- 43. *Graham C.M., Atkinson J., Harmon R.S.* Hydrogen isotope fractionation in the system chlorite-water // NERC 6th Progress Report of Research 1981–1984. NERC Publication Series D. 1984. № 25. P. 139.
- 44. Graham C.M., Harmon R.S., Sheppard S.M.F. Experimental hydrogen isotope exchage between

amphibole and water // Amer. Mineral. 1984. V. 69. P. 128–138.

- 45. *Hanley J.J.* The aqueous geochemistry of the platinumgroup elements (PGE) in surficial, low-*T* gydrothermal and high-*T* magmatic-hydrothermal environments // Exploration for deposits of platinum-group elements / Ed. J.E. Mungall. Mineralogical Association of Canada. Short Course Series. Oulu, Finland. 2005. V. 35. P. 35–56.
- 46. *Harris C., Chaumba J.B.* Crustal contamination and fluid-rock interaction during the formation of the Platreef, Northern Limb of the Bushveld Complex, South Africa // J. Petrol. 2001. V. 42, № 7. P. 1321–1347.
- 47. *Ionov D.A., Griffin W.L., O'Reilly S.Y.* Volatile-bearing minerals and lithophile trace elements in the upper mantle // Chem. Geol. 1997. V. 141. P. 153–184.
- Kent A.J.R., Elliott T.R. Melt inclusions from Marianas arc lavas: implications for the composition and formation of island arc magmas // Chem. Geol. 2002. V. 183. P. 263–286.
- 49. *Loney R.A., Himmelberg G.R.* Petrogenesis of the Pdrich intrusion at Salt Chuck, Prince of Wales island: an early Paleozoic alaskan-type ultramafic body // Can. Mineral. 1992. V. 30. P. 1005–1022.
- 50. *McDonough W.F., Sun S.-S.* The composition of the Earth // Chem. Geol. 1995. V. 120. P. 223–253.
- 51. *O'Reilly S.Y., Griffin W.L.* Apatite in the mantle: implications for metasomatic processes and high heat production in Phanerozoic mantle // Lithos. 2000. V. 53. P. 217–232.
- 52. *Rehkamper M., Halliday A.N., Fitton J.G. et al.* Ir, Ru, Pt and Pd in basalts and komatiites: New constraints for the geochemical behavior of the platinum-group elements in the mantle // Geochim. Cosmochim. Acta. 1999. V. 63. P. 3915–3934.
- 53. *Sun S.-S., McDonough W.F.* Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes // Magmatism in the Ocean Basins / Eds. A.D. Saunders, M.J. Norry. Geol. Soc. London Spec. Publ. 1989. V. 42. P. 313–345.
- 54. *Taylor H.P.Jr.* The oxygen isotope geochemistry of igneous rocks // Contrib. Mineral. Petrol. 1968. V. 19. P. 1–71.
- Wenner D.B. Taylor H.P.Jr. Temperatures of serpentinization of ultramafic rocks based on ¹⁸O/¹⁶O fractionation between coexisting serpentine and magnetite // Contrib. Mineral. Petrol. 1971. V. 32. P. 165–185.
- Zaccarini F., Anikina E. V., Pushkarev E. V. et al. Palladium and gold minerals from the Baronskoe-Kluevsky ore deposit (Volkovsky complex, Central Urals, Russia) // Mineral. Petrol. 2004. V. 82. P. 137–156.
- *Zhao Z-F., Zheng Y-F.* Calculation of oxygen isotope fractionation in magmatic rocks // Chem. Geol. 2002. V. 193. P. 59–80.
- *Zheng Y.-F.* Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates // Earth Planet. Sci. Lett. 1993. V. 120. P. 247–263.

Рецензент Е.В. Пушкарев

Mineral-geochemical characteristic of gold-palladium mineralization in the Volkov gabbro massif (Platiniferous Urals Belt)

E. V. Anikina, A. V. Alekseev

Institute of Geology and Geochemistry, Urals Branch of RAS

A geological structure and geochemical particularities of the Baron gold-platinum ore manifestation in application to the problem of ore genesis are considered in the work. The analysis of the obtained data allows narrowing considerably a circle of possible mechanisms of ore formation. In particular, the presence in the host gabbroid complex of post-ore vein gabbro, related to the ore-bearing ones, but intersecting them, point to a narrow temporal range of formation of Au-Pd mineralization limited by the time of formation of olivine gabbro and associated clinopyroxenites and olivinites. This excludes from the consideration the models presupposing a substantial temporal gap between the formation of host rocks and ore formation. At the same time a character of noble metal (NM) distribution, a content of ore paragenesises, morphology of mineral accumulations and interrelations of ore minerals with silicate matrix testify to metasomatic genesis of mineralization. In this case the ore-generating fluid at the early stages had an isotope composition, corresponding to magmatic water, and at the late stages – to a mixture of magmatic and metamorphogenetic ones.

Key words: *Platiniferous Urals Belt, gabbro, clinopyroxenites, olivinites, gold-palladium mineralization, rare and rare-earth elements, noble metal minerals, O and H stable isotopes.*