

Chemical Geology 204 (2004) 63-102

www.elsevier.com/locate/chemgeo

Rare earth element evolution of Phanerozoic seawater recorded in biogenic apatites

Christophe Lécuyer^{a,*}, Bruno Reynard^b, Patricia Grandjean^c

^aLaboratoire CNRS UMR 5125 Paléoenvironnements and Paléobiosphère, Université Claude Bernard Lyon 1, Campus de la Doua, F-69622 Villeurbanne, France

^bLaboratoire de Sciences de la Terre, CNRS UMR 5570, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon, France ^c 8 Avenue Roberto Rossellini, 69100 Villeurbanne, France

Accepted 8 November 2003

Abstract

Rare earth element (REE) contents of marine biogenic apatites have been shown to record seawater compositions. A data base of available and newly acquired rare earth element (REE) contents of marine biogenic apatites has been created to assess the past seawater REE compositions. To ensure that this data base contains only the pristine REE signals, altered samples, characterized by very low (La/Sm)_N ratios (where N stands for REE ratios normalized to the NASC composition; Gromet et al., 1984, Geochim. Cosmochim. Acta 48 (1984) 2469) acquired during apatite recrystallization, are not included in the database. These data reveal a change in the Tethyan seawater composition between 110 and 80 Ma. After the end of the Cretaceous, the REE chemistry of seawater remains constant until present-day. This seawater composition change is likely due to concurrent changes in REE scavenging processes. A strong correlation between decreasing (Sm/Yb)_N ratios and increasing Ce anomalies for samples deposited during the 80–110 Ma period is observed. As Ce anomalies are attributed to ocean water redox conditions, changes in REE scavenging could reflect an evolution from stratified and poorly oxygenated waters towards well-mixed and oxygenated waters. This could have resulted from changing current patterns stemming from the contemporaneous opening of the Atlantic Ocean. A major change in Middle and Late Cretaceous oceanic circulation linked to plate tectonics would have favored the colonization of pelagic environments.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Rare earth element; Phanerozoic; Biogenic apatites

1. Introduction

Biogenic phosphates may trace the chemistry of ancient seawater because the rare earth elements

(REE) spectra of modern marine remains mimic

^{*} Corresponding author. Also at Institut Universitaire de France, 103 Boulevard Saint-Michel, 75005 Paris, France. Fax: +33-7243-1688.

E-mail address: clecuyer@univ-lyon1.fr (C. Lécuyer).

those of surrounding seawater (Elderfield and Pagett, 1986; Grandjean et al., 1987). Enrichment factors of 10^6-10^7 relative to seawater result from pre-concentration processes by primary carriers in the water column (Bernat, 1975). Primary carriers of REE from near-surface waters to the sea floor are both inorganic like metal hydroxides and organic particles such as zooplankton and fecal pellets (Boyle et al.,

1977; Aplin, 1984; Fowler et al., 1987). REE are released by organic material during its oxidation within the water column, especially at the watersediment interface, and are adsorbed by apatite in the sediments during early diagenesis (Grandjean et al., 1987) without significant REE fractionation (Koeppenkastrop and De Carlo, 1992; Koeppenkastrop et al., 1991). The preservation of this paleoceanographic signal in marine vertebrate remains depends on the extent of REE addition and fractionation during post-depositional recrystallization ("extensive diagenesis") (Reynard et al., 1999). This diagenetic effect is characterized by a strong middle REE (MREE) enrichment relative to LREE and HREE, leading to "bell-shaped" patterns, as defined by Lécuyer et al. (1998). Taking into account the occurrence of such alteration processes that may distort the original geochemical record, we here investigate the evolution of REE contents of marine biogenic phosphates throughout the Phanerozoic in relation to potential major changes in chemistry and oceanography of Tethyan-Atlantic marine platform domains. We deliberately focus this investigation on biogenic remains and exclude massive phosphorite whose formation conditions are less understood and may not reflect the seawater composition even in contemporary unaltered deposits (e.g. Elderfield and Sholkovitz, 1987).

2. Samples and methods

REE compositions of about 400 samples have been compiled from the literature (data base and references available as electronic supplement). The sampling covers various marine platforms since the Cambrian, but the Mesozoic fish remains mainly come from Tethyan continental shelves. Thirty-one REE analyses were obtained by inductively coupled plasma and mass spectrometry (ICP-MS) at the Ecole Normale Supérieure of Lyon on Cretaceous fish teeth from Western Europe. The samples have been carefully selected from limestones deposited in offshore environments (for precise sample description and location, see Pucéat et al., 2003). Fish teeth were rinsed twice in tridistilled water and etched in 0.2 ml nitric acid 10 N. Only solutions with no apparent residue have been kept for REE analysis; 0.1 ml of a 1 ppm In and Bi internal standard solution was added and the volume taken to a final 5 ml, which is the approximate sample consumption for three trace element analysis runs. Calibration curves were generated against the BHV01 basalt standard provided by the USGS. Addition of In and Bi spikes to the samples was used to correct the beam intensity for ionisation suppression. Series were made of two solutions of known concentrations, one standard rock, three blanks, and 10 samples. Analyzed mass counts were then normalized with respect to the appropriate internal standard intensity.

3. Results

Both literature data and new measurements (Tables 1 and 2) of REE contents in marine biogenic apatites from shoreface to offshore sediments provide a database for deciphering the potential evolution of seawater REE chemistry throughout the Phanerozoic. Three main types of REE patterns are found (Fig. 1). Firstly, samples younger than 80 Ma display patterns similar to those of present-day seawaters. Secondly, samples older than 110 Ma display REE patterns with a relative depletion in HREE and weak Ce anomalies. Samples between 110 and 80 Ma show a progressive evolution between these two types. Thirdly, some samples are characterized by a relatively strong MREE enrichment typical of previously defined "bell-shaped" REE patterns. These patterns have been shown to result from extensive recrystallization during diagenetic alteration, which overprints the pristine composition (Reynard et al., 1999). We therefore removed from the database samples with lowest $(La/Sm)_N$ ratios (Fig. 2). The chosen criterion was to eliminate data with (La/Sm)_N ratios lower than 0.3 (Reynard et al., 1999). Most of these samples are also characterized by low δ^{18} O values (<18%) which suggest alteration by non-marine diagenetic fluids (Lécuyer et al., 1998).

Among remaining patterns, the most striking difference is that the oldest samples are depleted in HREE relative to LREE, while samples younger than the late Cretaceous are characterized by the LREE depletion typical of modern seawater. To illustrate this evolution, we have plotted the temporal evolution of

Table 1 Stratigraphic age, location, depositional environments and REE contents of Cretaceous fish teeth from the western Tethyan domain

Samples	Location	Taxon	Lithology	Environment	Age	La	Sm	Yb	ΣREE	(La/Sm) _N	(Sm/Yb) _N	Ω (Ce)
					(Ma)	(ppm)	(ppm)	(ppm)				
PC21	Puchevillers, France	undetermined fish	limestone	platform	82.1	3.50	0.23	0.20	3.92	2.21	0.60	- 0.64
H2	Malakoff, France	undetermined fish	limestone	platform	73.8	25.11	6.41	1.64	33.16	0.57	1.99	-0.08
M3	Hallencourt, France	Scapanorhynchus sp.	limestone	offshore	82.1	0.92	0.06	0.04	1.02	2.20	0.77	-0.59
D10	Sens, France	Squalicorax pristodontus	limestone	offshore	82.1	21.59	1.42	1.46	24.47	2.20	0.50	-0.64
PI27	Somme, France	undetermined fish	limestone	upper offshore	87.4	11.03	1.18	0.31	12.52	1.36	1.92	-0.63
D12	Beauval, France	undetermined fish	limestone	upper offshore	77.4	0.41	0.03	0.04	0.48	1.86	0.44	-0.53
H6	Authon, France	undetermined fish	limestone	offshore	84.6	157.41	62.51	10.71	230.63	0.37	2.97	-0.30
M2	Le Mans, France	Squalicorax falcatus	shales	upper offshore	94.5	14.28	1.66	0.56	16.49	1.25	1.51	-0.085
PI23	Ardèche, France	undetermined fish	sandy limestone	upper offshore	91.2	40.35	6.87	1.79	49.01	0.85	1.95	0.055
M1	Les Renardières, France	Carcharias amonensis	sandy shales	upper offshore	94.5	7.59	2.10	0.42	10.11	0.53	2.55	0.05
D9	Yonne, France	Lamna acuminata	limestone	upper offshore	97.4	35.71	5.63	2.00	43.34	0.92	1.43	-0.24
D5	Ardennes, France	Odontaspis sp.	green clays, phosphates	platform	105.5	25.15	5.90	2.23	33.28	0.62	1.35	0.50
D7	Courcelles, France	Lamniform	shales	upper offshore	105.6	262.72	51.48	5.49	319.69	0.74	4.77	-0.09
PS25	La Houpette, France	Otodus sp.	sands, phosphorites	upper offshore	105.5	106.90	14.85	1.80	123.55	1.05	4.19	0.71
D2	Ardèche, France	Otodus sp.	shales	offshore	114.7	30.79	2.57	0.92	34.29	1.74	1.42	0.52
D3	Ardèche, France	Pycnodus sp.	shales	offshore	114.7	18.73	5.52	1.53	25.79	0.49	1.83	0.16
PI31	Ain, France	undetermined fish	limestone	platform	105.5	70.95	11.16	2.90	85.01	0.92	1.95	0.03
PI26	Viry, France	undetermined fish	unknown	shoreface	105.5	77.77	12.05	4.50	94.32	0.94	1.36	0.07
D4	Grusse, France	Lamniform	sandstone	shoreface	109.3		6.93	5.63	12.66		0.63	
D6	Bellegarde, France	Odontaspididae gracilis	shales	upper offshore	120	79.27	14.07	5.26	98.61	0.82	1.36	0.04
D13	Martigues, France	undetermined fish	limestone	lower offshore	116.1	90.99	9.44	6.88	107.30	1.40	0.70	0.08
D1	Yonne, France	Sphaerodus neocomiensis	sandy limestone	upper offshore	129.5	16.81	2.76	1.14	20.71	0.89	1.22	0.17
V42	Auberson, Suisse	undetermined fish	limestone	upper offshore	134.8	255.18	91.91	10.02	357.11	0.40	4.66	0.30
V40	Bonvillars, Suisse	undetermined fish	limestone	offshore	137.5	94.66	33.20	3.78	131.64	0.41	4.46	1.21
V39	Ponte du Suchet,	undetermined fish	unknown	platform	136.2	396.39	175.97	11.17	583.53	0.33	8.00	0.17
	Suisse											
G2	Val de Fier, France	Pycnodus sp.	limestone	upper offshore	137	53.68	23.19	1.26	78.13	0.34	9.36	0.49
VSR	Gard, France	undetermined fish	limestone	offshore	136.75	6.43	22.50	1.26	30.18	0.04	9.09	0.21
G1	Ardèche, France	undetermined fish	shales	offshore	138.5	43.40	135.79	7.27	186.46	0.05	9.49	0.22
M4	Texas, USA	undetermined fish	unknown	platform	96.2	108.58	13.45	3.52	125.55	1.17	1.94	0.04
M5	Agadir, Morocco	Squalicorax falcatus	limestone	platform	91.25	44.29	4.40	1.68	50.36	1.46	1.33	-0.30
M6	Texas, USA	undetermined fish	unknown	platform	88.5	72.01	6.46	5.40	83.87	1.62	0.61	-0.11

65

C. Lécuyer et al. / Chemical Geology 204 (2004) 63-102

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	La (ppm)	Ce (ppm)
Grandjean	et al. (1987)								
P1	Cevennes, France	Hybodus	tooth	sandstone	neritic	Trias	215	65	176
P3	Oman	Asteracanthus	tooth	sandstone	neritic	Upper Jurassic	150	259	165.3
P4	Boulonnais, France	Sphenodus	tooth	clay	littoral	Portlandian	145	544	672
P5	Vaucluse, France	Protolamna	tooth	clay	littoral	Upper Aptian	108	471	11.135
P7	Texas, USA	Cretolamna	tooth	sandstone	neritic	Albian	103	243	600
P8	Angola	Cretolamna	tooth	sandstone/	neritic	Cenomanian	98	719	1007
Р9	Agadir, Morocco	Cretolamna	tooth	phospharenite	neritic	Campanian	75	148	151
P10	New Jersey, USA	Scapanorhynchus	tooth	sandstone	neritic	Upper Campanian	74	99.4	242
P11	Youssoufia, Morocco	Cretolamna	tooth	phospharenite	neritic	Maastrichtian	68	20.25	14.32
P12	Toro-toro, Bolivia	Pucapristis	tooth	phospharenite	neritic	Maastrichtian	68	282	503
P13a	Youssoufia, Morocco	Myliobatis	tooth	phospharenite	neritic	Dano-Montian	62	50.6	30.4
P14	Sididaoui, Morocco	Striatolamia	tooth	phospharenite	neritic	Early Ypresian	52	42.64	12.88
P15	North Peru	Isurus	tooth	sandstone	neritic	Middle Eocene	46	7.36	10.29
P16	Kpogame, Togo	Synodontaspis	tooth	phospharenite	neritic	Middle Eocene	46	8.48	9.21
P16a	Kpogame, Togo	Synodontaspis	tooth	phospharenite	neritic	Early Lutetian	46	82.2	108.3
P16c	Kpogame, Togo	Teleost vertebra	tooth	phospharenite	neritic	Early Lutetian	46	110	134
P16e	Kpogame, Togo	Synodontaspis	tooth	phospharenite	neritic	Middle Lutetian	45	34	46
P21	Al-Sarrar, Saudi Arabia	Myliobatis	tooth	sandstone	neritic	Burdigalian	16	1052	1390
P18b	Loupian, France	Myliobatis	tooth	phospharenite	neritic	Middle Miocene	14	28.4	30.1
P19	Bonpas, France	Mitsukurina	tooth	sandstone	bathyal	Middle Miocene	14	468	549
P20	Sacaco,	Carcharocles	tooth	sandstone	neritic	Early Pliocene	5	0.624	1.244
P22	Pichegu, France	Synodontaspis	tooth	clay	neritic/ bathyal	Middle Pliocene	3	15.6	30.5
Grandiaan	(1989)								
Cou23- 24Aa	Coumiac, France	unidentified	conodont	limestone	neritic	Frasnian	365	11.63	37.4

 Table 2

 Stratigraphic age, location, depositional environments and REE contents of Phanerozoic marine biogenic apatites

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb Dy (ppm) (ppm)	Ho Er (ppm) (ppm)	Tm Yb (ppm) (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
	290	163	34	181	102	30	17	2.3	245	0.07	5.21	Isotopic dilution,
	151.7	27.18		30.3	25.9	13.18	7.14	0.67	293.32	1.70	2.07	TIMS Isotopic dilution,
	343	57.4	12	56.9	42.87	24.9	25		626.4	1.69	1.25	ISotopic dilution, TIMS
	706	147	28	115	98	28	13.8	1.72	631.8	0.57	5.79	Isotopic dilution, TIMS
	367	80.3	18	78	58.7	17.6	9	1.07	332.3	0.54	4.85	Isotopic dilution, TIMS
	718	126	23.2	85	83	36	24.7	3.04	869.7	1.02	2.77	Isotopic dilution, TIMS
	74	12.93	2.93	14.5	15.3	10.8	9.2	1.42	170.13	2.04	0.76	Isotopic dilution, TIMS
	81.3	15.75	3.39	16.14	14.1	7.87	7.23	1.02	122.38	1.12	1.18	Isotopic dilution, TIMS
	13	2.45	0.661	3.32	3.77	3.21	3.39	0.52	26.09	1.47	0.39	Isotopic dilution, TIMS
	208.4	38.5	9.23	38.3	45.5	29.7	23	3.03	343.5	1.30	0.91	Isotopic dilution, TIMS
	32.2	6.31	1.86	9.22	9.62	7.72	7.87	0.98	64.78	1.43	0.44	Isotopic dilution, TIMS
	25.6	4.86	1.27	6.77	6.91	5.46	5.56	0.85	53.06	1.56	0.48	Isotopic dilution, TIMS
	3.76	0.731	0.31	1.43	1.45	1	1.16	0.18	9.251	1.79	0.34	Isotopic dilution, TIMS
	2.88	0.496	0.16	0.94	1.1	1.25	1.43	0.22	10.406	3.05	0.19	Isotopic dilution, TIMS
	39.6	39.6	2.11	9.96	9.94	6.43	6.95	1.07	101.0	0.37	3.10	TIMS
	41	7.4	2.71	12.88	13.99	11.8	13.9	2.18	131.3	2.65	0.29	TIMS
	19	3.5	0.98	4./1	5.24	4.54	4.63	0.8	42.13	1./3	0.41	TIMS
	11.116	224.5	53.1	147.6	122.5	/4	59	9	1335.5	0.83	2.07	TIMS
	11	1.89	0.51	2.75	3.05	2.35	3.08	0.4	33.37	2.68	0.33	Isotopic dilution,
	252	43	11.5	52	52.6	30	25	3.3	536	1.94	0.94	Isotopic dilution, TIMS
	0.651	0.136	0.025	0.115	5 0.103	0.061	0.055	0.008	0.815	0.82	1.34	Isotopic dilution, TIMS
	16.5	5.14	1.55	5.59	6.75	3.96	3.21	0.48	23.95	0.54	0.87	Isotopic dilution, TIMS
	28.2	8.23	2.33	13.1	6.88	1.83	1.15		21.01	0.25	3.90	Ion probe, Cameca 3f

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma	d La) (ppm)	Ce (ppm)
Grandjean	(1989)								
Cou23-	Coumiac, France	unidentified	conodont	limestone	neritic	Frasnian	365	19.6	66.8
Cou23-	Coumiac,	unidentified	conodont	limestone	neritic	Frasnian	365	8.77	30
24Ac	France			1:		E	265	12.2	12 1
24Ad	France	unidentified	conodont	Imestone	neritic	Frasnian	305	12.2	43.4
Cou23-	Coumiac, France	unidentified	conodont	limestone	neritic	Frasnian	365	8.75	31.1
Cou23-	Coumiac,	unidentified	conodont	limestone	neritic	Frasnian	365	16.3	55
24Af Cou24Ba	France Coumiac.	unidentified	conodont	limestone	neritic	Frasnian	365	3.61	18.7
coulindu	France	unidentified	concaoni	linicotonic		1 100111011	202	0.01	1017
Cou24Bb	Coumiac,	unidentified	conodont	limestone	neritic	Frasnian	365	8.79	44.4
Cou24Bc	Coumiac,	unidentified	conodont	limestone	neritic	Frasnian	365	8.56	39.3
Cou24Bd	France Coumiac.	unidentified	conodont	limestone	neritic	Frasnian	365	3.75	20.7
	France								
Cou24Be	Coumiac, France	unidentified	conodont	limestone	neritic	Frasnian	365	11.2	42.4
Cou24Bf	Coumiac, France	unidentified	conodont	limestone	neritic	Frasnian	365	5.23	23.1
Cou24Bg	Coumiac,	unidentified	conodont	limestone	neritic	Frasnian	365	4.42	13
Cou24Bh	France Coumiac,	unidentified	conodont	limestone	neritic	Frasnian	365	6.45	19.5
Cou31Ga	France Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	15.7	35.4
~	France								
Cou31Gb1	Coumiac, France	unidentified	conodont	limestone	neritic	Famennian	360	11.4	32.4
Cou31Gb2	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	11.8	32
Cou31Gb3	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	12.2	35.2
Cou31Gc1	France Coumiac.	unidentified	conodont	limestone	neritic	Famennian	360	8.53	24
	France								10.0
Cou31Gc2	Coumiac, France	unidentified	conodont	limestone	neritic	Famennian	360	7.79	19.8
Cou31Gd	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	2.56	8.68
Cou31Ge	France Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	4.3	12.4
Cou21Cf	France	unidentified	aanadant	limastona	noritio	Formannian	260	6.00	12.0
Cousion	France	undentmed	conodoni	limestone	nertue	Fameninan	300	0.09	15.9
Cou32A- Ba1	Coumiac, France	unidentified	conodont	limestone	neritic	Famennian	360	8.74	28.2
Cou32A-	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	8.44	26.9
Ba2	France	unidentified	conodont	limestone	neritic	Famennian	360	7 67	23.8
Ba3	France	undentified	conouont	micstone	nernie	i ameninan	500	7.07	23.0

Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	$\Sigma(La +$	(La/Sm)	(Sm/Yb)	Analytical method
(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	Sm + Yb)	Ν	Ν	
	45	11.6	3.23	19		9.15		2.25		1.78		32.98	0.30	3.54	Ion probe,
															Cameca 3f
	23.4	6.48	1.96	10.8		4.59		1.26		0.78		16.03	0.24	4.53	Ion probe,
															Cameca 3f
	30.5	9.07	2.86	15.4		8.48		2.12		1.78		23.05	0.24	2.76	Ion probe,
															Cameca 3f
	26.6	7.1	2.37	11.9		6.28		1.48		1.23		17.08	0.22	3.14	Ion probe,
				10 -		0.40				•					Cameca 3f
	40.1	11.7	3.51	19.7		9.48		2.62		2.08		30.08	0.25	3.07	Ion probe,
	22.4	0 2	2.2	12.5		1 85		1 /2		0.07		12.00	0.08	4 71	Cameca 31
	22.4	0.5	2.3	12.3		4.05		1.43		0.97		12.00	0.08	4./1	Comeco 3f
	54 4	20.5	57	25.8		144		3.82		24		31.69	0.08	4 63	Ion probe
	54.4	20.5	5.7	25.0		17.7		5.02		2.4		51.07	0.00	4.05	Cameca 3f
	43.7	15.7	4.6	19.2		10.6		3.04		2.15		26.41	0.10	3.94	Ion probe.
															Cameca 3f
	27.4	9.73	2.42	12		6.85		1.68		1.08		14.56	0.07	4.84	Ion probe,
															Cameca 3f
	42.3	21.2	6.35	29		14.3		4.03		3		35.4	0.09	3.83	Ion probe,
															Cameca 3f
	20.7	10.1	3.09	13.5		6.06		1.59		1.28		16.61	0.09	4.28	Ion probe,
			• • • •									1	-		Cameca 3f
	27.2	10.5	2.91	15.6		9.24		2.64		1.94		16.86	0.07	2.95	Ion probe,
	247	12.2	2 5 4	16.9		11 7		2 02		2.1		20.75	0.00	2.15	Cameca 31
	54.7	12.2	5.54	10.0		11./		2.05		2.1		20.75	0.09	5.15	Cameca 3f
	65.6	28.7	8	33.2		164		5 69		4 03		48 43	0.10	3 86	Ion probe
	02.0	20.7	0	55.2		10.1		5.05		1.05		10.15	0.10	5.00	Cameca 3f
	57.3	23	6.25	31.3		14		4.4		3.04		37.44	0.09	4.08	Ion probe,
															Cameca 3f
	58.2	18.7	6.4	31.2		12.8		3.61		2.63		33.13	0.11	3.88	Ion probe,
															Cameca 3f
	50.1	23.5	7	32		14.3		4.12		3.28		38.98	0.09	3.89	Ion probe,
				• • •											Cameca 3f
	35.8	14.8	4.78	20.9		10.7		3.24		2.53		25.86	0.10	3.16	Ion probe,
	25 5	172	5 20	22.0		11.2		2.02		2 20		27.20	0.08	4 1 1	Cameca 31
	33.3	17.5	3.29	23.8		11.5		2.92		2.29		27.38	0.08	4.11	Comeco 3f
	123	6 4 8	1.6	8 25		3 95		1 33		0.82		9.86	0.07	4 74	Ion probe
	12.5	0.40	1.0	0.25		5.75		1.55		0.02		2.00	0.07	7.27	Cameca 3f
	21.7	9.31	2.9	14.6		6.38		1.77		1.29		14.9	0.08	3.94	Ion probe,
															Cameca 3f
	19	8.93	2.19	13		7.41		2.35		1.56		16.58	0.12	3.12	Ion probe,
															Cameca 3f
	60.1	30.3	7.92	38.5		21.8		6.94		4.01		43.05	0.05	4.09	Ion probe,
		07.0	5 10	27.2		10				4.1.4		40.45	0.05	0.70	Cameca 3f
	55	27.9	7.18	37.2		19		6.56		4.11		40.45	0.05	3.72	Ion probe,
	17 2	28	7 70	37 0		20.0		6.02		3.07		38 74	0.05	5.04	Lon probe
	+1.J	20	1.10	57.0		20.0		0.05		5.07		30.74	0.05	5.04	Cameca 3f
															Carriera J1

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	La (ppm)	Ce (ppm)
Grandjean ((1989)								
Cou32A-	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	6.14	19
Bb	France								
Cou32A-	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	11.9	32.9
Bc	France								
Cou32A- Bd	Coumiac, France	unidentified	conodont	limestone	neritic	Famennian	360	11.9	35.5
Cou32Ca	Coumiac, France	unidentified	conodont	limestone	neritic	Famennian	360	14.4	31.2
Cou32Cb	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	8.94	18.6
Cou32Cc	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	9.96	20.4
0 2201	France	1	1 /	1	.,.	г ·	260	0.00	22.2
Cou32Cd	France	unidentified	conodont	limestone	neritic	Famennian	360	9.09	23.3
Cou32Ce	Coumiac, France	unidentified	conodont	limestone	neritic	Famennian	360	10.5	16.7
Cou34a	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	1.09	6.18
Cou34b	Coumiac,	unidentified	conodont	limestone	neritic	Famennian	360	4.59	20.7
G 11	France	.1	1	1.		. .	2(0	1.46	5.50
Cou34c	France	unidentified	conodont	limestone	neritic	Famennian	360	1.46	7.52
Bertram et d	al. (1992)								
Thelodont	Prior's	Thelodont	dermal	limestone	platform	Ludfordian	411	1420	4920
	Frome, UK		denticles						
Thelodont	Prior's Frome, UK	Thelodont	dermal denticles	limestone	platform	Ludfordian	411	2280	5380
Thelodont	Prior's Frome LIK	Thelodont	dermal denticles	limestone	platform	Ludfordian	411	1800	3550
Panderodus	Prior's	Panderodus	conodont	limestone	platform	Ludfordian	411	622	1590
Panderodus	Frome, UK Prior's	Panderodus	conodont	limestone	platform	Ludfordian	411	587	1460
	Frome, UK								
Panderodus	Prior's Frome, UK	Panderodus	conodont	limestone	platform	Ludfordian	411	649	1650
Ozarkodina	Prior's	Ozarkodina	conodont	limestone	platform	Ludfordian	411	151	365
Ozarkodina	Prior's	Ozarkodina	conodont	limestone	platform	Ludfordian	411	53.8	128
Ozarkodina	Frome, UK Prior's	Ozarkodina	conodont	limestone	platform	Ludfordian	411	52.1	125
Ozərkodina	Frome, UK Prior's	Ozarkodina	consdont	limestone	nlatform	Ludfordian	411	120	201
OZarkounna	Frome UK	0201 койти	conodoni	milestone	plationin	Eucloratian	711	120	271
Ozarkodina	Prior's	Ozarkodina	conodont	limestone	platform	Ludfordian	411	34.6	77.5
Dentsooding	Frome, UK	Dontacodina	consident	limestone	nlatform	Ludfordian	411	716	1810
	Frome, UK	Denucoumu			plation			/10	1010
Dentacodina	Prior's Frome, UK	Dentacodina	conodont	limestone	platform	Ludfordian	411	642	1590

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
(11-1)	(PP)	(11)	(11)	(PP)	(11)	(PP)	(PP)	(PP)	(11)	(PP)	(PP)				
	36	21.4	6.19	28.6		15		4.56		2.06		29.6	0.05	5.59	Ion probe,
	65.7	38.7	10.6	46.9		28		9.39		5.59		56.19	0.06	3.74	Ion probe,
	69.4	40.9	11.5	53.4		29.7		8.82		4.79		57.59	0.05	4.65	Ion probe,
	45.3	16.6	4.98	21.1		12.2		3.42		2.04		33.04	0.15	4.41	Ion probe,
	26.9	10.1	2.92	14.7		7.41		2.19		1.47		20.51	0.16	3.72	Ion probe, Cameca 3f
	28.5	11	3.04	14.8		6.37		2.78		1.67		22.63	0.16	3.56	Ion probe, Cameca 3f
	28.1	9.89	2.83	13.4		6.61		2.33		1.22		20.2	0.16	4.40	Ion probe, Cameca 3f
	26.4	9.9	2.69	11.8		7.23		2.27		1.47		21.87	0.19	3.66	Ion probe, Cameca 3f
	11	7.27	3.14	16.2		6.28		1.72		1.18		9.54	0.03	3.34	Ion probe, Cameca 3f
	27.5	19.6	5.94	29.1		15.2		5.14		3.66		27.85	0.04	2.96	Ion probe, Cameca 3f
	11.7	7.13	3.51	19.3		7.02		2.01		1.49		10.08	0.04	2.66	Ion probe, Cameca 3f
	2780	551	224	514		380		175		79.2	5.87	2050.2	0.46	3.78	Isotope dilution, TIMS
	2690	555	160	624		461		193		86.4	9.62	2921.4	0.73	3.49	Isotope dilution, TIMS
	2850	554	196	534		432		190		86.4	9.55	2440.4	0.58	3.49	Isotope dilution, TIMS
	802	180	47.2	187		148		63.9		33.3	2.7	835.3	0.62	2.94	Isotope dilution, TIMS
	758	172	44.3	183		143		61.8		31.6	3.72	790.6	0.61	2.96	Isotope dilution, TIMS
	863	193	49.5	203		162		68.1		35.3	4.47	877.3	0.60	2.97	Isotope dilution, TIMS
	193	43	11.6	44.3		33.7		14.4		7.27	0.84	201.27	0.63	3.22	Isotope dilution, TIMS
	66.5	15.4	4.19	16.5		14.4		5.93		3.08	0.48	72.28	0.62	2.72	Isotope dilution, TIMS
	67.2	15.4	4.22	16.3		12.5		5.52		2.99	0.31	70.49	0.60	2.80	Isotope dilution, TIMS
	142	30.4	8.38	33.1		26.4		11.9		6.27	0.7	156.67	0.70	2.64	Isotope dilution, TIMS
	39.9	9.34	2.52	10.5		7.41		3.33		1.82	0.22	45.76	0.66	2.79	Isotope dilution, TIMS
	968	208	63.4	210		164		68.1		33.4	3.72	957.4	0.61	3.39	Isotope dilution, TIMS
	820	179	48	201		157		65.1		33.3	4.17	854.3	0.64	2.92	Isotope dilution, TIMS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	La (ppm)	Ce (ppm)
Grandjean	et al. (1988)								
NFS4	Khouribga,	Myliobatis	tooth	phospharenite	neritic	Thanetian	57	34.5	15.4
NFS5	Sididaoui, Morocco	Striatolamia	tooth	phospharenite	neritic	Ypresian	53	47.2	15.3
NFS6	Sididaoui, Morocco	Myliobatis	tooth	phospharenite	neritic	Ypresian	53	46.7	14.7
SFS2	Adrar Mgorn, Morocco	Physogaleus	tooth	clay	neritic	Ypresian	53	84	131
SFS7	Adrar Mgorn, Morocco	Teleost	vertebra	clay	neritic	Thanetian	57	75.1	115
SFS121	Garitas, Western Sahara	Teleost	vertebra	sandstone	littoral	Upper Eocene	40	22.3	29.7
SFS122	Garitas, Western Sahara	Teleost	vertebra	sandstone	littoral	Upper Eocene	40	12.4	12.4
SFS123	Garitas, Western Sahara	Teleost	vertebra	sandstone	littoral	Upper Eocene	40	12.1	9.37
SFS1	Matam Seme, Senegal	Myliobatis	tooth	phospharenite	neritic	Ypresian	53	52	77
SFS3	Matam Seme, Senegal	Eotoperdo	tooth	phospharenite	neritic	Upper Thanetian	55	683	1971
SFS9	Matam Seme, Senegal	Myliobatis	tooth	phospharenite	neritic	Ypresian	53	73.5	112
SFS8	Sessao, Niger	Myliobatis	tooth	phospharenite	neritic	Thanetian	57	125	185
SFS10	Mont Igdaman, Niger	Teleost	vertebra	phospharenite	neritic	Maastrichtian	67	110	190
SFS10a	Mont Igdaman, Niger	Teleost	vertebra	phospharenite	neritic	Maastrichtian	67	58.9	100
PI11	Oron Givat Mador, Israel	Cretolamna	tooth	phospharenite	neritic	Maastrichtian	67	36.9	11.5
<i>Elderfield a</i> PD15-18	and Pagett (1986) Peru/Chile	ichthyolith	tooth	not precised	shelf	Quarternary	1	1.13	1.36
PD18-30	Peru/Chile	ichthyolith	tooth	not precised	shelf	Quarternary	1	3.48	6.19
SG46-47	Tyrrhenian Sea	ichthyolith	tooth	not precised	shelf	Quarternary	1	16.8	130
CIR170	Namibia	ichthyolith	tooth	not precised	shelf	Quarternary	1	48.9	110
CIR170	Namibia	ichthyolith	vertebra	not precised	shelf	Quarternary	1	63.6	458
CIR175	Namibia	ichthyolith	tooth	not precised	shelf	Quarternary	1	36	113
CIR175	Namibia	ichthyolith	vertebra	not precised	shelf	Quarternary	1	107	413
CK(80)1	Cook Islands	ichthyolith	tooth	not precised	open sea	Quarternary	1	74.7	6.9

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
	17.7	3.32	0.9	4.81		5.24		4.54		4.67		42.49	1.85	0.39	Isotope dilution, TIMS
	27	5.08	1.38	7.53		7.86		6.43		6.28	1.03	58.56	1.66	0.44	Isotope dilution, TIMS
	28.1	5.34	1.49	7.88		8.16		6.51		6.22		58.26	1.56	0.47	Isotope dilution, TIMS
	62.1	11.7	2.83	12.4		10.5		5.56		3.75		99.45	1.28	1.70	Isotope dilution, TIMS
	54	10.2	2.29	10.7		9.29		5.81		4.19		89.49	1.31	1.32	Isotope dilution, TIMS
	13.2	2.49	0.64	2.68		2.62		1.91		2.21		27	1.60	0.61	Isotope dilution, TIMS
	4.27	0.73	0.23	0.89		1.11		0.94		0.86		13.99	3.03	0.46	Isotope dilution, TIMS
	4.55	0.85	0.24	0.99		1.08		0.87		0.94		13.89	2.54	0.49	Isotope dilution, TIMS
	30.4	5.14	1.29	5.61		5.6		4.16		4.29		61.43	1.80	0.65	Isotope dilution, TIMS
	935	225	60.1	259		241		134		105		1013	0.54	1.17	Isotope dilution, TIMS
	49.8	8.96	2.27	9.52		9.48		6.67		6.38	1.02	88.84	1.46	0.76	Isotope dilution, TIMS
	81	17.1	4.73	24.4		28.8		22.3		22		164.1	1.30	0.42	Isotope dilution, TIMS
	97.3	20.9	5.92	28.7		30.3		20.4		16.5	2.5	147.4	0.94	0.69	Isotope dilution, TIMS
	57	13	3.67	19.2		17.8		12.3		15.8		87.7	0.81	0.45	Isotope dilution, TIMS
	14.7	2.86	0.85	5.17		6.7		6.96		7.54		47.3	2.30	0.21	Isotope dilution, TIMS
	0.78	0.13	0.03			0.19		0.19		0.2		1.46	1.55	0.35	Isotope dilution,
	2.91	0.58	0.14	0.66		0.61		0.54		0.52		4.58	1.07	0.61	TIMS Isotope dilution,
	30	5	12	6				7		7		28.8	0.60	0.39	TIMS Isotope dilution,
	40.6	8.5	2.03	10.7		10		6		8		65.4	1.02	0.58	TIMS Isotope dilution,
	88.9	19.5	4.6			28		14		15		98.1	0.58	0.71	TIMS Isotope dilution,
	48.3	10.3	2.57	13.3				7.9		7.2		53.5	0.62	0.78	TIMS Isotope dilution,
	129	30	6.8	34.6		35.7		18.9		16.8		153.8	0.64	0.97	TIMS Isotope dilution,
	81.6	18.1	4.55	22		21.3		13.7		11.9		104.7	0.74	0.83	TIMS Isotope dilution.
				-											TIMS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Propose age (Ma	d La 1) (ppm)	Ce (ppm)
Elderfield a	nd Pagett (1986)								
DWHD16	Pacific Ocean, 16°S–145°W	ichthyolith	tooth	not precised	open sea	Quarternary	1	170	9.5
PLDG FFG 0.01	Pacific Ocean, 11°N-140°W	ichthyolith	tooth	not precised	open sea	Quarternary	1	187	66.1
9940k40-45	Cape Basin, 34°S–9°E	ichthyolith	tooth	not precised	open sea	Quarternary	1	291	216
9940k90- 100	Cape Basin, 34°S–9°E	ichthyolith	tooth	not precised	open sea	Quarternary	1	259	181
9940k150- 160	Cape Basin, 34°S–9°E	ichthyolith	tooth	not precised	open sea	Quarternary	1	866	750
9942	Cape Basin, 34°S–7°E	ichthyolith	tooth	not precised	open sea	Quarternary	1	238	30.6
Kemp and T	Frueman (2003)								
SC-24	Solnhofen, Germany	Lumbricaria recta	coprolith	limestone	lagoon	Tithonian	145	23.77	41.58
SC-32	Solnhofen, Germany	Lumbricaria recta	coprolith	limestone	lagoon	Tithonian	145	57.32	106.1
SC-38	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	55.64	96.12
SC-76	Solnhofen,	recia Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	39.79	85.09
SC-122	Germany Solnhofen,	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	28.94	63.29
I 29	Germany Solnhofen,	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	93.26	153.1
II 6	Germany Solnhofen,	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	37.66	65.84
III 38	Germany Solnhofen,	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	95.75	180.1
III 69	Germany Solnhofen.	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	74.72	127.7
ш. ос	Germany	recta		1:	1	T:4	145	25.22	(1.22
111 90	Germany	recta	copronun	limestone	lagoon	Tunoman	145	33.33	01.32
III 128	Solnhofen, Germany	Lumbricaria recta	coprolith	limestone	lagoon	Tithonian	145	20.65	37.07
III 129	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	4.71	7.74
III 244	Solnhofen,	recia Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	62.52	109.5
IV 69	Germany Solnhofen,	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	25.27	43.6
IV 196	Germany Solnhofen,	recta Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	58.22	107.2
IV 200	Germany	recta Lumbricaria	conrolith	limestone	lagoor	Tithonian	145	66.8	115
17 200	Germany	recta	copronul	miestone	laguuli	ruioillaii	145	00.8	115
IV 688	Solnhofen, Germany	Lumbricaria recta	coprolith	limestone	lagoon	Tithonian	145	24.45	40.19
IV 847	Solnhofen, Germany	Lumbricaria recta	coprolith	limestone	lagoon	Tithonian	145	65.58	110.3

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
	105	19.2	5.24	28.4		27.6		21.6		17.5		206.7	1.58	0.60	Isotope dilution, TIMS
	292	68.8	18.2	64.6		53.6		24.8		18.9		274.7	0.48	1.98	Isotope dilution,
	532	136	43.1	136		164		76		69		496	0.38	1.07	Isotope dilution,
	426	113	26	110		113		69		57		429	0.41	1.08	Isotope dilution, TIMS
	1460	372	87	376		375		203		196		1434	0.41	1.03	Isotope dilution, TIMS
	267	57.8	13.6	62.9		56.4		32.4		26.7		322.5	0.73	1.18	Isotope dilution, TIMS
7.69	33.2	10.56	2.23	11.86	1.85	9.24	1.87	4.4	0.57	2.11	0.39	36.44	0.40	2.72	ICP-MS
18.67	72.4	18.9	4.72	24.95	3.7	20.06	4.11	9.55	1.13	4.17	0.68	80.39	0.54	2.46	ICP-MS
17.79	71	20.36	4.63	25.49	3.94	22.31	4.18	10.41	1.28	4.76	0.77	80.76	0.49	2.33	ICP-MS
14.03	56.9	16.46	3.71	18.88	2.97	15.57	2.96	7.27	0.96	3.4	0.54	59.65	0.43	2.63	ICP-MS
10.9	44.1	11.91	3.04	13.83	2.15	11.65	2.28	5.51	0.69	2.65	0.4	43.5	0.43	2.44	ICP-MS
29.86	127	32.16	7.2	42.38	5.18	28.87	5.55	12.28	1.4	4.73	0.72	130.15	0.52	3.70	ICP-MS
11.15	51.5	13.12	2.83	17.44	2.21	12.81	2.17	4.88	0.54	2.26	0.25	53.04	0.51	3.16	ICP-MS
32.85	143	35.79	8.47	49.53	6.35	35	6.57	15.52	1.53	6.31	0.79	137.85	0.48	3.08	ICP-MS
22.75	93.4	24.17	5.29	31.57	3.99	22.56	4.22	9.73	1.07	4.58	0.53	103.47	0.55	2.87	ICP-MS
11.5	49.4	12.43	2.67	16.46	2.13	12.37	2.3	5.56	0.52	2.21	0.31	49.97	0.51	3.06	ICP-MS
7.07	35.1	8.93	2.22	12.32	1.69	9.27	1.74	3.89	0.42	1.52	0.2	31.1	0.41	3.20	ICP-MS
1.55	6.06	1.99	0.38	2.16	0.24	1.6	0.31	0.74	0.1	0.29	0.05	6.99	0.42	3.73	ICP-MS
19.29	85.5	20.59	4.99	29.86	3.86	22.92	4.53	10.39	1.14	4.54	0.56	87.65	0.54	2.47	ICP-MS
7.86	34.8	8.69	1.95	12.62	1.64	9.34	1.82	4.32	0.45	1.75	0.23	35.71	0.52	2.70	ICP-MS
20.43	89.9	21.43	4.87	28.77	3.55	19.39	3.46	8.61	0.87	3.25	0.43	82.9	0.48	3.59	ICP-MS
21.74	91.4	22.93	5.27	30.5	4.29	23.55	4.55	10.57	1.14	4.35	0.61	94.08	0.52	2.87	ICP-MS
7.59	34.3	9.38	2.15	12.09	1.68	9.38	1.9	4.1	0.42	1.67	0.2	35.5	0.46	3.05	ICP-MS
20.76	86.1	21.94	4.84	28.6	3.67	20.45	3.63	8.86	0.9	3.7	0.42	91.22	0.53	3.22	ICP-MS

Table 2 (continued)

Area Truemar (2003IV 880Solnhofen,LumbricariacoprolithlimestonelagoonTithonian1457.7712.44IV 1030GommayrectacoprolithlimestonelagoonTithonian145108.217.39V 53GommayrectacoprolithlimestonelagoonTithonian145108.217.39V 128Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14540.6465.24V 128Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14540.6465.24V 222Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14552.5688.97V 397Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14552.5688.97V 444Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14552.5990.58V 500Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14552.5990.58V 505Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14544.5779.57V 505Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14584.4121.4V 608Solnhofen,LumbricariacoprolithlimestonelagoonTithonian <t< th=""><th>Samples</th><th>Location</th><th>Taxon</th><th>Material</th><th>Lithology</th><th>Environment</th><th>Period/stage</th><th>Proposed age (Ma)</th><th>La (ppm)</th><th>Ce (ppm)</th></t<>	Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	La (ppm)	Ce (ppm)
IV 880 Germany rectaSolnhofen, rectaLumbricaria coprolithcoprolith limestonelagoonTithonian1457.7712.44IV 1030 Germany rectaSolnhofen, rectaLumbricaria rectacoprolith limestonelagoonTithonian145108.2173.9V 53Solnhofen, Germany rectacoprolith 	Kemp and	Trueman (2003)								
Germany (V 1030 (Germany) rectarecta corrolithlimestone lagoonlagoon Tithonian145108.2173.9V 53 (Germany) (Carmany) <td>IV 880</td> <td>Solnhofen,</td> <td>Lumbricaria</td> <td>coprolith</td> <td>limestone</td> <td>lagoon</td> <td>Tithonian</td> <td>145</td> <td>7.77</td> <td>12.44</td>	IV 880	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	7.77	12.44
IV 1030Solnhofen, GermanyLumbricaria rectacoprolith imestonelagoonTithonian145108.2173.9V 53Solnhofen, Germany 		Germany	recta							
Germany Germanyrecta rectacoprolithlimestonelagoonTithonian14525.0838.99V 128 Germany rectaSolhhofen, Cermany rectaLumbricaria coprolithcoprolithlimestonelagoonTithonian14540.7971.39V 188 Germany rectaSolhhofen, LumbricariacoprolithlimestonelagoonTithonian14540.6465.24V 222 Germany Germany rectacoprolithlimestonelagoonTithonian14525.6688.97V 397Solhhofen, Germany rectacoprolithlimestonelagoonTithonian14574138.1V 444Solhhofen, Germany rectacoprolithlimestonelagoonTithonian14574138.1V 510 Solhhofen, Germany rectacoprolithlimestonelagoonTithonian14552.5595.66V 585 Solhhofen, Germany rectacoprolithlimestonelagoonTithonian14552.5990.58V 608 Germany Germany rectacoprolithlimestonelagoonTithonian14584.4121.4V 105 Solhhofen, Germany rectacoprolithlimestonelagoonTithonian14584.4121.4V 105 Solhhofen, Germany rectacoprolithlimestonelagoonTithonian14584.4121.4V 105 Solhhofen, Germany Germany rectacoprolithlimestone<	IV 1030	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	108.2	173.9
V 53 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 25.08 38.99 V 128 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 40.67 71.39 V 188 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 40.64 65.24 V 222 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 52.56 88.97 Germany recta coprolith limestone lagoon Tithonian 145 52.56 88.97 Germany recta coprolith limestone lagoon Tithonian 145 57.11 117.8 V 510 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 52.59 90.58 V 608 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 54.47 79.57 Germany recta coprolit		Germany	recta							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V 53	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	25.08	38.99
V 128Solinoten, GermanyLumbricaria rectacoprolith coprolithlimestone limestonelagoonTithonian14540.6465.24V 188Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14552.5688.97V 397Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14574138.1V 397Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14567.11117.8V 444Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14555.3595.66V 585Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14552.5990.58V 608Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14550.4987.64V 180_1Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14584.4121.4V 180_1Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14584.4121.4V 180_1Solhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14584.4121.4FL1Solhofen, GermanyLumbricaria rectacoprolith	17 100	Germany	recta	11.1	1. (1	T:4 :	145	40.70	71.20
V 188Solhhofen, GermanyLumbricaria rectacoprolith imestonelimestonelagoonTithonian14540.6465.24V 222Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14552.5688.97V 397Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14574138.1V 444Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14567.11117.8V 510Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14552.5990.58V 585Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14552.5990.58V 608Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14554.9487.64V 105Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14534.3857.32V 1105Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14520.2733.75GermanyrectacoprolithlimestonelagoonTithonian14520.2733.75GermanyrectacoprolithlimestonelagoonTithonian14533.6361.71 <td>V 128</td> <td>Solnnoten,</td> <td>Lumbricaria</td> <td>coprolith</td> <td>limestone</td> <td>lagoon</td> <td>Tithonian</td> <td>145</td> <td>40.79</td> <td>/1.39</td>	V 128	Solnnoten,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	40.79	/1.39
V 188Solution, LumbricariaCoprolititIntestonelagoonTittonian14.540.463.24V 222Solahofen, LumbricariacoprolithlimestonelagoonTithonian14552.5688.97V 397Solahofen, LumbricariacoprolithlimestonelagoonTithonian14574138.1V 444Solahofen, LumbricariacoprolithlimestonelagoonTithonian14567.11117.8V 444Solahofen, LumbricariacoprolithlimestonelagoonTithonian14555.3595.66GermanyrectacoprolithlimestonelagoonTithonian14552.5990.58GermanyrectacoprolithlimestonelagoonTithonian14552.5990.58V 508Solahofen, LumbricariacoprolithlimestonelagoonTithonian14554.479.57GermanyrectacoprolithlimestonelagoonTithonian14550.4987.64V 180_1Solahofen,LumbricariacoprolithlimestonelagoonTithonian14584.4121.4V 180_1Solahofen,LumbricariacoprolithlimestonelagoonTithonian14583.6361.71GermanyrectacoprolithlimestonelagoonTithonian14584.4121.4V 180_1Solahofen,LumbricariacoprolithlimestonelagoonTithonian	V 199	Solubofon	recia Lumbricaria	aanralith	limastana	lagoon	Tithonian	145	40.64	65 24
V 222Schhofen, GermanyLumbricaria rectacoprolith imestonelimestone lagoonIntonian14552.5688.97V 397Solhhofen, 	V 100	Germany	rocta	copronun	limestone	lagoon	Tunoman	143	40.04	03.24
V 222 Solihofen, Lumbricaria coprolith limestone lagoon Tithonian 145 (20.27) Solihofen, Solihofen, Solihofen, Lumbricaria coprolith limestone lagoon Tithonian 145 (20.27) Solihofen, fish bone limestone lagoon Tithonian 145 (20.27) Solihofen, Germany recta (20.27) Solihofen, fish bone limestone lagoon Tithonian 145 (20.27) (20.27) Solihofen, fish bone limestone lagoon Tithonian 145 (20.27)	V 222	Solnhofen	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	52 56	88 97
V 397Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoon TithonianTithonian14574138.1V 444Solnhofen, Germany rectaLumbricaria rectacoprolithlimestone lagoonlagoonTithonian14567.11117.8V 510Solnhofen, Germany rectaLumbricaria rectacoprolithlimestone lagoonlagoonTithonian14555.3595.66V 585Solnhofen, Germany rectaLumbricaria rectacoprolithlimestone lagoonlagoonTithonian14552.5990.58V 608Solnhofen, Germany rectaLumbricaria rectacoprolithlimestone lagoonlagoonTithonian14554.4779.57V 611Solnhofen, Germany rectaLumbricaria rectacoprolithlimestone lagoonlagoonTithonian14584.4212.14V1 80_1Solnhofen, Germany rectaLumbricaria rectacoprolithlimestone lagoonlagoonTithonian14534.3857.32FL1Solnhofen, Germany rectafishbonelimestone lagoonlagoonTithonian14520.2733.75FL2Solnhofen, Germany rectafishbonelimestone lagoonlagoonTithonian14535.7361.16Germany PL_1Solnhofen, Germanyfishbonelimestone lagoonlagoon	V 222	Germany	recta	copronun	linestone	lagoon	Thioman	145	52.50	00.77
Germany V 444Frecta CoprolithImmetion ImmetionLagon TithonianTithonian 14514567.11117.8V 510Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagonTithonian14567.11117.8V 510Solnhofen, Germany rectaLumbricaria rectacoprolithlimestonelagonTithonian14555.3595.66V 585Solnhofen, Germany rectaLumbricaria rectacoprolithlimestonelagonTithonian14544.5779.57V 608Solnhofen, Germany rectaLumbricaria rectacoprolithlimestonelagonTithonian14544.5779.57V 611Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagonTithonian14584.4121.4V 180_1Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagonTithonian14584.357.32FL1Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagonTithonian14513.2218.38FL2Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagonTithonian14533.6361.71FL3Solnhofen, Germany rectafishbonelimestonelagonTithonian14535.7361.16PT_1Solnhofen, Germ	V 397	Solnhofen.	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	74	138.1
V 444Solnhofen, GermanyLumbricaria rectacoprolith imestonelimestonelagoonTithonian14567.11117.8V 510Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14555.3595.66V 585Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14552.5990.58V 608Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14544.5779.57V 611Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14584.4121.4V 180_1Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14534.3857.32V 1105Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14520.2733.75FL1Solnhofen, GermanyfishbonelimestonelagoonTithonian14536.6361.71FL2Solnhofen, Germanyfishsoft tissuelimestonelagoonTithonian14535.7361.16GermanyrectacoprolithlimestonelagoonTithonian14535.7361.16FL3Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT		Germany	recta	r					, .	
Germany V 510recta coprolithlimestonelagoonTithonian14555.3595.66V 585Solnhofen, Germany rectaLumbricaria rectacoprolithlimestonelagoonTithonian14552.5990.58V 608Solnhofen, Germany rectaLumbricaria rectacoprolithlimestonelagoonTithonian14552.5990.58V 608Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagoonTithonian14554.5779.57V 611Solnhofen, Germany rectaLumbricaria coprolithcoprolithlimestonelagoonTithonian14584.4121.4V1 80_1Solnhofen, Germany rectaLumbricaria rectacoprolithlimestonelagoonTithonian14534.3857.32FL1Solnhofen, Germany rectacoprolithlimestonelagoonTithonian14520.2733.75FL2Solnhofen, Germany rectacoprolithlimestonelagoonTithonian14536.361.71FL3Solnhofen, Germany rectaSoft tissuelimestonelagoonTithonian14535.7361.16PT_1Solnhofen, Germany rectaSoft tissuelimestonelagoonTithonian14535.7361.16PT_2Solnhofen, Germany rectaSoft tissuelimestonelagoonTithonian14512.1710.58 <td>V 444</td> <td>Solnhofen,</td> <td>Lumbricaria</td> <td>coprolith</td> <td>limestone</td> <td>lagoon</td> <td>Tithonian</td> <td>145</td> <td>67.11</td> <td>117.8</td>	V 444	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	67.11	117.8
V 510Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoon TithonianTithonian14555.3595.66V 585Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoonTithonian14552.5990.58V 608Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoonTithonian14544.5779.57V 611Solnhofen, Germany rectaLumbricaria rectacoprolith rectalimestone lagoonlagoonTithonian14550.4987.64VI 80_1Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelagoonTithonian14534.3857.32VI 105Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelagoonTithonian14513.2218.38FL1Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelagoonTithonian14534.3857.32FL2Solnhofen, Germany rectafish soft tissuelimestone lagoonlagoonTithonian14513.2218.38FL3Solnhofen, Germany rectafish soft tissuelimestone lagoonlagoonTithonian14535.7361.16PT_1Solnhofen, Germanyfish bonelimestone lagoonlagoonTithonian <td< td=""><td></td><td>Germany</td><td>recta</td><td>1</td><td></td><td>U</td><td></td><td></td><td></td><td></td></td<>		Germany	recta	1		U				
	V 510	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	55.35	95.66
V 585Solhhofen, GermanyLumbricaria rectacoprolith imestonelimestonelagoonTithonian14552.5990.58V 608Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14544.5779.57V 611Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14550.4987.64V 180_1Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14584.4121.4V1 105Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14534.3857.32FL1Solhhofen, GermanyrectacoprolithlimestonelagoonTithonian14513.2218.38FL2Solhhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14533.6361.71FL3Solhhofen, Germanyfish rectasoft tissuelimestonelagoonTithonian14535.7361.16PT_1Solhhofen, Germanyfish rectabonelimestonelagoonTithonian14535.7361.16GermanyrectacoprolithlimestonelagoonTithonian14535.7361.16PT_2Solhhofen, Germanyfish bonebonelimestonelagoonTithonian14527.5746.85 <td></td> <td>Germany</td> <td>recta</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		Germany	recta							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	V 585	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	52.59	90.58
V 608Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoon TithonianTithonian 145145.779.57 44.57V 611Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoon Tithonian14550.4987.64VI 80_1Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoon Tithonian14584.4121.4VI 105Solnhofen, Germany rectaLumbricaria rectacoprolith imestonelimestone lagoonlagoon Tithonian14534.3857.32FL_1Solnhofen, Germany rectafish bonebonelimestone lagoonlagoon Tithonian14513.2218.38FL2Solnhofen, Germany rectafish soft tissuelimestone lagoonlagoon Tithonian14533.6361.71FL3Solnhofen, Germany FT_1fish Solnhofen, fishbonelimestone lagoonlagoon Tithonian14535.7361.16PT_11 Solnhofen, Germany Tfish bonebonelimestone lagoonlagoon Tithonian14527.5746.85Carmay Germany Germanyfish bonebonelimestone lagoonlagoon Tithonian14527.5746.85Carmay Germany Germanyfish bonebonelimestone lagoonlagoon Tithonian14527.5		Germany	recta							
Germany Germany rectarectaV 611Solnhofen, Germany rectaLumbricaria coprolithcoprolith limestonelagoonTithonian14550.4987.64VI 80_1Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelagoonTithonian14584.4121.4VI 105Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelagoonTithonian14584.4121.4FLSolnhofen, Germany Germany rectacoprolith limestonelagoonTithonian14513.2218.38FLSolnhofen, Germany Germany rectacoprolith limestonelagoonTithonian14513.2218.38FLSolnhofen, Germany Germany FLSolnhofen, fishcoprolith soft tissuelimestone lagoonlagoonTithonian14520.2733.75FLSolnhofen, Germany Germanyfishbonelimestone lagoonlagoonTithonian14533.6361.71PL_11 Germany Germany TSolnhofen, Germany Ffishbonelimestone lagoonlagoonTithonian14535.7361.16PT_22 Germany Germany TSolnhofen, Germany Germanyfishbonelimestone lagoonlagoonTithonian14521.7746.85C_11 Germany Germany Germany Germanyfishbonelimestone lagoonlagoonTithonian <td>V 608</td> <td>Solnhofen,</td> <td>Lumbricaria</td> <td>coprolith</td> <td>limestone</td> <td>lagoon</td> <td>Tithonian</td> <td>145</td> <td>44.57</td> <td>79.57</td>	V 608	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	44.57	79.57
V 611Solhhofen, Germany rectaLumbricaria rectacoprolith limestonelimestone lagoonlagoon TithonianTithonian14550.4987.64VI 80_1Solhhofen, Germany GermanyLumbricaria rectacoprolith limestonelagoonTithonian14584.4121.4VI 105Solhhofen, Germany GermanyLumbricaria rectacoprolith limestonelagoonTithonian14534.3857.32FL_1Solhhofen, Germany Germanyfish rectabonelimestone lagoonlagoonTithonian14520.2733.75FL_2Solhhofen, Germany GermanyLumbricaria rectacoprolith limestonelagoonTithonian14530.6361.71FL_3Solhhofen, Germany PL_1Solhhofen, fish Germanyfish bonebonelimestone lagoonlagoonTithonian14535.7361.16PL_1Solhhofen, Germany PT_2Solhhofen, Solhhofen, fish Germanyfish bonebonelimestone lagoonlagoonTithonian14527.5746.85C_1Solhhofen, Germany Tfish bonebonelimestone lagoonlagoonTithonian14592.35104.1C_2Solhhofen, Germany Tfish coprolithbonelimestone lagoonlagoonTithonian14592.35104.1C_1Solhhofen, Germany GermanyLumbricaria coprolithcopr		Germany	recta							
Germany GermanyrectaVI 80_1Solnhofen, GermanyLumbricaria rectacoprolith limestonelagoonTithonian14584.4121.4VI 105Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelimestonelagoonTithonian14534.3857.32FL_1Solnhofen, Germany rectafishbonelimestonelagoonTithonian14534.3857.32FL_2Solnhofen, Germany rectaLumbricaria rectacoprolith limestonelimestonelagoonTithonian14520.2733.75FL_3Solnhofen, Germany PL_11fish Solnhofen, Germanysoft tissue limestonelimestonelagoonTithonian14536.6361.71PL_11Solnhofen, Germanyfish bonebonelimestonelagoonTithonian14535.7361.16PT_21Solnhofen, Germanyfish bonebonelimestonelagoonTithonian14527.5746.85PT_22Solnhofen, Germanyfish bonebonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, Germanyfish coprolithbonelimestonelagoonTithonian14522.1710.58Z_23Solnhofen, Germanyfish coprolithbonelimestonelagoonTithonian14523.5104.1Z_24Solnhofen, Germany<	V 611	Solnhofen,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	50.49	87.64
V1 80_1Solnhofen, GermanyLumbricaria rectacoprolith imestonelimestone lagoonlagoon Tithonian14584.4121.4V1 105Solnhofen, GermanyLumbricaria rectacoprolith imestonelimestone lagoonlagoonTithonian14534.3857.32FL_1Solnhofen, Germanyfish rectabonelimestone lagoonlagoonTithonian14513.2218.38FL_2Solnhofen, GermanyLumbricaria rectacoprolith limestonelagoonTithonian14520.2733.75FL_3Solnhofen, Germanyfish rectasoft tissue limestonelagoonTithonian14533.6361.71PL_1Solnhofen, Germanyfish germanybonelimestone lagoonlagoonTithonian14574.55147.1PT_1Solnhofen, Germanyfish germanybonelimestone lagoonlagoonTithonian14527.5746.85PT_2Solnhofen, Germanyfish germanybonelimestone lagoonlagoonTithonian14512.1710.58Z_1Solnhofen, Germanyfish germanybonelimestone lagoonlagoonTithonian14592.35104.1Z_2Solnhofen, GermanyLumbricaria rectacoprolith germanylimestone geonlagoonTithonian14592.35104.1LGermany Germanyrectas	171.00 1	Germany	recta	11.1			m: 1 :	1.4.5	04.4	101.4
VI 105Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14534.3857.32FL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14513.2218.38FL_2Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14520.2733.75FL_3Solnhofen, Germanyfishsoft tissuelimestonelagoonTithonian14536.361.71PL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PL_11Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT_12Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_11Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_22Solnhofen, GermanyfishbonelimestonelagoonTithonian14592.35104.1Z_23Solnhofen, Germany <i>Lumbricaria</i> coprolithlimestonelagoonTithonian14592.35104.1GermanyrectaZ_24Solnhofen, Germany <i>Lumbricaria</i> coprolithlimestonelagoonTithonian14592.35<	VI 80_I	Solnhoten,	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	84.4	121.4
Vi 105Solmoteli, GermanyLumbricaria rectaCoprolititi infissioneInfisione lagoonTithonian14.554.3657.32FL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14513.2218.38FL_2Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14520.2733.75FL_3Solnhofen, Germanyfishsoft tissuelimestonelagoonTithonian14533.6361.71PL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT_12Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85PT_22Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14592.35104.1GermanyrectageonTithonian14592.35104.1GermanyrectageonTithonian14555.17102.4GermanyrectageonTithonian14555.17102.4GermanyrectageonTithonian14555.17102.4Germanyrecta<	VI 105	Germany	recta Lumbuioavia	aanralith	limastana	lagoon	Tithonian	145	24.29	57 22
FL1Solnhofen, GermanyfishbonelimestonelagoonTithonian14513.2218.38FL2Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14520.2733.75FL3Solnhofen, Germanyfishsoft tissuelimestonelagoonTithonian14520.2733.75FL3Solnhofen, 	VI 105	Gormony	Lumbricaria	copronun	limestone	lagoon	Tunoman	143	34.38	57.52
FL_1SolutionInfinitionFormationF	FI 1	Solnhofen	fish	hone	limestone	lagoon	Tithonian	145	13 22	18 38
FL_2Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14520.2733.75FL_3Solnhofen, Germanyfishsoft tissuelimestonelagoonTithonian14533.6361.71PL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14574.55147.1PL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85PT_2Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14592.35104.1Z_2Solnhofen, GermanycoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanycoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanycoprolithlimestonelagoonTithonian14536.2462.26GermanyrectacoprolithlimestonelagoonTithonian14536.2462.26	11_1	Germany	11311	bone	linestone	lagoon	Thioman	145	13.22	10.50
FL_2Definition in the restanceLinestence <thlinestence< th="">Lineste</thlinestence<>	FL 2	Solnhofen	Lumbricaria	coprolith	limestone	lagoon	Tithonian	145	20.27	33 75
FL.3Solnhofen, Germanyfishsoft tissuelimestonelagoonTithonian14533.6361.71PL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14574.55147.1PT_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT_2Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85PT_2Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14512.1710.58Z_2Solnhofen, Germany <i>Lumbricaria</i> coprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, Germany <i>Lumbricaria</i> coprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, Germany <i>Lumbricaria</i> coprolithlimestonelagoonTithonian14536.2462.26		Germany	recta	copronini		ngoon	Thuroman	1.10	20127	00110
GermanyGermanyPL_1Solnhofen, fish GermanybonelimestonelagoonTithonian14574.55147.1PT_1Solnhofen, fish GermanybonelimestonelagoonTithonian14535.7361.16PT_2Solnhofen, fish GermanybonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, fish GermanybonelimestonelagoonTithonian14512.1710.58Z_1Solnhofen, fish GermanybonelimestonelagoonTithonian14592.35104.1Z_2Solnhofen, Lumbricaria GermanycoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14536.2462.26	FI_3	Solnhofen,	fish	soft tissue	limestone	lagoon	Tithonian	145	33.63	61.71
PL_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14574.55147.1PT_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT_2Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14512.1710.58Z_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14592.35104.1Z_2Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14536.2462.26		Germany				-				
Germany PT_1Solnhofen, Germany HT_2fishbonelimestonelagoonTithonian14535.7361.16PT_2Solnhofen, Germany HfishbonelimestonelagoonTithonian14527.5746.85Z_11Solnhofen, Germany HfishbonelimestonelagoonTithonian14512.1710.58Z_12Solnhofen, Germany HfishbonelimestonelagoonTithonian14592.35104.1Z_22Solnhofen, Germany HLumbricaria Germany HcoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, Germany HLumbricaria CoprolithcoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, Germany Germany HLumbricaria coprolithcoprolithlimestonelagoonTithonian14536.2462.26	PL_1	Solnhofen,	fish	bone	limestone	lagoon	Tithonian	145	74.55	147.1
PT_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14535.7361.16PT_2Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85Z_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14512.1710.58Z_2Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14536.2462.26		Germany								
GermanyPT_2Solnhofen, GermanyfishbonelimestonelagoonTithonian14527.5746.85GermanyZ_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14512.1710.58Z_2Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14536.2462.26	PT_1	Solnhofen,	fish	bone	limestone	lagoon	Tithonian	145	35.73	61.16
PT_2Solnhofen, Germanyfish bonebonelimestone limestonelagoonTithonian14527.5746.85Z_1Solnhofen, Germanyfish bonebonelimestonelagoonTithonian14512.1710.58Z_2Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14536.2462.26		Germany								
GermanyZ_1Solnhofen, GermanyfishbonelimestonelagoonTithonian14512.1710.58GermanyGermanycoprolithlimestonelagoonTithonian14592.35104.1Z_2Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricariacoprolithlimestonelagoonTithonian14536.2462.26	PT_2	Solnhofen,	fish	bone	limestone	lagoon	Tithonian	145	27.57	46.85
Z_1Solnhofen, Germanyfish bonebonelimestonelagoonTithonian14512.1710.58Z_2Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14592.35104.1BL_5Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14555.17102.4BL_6Solnhofen, GermanyLumbricaria rectacoprolithlimestonelagoonTithonian14536.2462.26		Germany	<i></i>							
Z_2Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14592.35104.1GermanyrectaBL_5Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14555.17102.4GermanyrectarectaImestonelagoonTithonian14536.2462.26BL_6Solnhofen,LumbricariacoprolithlimestonelagoonTithonian14536.2462.26	Z_1	Solnhofen,	fish	bone	limestone	lagoon	Tithonian	145	12.17	10.58
Z_2 Solinofen, Lumbricaria coprolith limestone lagoon lithonian 145 92.35 104.1 Germany recta BL_5 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 55.17 102.4 Germany recta Image: Coprolith limestone lagoon Tithonian 145 36.24 62.26 Germany recta Germany recta Image: Coprolith limestone lagoon Tithonian 145 36.24 62.26	7.0	Germany	T I · ·	11.1	1. (1	T: (1 :	145	02.25	104.1
BL_5 Solnhofen, <i>Lumbricaria</i> coprolith limestone lagoon Tithonian 145 55.17 102.4 Germany recta BL_6 Solnhofen, <i>Lumbricaria</i> coprolith limestone lagoon Tithonian 145 36.24 62.26 Germany recta	L_2	Solnnolen,	Lumbricaria	coprolitin	limestone	lagoon	Titnonian	145	92.35	104.1
BL_6 Solnhofen, Lumbricaria coprolith Imestone lagoon Tithonian 145 35.17 102.4 BL_6 Solnhofen, Lumbricaria coprolith limestone lagoon Tithonian 145 36.24 62.26	BI 5	Solubofen	reciu Lumbricaria	conrolith	limestone	lagoon	Tithonian	145	55 17	102.4
BL_6 Solnhofen, <i>Lumbricaria</i> coprolith limestone lagoon Tithonian 145 36.24 62.26 Germany recta	DL_J	Germany	recta	copronui	milestone	laguuli	riuoman	143	55.17	102.4
Germany recta	BL 6	Solnhofen	Lumhricaria	coprolith	limestone	lagoon	Tithonian	145	36 24	62.26
		Germany	recta	50pronui		meeen			2 0. <u>2</u> T	02.20

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
2.42	10.6	2.6	0.75	3.68	0.55	2.31	0.53	1.5	0.16	0.4	0.13	10.77	0.53	3.54	ICP-MS
36.17	144	34.38	9.1	46.62	6.12	36.47	6.06	15.81	1.61	6.45	0.88	149.03	0.56	2.90	ICP-MS
7	28.2	7.45	1.49	10.37	1.31	7.96	1.53	3.59	0.38	1.47	0.2	34	0.60	2.76	ICP-MS
13.09	57.8	14.65	3.67	22.24	3	16.6	3.36	7.32	0.79	2.81	0.36	58.25	0.50	2.84	ICP-MS
12.84	58.8	14.29	3.63	20.81	2.93	15.74	3.14	7.32	0.75	3.01	0.42	57.94	0.51	2.58	ICP-MS
17.4	78.5	19.8	4.88	28.63	3.77	21.18	4.1	10.05	1.01	3.72	0.52	76.08	0.47	2.89	ICP-MS
25.25	113	28.01	6.5	38.06	4.81	25.81	4.81	11.08	1.11	4.42	0.55	106.43	0.47	3.45	ICP-MS
22.42	97.1	23.88	5.74	34.02	4.63	25.64	4.89	11.29	1.22	4.45	0.58	95.44	0.50	2.92	ICP-MS
19.33	80.4	19.12	4.21	24.3	3.09	17.8	3.35	8.46	0.73	3.12	0.31	77.59	0.52	3.33	ICP-MS
18.23	80.2	20.06	4.78	26.69	3.67	20.98	3.93	9.55	0.91	3.35	0.45	76	0.47	3.26	ICP-MS
16.31	71.9	18.95	4.67	26.53	3.59	19.61	3.7	8.8	0.88	3.47	0.41	66.99	0.42	2.97	ICP-MS
15.42	64.9	16.07	4.06	24.48	3.24	18.26	3.56	7.96	0.86	3.37	0.4	69.93	0.56	2.59	ICP-MS
25.66	105	25.74	5.9	35.36	4.79	25.9	5.26	12.38	1.27	5.04	0.78	115.18	0.58	2.78	ICP-MS
11.09	50.9	13.29	2.96	17.86	2.18	12.67	2.2	5.1	0.54	2.03	0.27	49.7	0.46	3.56	ICP-MS
2.42	8.89	2.04	0.6	4.5	0.47	3.1	0.6	1.45	0.15	0.66	0.1	15.92	1.15	1.68	ICP-MS
5.4	22.3	6.39	1.57	8.13	1.3	6.52	1.33	3.47	0.55	1.64	0.29	28.3	0.57	2.12	ICP-MS
8.05	37.5	9.61	1.93	13.55	1.74	10.31	1.86	4.38	0.34	1.9	0.16	45.14	0.62	2.75	ICP-MS
16.55	73.7	16.5	3.63	24.92	3.19	19.15	3.39	8.15	0.71	3.46	0.3	94.51	0.80	2.59	ICP-MS
8.71	29	8.28	2.2	11.25	1.69	9.93	1.96	4.26	0.61	2.4	0.4	46.41	0.77	1.88	ICP-MS
7.28	27.6	7.61	1.94	10.27	1.58	9.56	1.78	4.33	0.55	2.26	0.41	37.44	0.65	1.83	ICP-MS
2.03	7.76	1.95	0.55	3.36	0.42	2.89	0.63	1.67	0.21	0.69	0.12	14.81	1.11	1.54	ICP-MS
24.1	92.4	21.49	5.54	29.58	4.03	22.68	4.83	12.54	1.6	5.85	0.98	119.69	0.77	2.00	ICP-MS
16.19	70.7	17.86	3.47	23.08	2.88	17.02	2.93	7.28	0.55	3.14	0.19	76.17	0.55	3.09	ICP-MS
9.72	42.7	10.95	2.18	16.38	2.01	12.3	2.21	5.36	0.38	2.2	0.08	49.39	0.59	2.71	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Propose age (Ma	d La ı) (ppm)	Ce (ppm)
Picard et al	. (2002)								
93357	Stonesfield,	Asteracanthus	tooth	siliciclastic	protected	Early-Middle	168	57.61	54.29
02262	UK St. Caraltian	4 - 4	4 41-			Bathonian	1(0	110.01	(0 (0
95562	St. Gautter,	Asteracantnus	tooth	carbonate	protected	Lower	169	110.81	60.60
92154	Tonnerre	Crocodilian	tooth	carbonate	upper	Lower	150	65.26	101 50
72154	France	Crocounturi	tootii	earbonate	offshore	Oxfordian	157	05.20	101.50
92210	St. Gaultier.	Machimosaurus	tooth	carbonate	protected	Lower	169	168.84	71.93
	France				I	Bathonian			
93369	Stonesfield,	Crocodilian	tooth	siliciclastic	protected	Early-Middle	168	338.84	503.67
	UK					Bathonian			
D8	Etrochey,	Crocodilian	tooth	carbonate	upper	Early	164	341.09	528.17
	France	_			offshore	Callovian			
D19	Les	Pycnodont	tooth	carbonate	lower	Lower	169	744.25	597.28
	Perrieres,				offshore	Bathonian			
D25	France	Antonnonutleur	tooth	aanh an ata	110000	Fouls	164	262 60	752.01
D23	Dijoli, Erance	Asteracaninus	tootn	carbonate	offebore	Callovian	104	303.08	/33.01
93405	Calvados	Rentile	tooth	clay	upper	Lower	164	413.05	1040 60
55105	France	repuie	tootii	enay	offshore	Callovian	101	115.05	1010.00
L13	Pagny,	Pvcnodont	tooth	clay	protected	Lower	159	2.16	4.47
	France	5		5	I	Oxfordian			
Na6	Nantua,	Asteracanthus	tooth	carbonate	upper	Middle-	168	226.70	200.47
	France				offshore	Lower			
						Bathonian			
L10	Hurigny,	Asteracanthus	tooth	carbonate	upper	Lower	176	311.66	334.34
	France				offshore	Bajocian			
L11	Hurigny,	Reptile	tooth	carbonate	upper	Lower	176	606.34	773.08
D(France	4	4 41-		offshore	Bajocian	1(7	(20	0.20
Do	France	Asteracantnus	tooth	carbonate	shoreface	Bathonian	10/	6.20	9.39
D10	France	Astoracanthus	tooth	carbonate	upper	Farly	164	176 70	308 66
DIU	Erronce	Asieracaninas	100111	carbonate	offshore	Callovian	104	170.70	576.00
93364	Tonnerre.	Asteracanthus	tooth	carbonate	upper	Lower	159	13.07	22.01
	France				offshore	Oxfordian			
Lécuyer et d	ıl. (2002)								
LE3	Laño, Spain	Crocodilian	tooth	clayey sand	littoral	Maastrichtian	68	15.53	12.93
LE8	Laño, Spain	Fish	scale	clayey sand	littoral	Maastrichtian	68	20.25	16.14
LT1	Laño, Spain	Shark	tooth	limestone	littoral	Maastrichtian	68	13.78	12.93
LL1	Laño, Spain	Turtle	plate	clayey sand	littoral	Maastrichtian	68	18.95	14.75
LL2	Laño, Spain	Dinosaur	bone	clayey sand	littoral	Maastrichtian	68	5.05	3.58
LL3	Laño, Spain	Crocodilian	vertebra	clayey sand	littoral	Maastrichtian	68	5.16	3.56
CB1	Cuesva, Spain	Crocodilian	osteoderm	argilites	littoral	Maastrichtian	68	11.47	30.72
CB2	Cuesva, Spain	Turtle	plate	argilites	littoral	Maastrichtian	68	7.04	24.22
	Urria, Spain	vertebrate	bone	argilites	littoral	Maastrichtian	68 69	2.41	6.01
US2 US3	Urria Spain	Turtle	plate	argilites	littoral	Maastrichtion	08 68	5.12 11 74	0.91
035	onia, spani	Tutte	plate	arginics	intoral	iviaasu iciitiail	00	11./4	17.00
Lécuver et a	ıl. (1998)								
OBN1	Estonia	Ungula/	shell	phosphorite.	littoral	Lower	490	173	413
		Schmidtites		sandstone		Ordovician			

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
5.16	18.84	2.47	0.61	3.89	0.50	3.12	0.77	2.21		1.62	0.24	61.7	3.39	0.78	ICP-MS
15.94	72.51	15.32	3.57	28.38	3.70	23.41	5.41	12.76		4.65	0.63	130.78	1.05	1.68	ICP-MS
17.20	72.50	14.17	2.77	18.66	2.72	15.63	3.17	7.47		3.09	0.41	82.52	0.67	2.33	ICP-MS
24.38	109.43	21.03	5.07	39.36	5.78	39.09	9.46	23.25		9.20	1.32	199.07	1.17	1.16	ICP-MS
50.29	176.94	22.70	5.52	27.31	4.14	26.67	6.11	16.98		11.08	1.51	372.62	2.17	1.04	ICP-MS
92.13	372.42	68.77	14.09	85.57	13.12	74.87	14.16	31.76		13.25	1.65	423.11	0.72	2.64	ICP-MS
155.79	611.98	106.63	20.98	124.14	16.72	90.52	16.83	35.57		11.88	1.39	862.76	1.01	4.56	ICP-MS
127.16	499.51	96.50	17.60	101.20	14.56	74.35	12.86	26.24		9.79	1.12	469.97	0.55	5.01	ICP-MS
130.19	491.92	83.42	17.27	79.93	12.17	68.16	12.97	30.48		16.42	2.15	512.89	0.72	2.58	ICP-MS
0.58	2.32	0.46	0.10	0.46	0.06	0.39	0.08	0.22		0.17	0.03	2.79	0.68	1.35	ICP-MS
38.89	141.16	22.58	4.44	26.96	3.93	21.20	3.91	8.19		2.55	0.27	251.83	1.46	4.49	ICP-MS
63.37	237.28	42.52	8.25	50.35	7.38	42.03	8.08	18.31		7.82	0.95	362	1.06	2.76	ICP-MS
153.10	615.22	120.18	23.69	133.63	19.68	113.34	22.30	54.05		28.15	3.47	754.67	0.73	2.17	ICP-MS
1.30	5.25	0.99	0.20	1.39	0.22	1.48	0.36	0.96		0.50	0.07	7.69	0.91	1.01	ICP-MS
62.68	246.56	46.82	8.71	51.44	7.59	40.30	7.22	15.17		5.75	0.69	229.27	0.55	4.14	ICP-MS
3.22	12.87	2.53	0.46	3.43	0.54	3.27	0.67	1.59		0.65	0.08	16.25	0.75	1.98	ICP-MS
12.96	14.22	19 56	24.11	24.11	21.25	10.70	17 00	16.02		11.70	10.08	15 79	0.94	1.50	ICD MS
20.71	21.97	30.51	39.35	37.57	32.34	28.94	25.90	22.95		17.19	16.34	67.95	0.66	1.78	ICP-MS
13.32	14.76	18.96	24.43	27.85	23.94	22.48	20.19	16.46		8.91	8.35	41.66	0.73	2.13	ICP-MS
14.22	14.29	17.77	24.80	28.11	26.57	27.26	26.62	24.39		16.66	15.02	53.39	1.07	1.07	ICP-MS
3.68	3.63	4.49	6.24	5.89	5.34	5.37	5.47	5.41		4.54	4.59	14.08	1.13	0.99	ICP-MS
3.15	2.88	3.24	4.62	5.21	5.56	6.48	6.81	6.78		5.07	4.86	13.47	1.59	0.64	ICP-MS
47.08	65.76	121.37	141.92	162.79	132.94	104.43	77.51	54.03		23.27	19.64	156.11	0.09	5.22	ICP-MS
47.13	68.52	115.58	131.86	144.26	120.21	96.73	72.29	50.87		21.33	17.81	143.95	0.06	5.42	ICP-MS
14.25	30.91	87.85	116.76	139.53	102.03	77.22	58.99	41.76		18.38	15.71	108.64	0.03	4.78	ICP-MS
13.82 33.92	18.81 38.36	27.36 48.95	52.10 59.18	39.58 70.82	35.34 57.86	32.68 47.36	27.50 35.81	20.57		8.78 10.32	6.83 8.58	39.26 71.01	0.11 0.24	3.12 4.75	ICP-MS ICP-MS
52.70	215	44.38	9.50	57.56	8.08	44.51	8.86	21.20		10.73	1.45	228.11	0.57	2.10	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma	l La) (ppm)	Ce (ppm)
Lécuyer et	al. (1998)								
OBB1	Estonia	Ungula/ Schmidtites	shell	phosphorite, sandstone	littoral	Lower Ordovician	490	168	378
OBB2	Estonia	Ungula/ Sahmidtitan	shell	phosphorite,	littoral	Lower	490	188	429
ES1	Estonia	Ungula/	shell	phosphorite,	littoral	Lower	490	183	493
ES2	Estonia	Schmiatites Ungula/ Schmidtites	shell	phosphorite,	littoral	Lower Ordovicion	490	222	543
ES3	Estonia	Ungula/ Schmidtitas	shell	phosphorite,	littoral	Lower	490	299	708
ES4	Russia	Obolus mallinia	shell	phosphorite,	littoral	Lower	490	194	424
ES5	Estonia	ungula/ Sehmidtites	shell	phosphorite,	littoral	Lower	490	88	169
ES6	Estonia	<i>Schmiatites</i> <i>Mickwitzia</i> sp.	shell	phosphorite,	littoral	Lower Combrian	490	461	1624
ES7	Russia	Obolus rebrovi	shell	phosphorite,	littoral	Middle	490	334	1188
ES8	Estonia	Ungula/ Schmidtites	shell	phosphorite,	littoral	Lower	490	67	136
Cal1	New Caledonia	Lingula	shell	sandstone	littoral	Holocene	0	0.133	3 0.261
Ha1	Hawaii	Lingula	shell	sandstone	littoral	Holocene	0	0.097	0.231
Cr1	Costa Rica	Glottidia audebarti	shell	sandstone	littoral	Holocene	0	0.269	0.508
Jap1	Japan	Lingula	shell	sandstone	littoral	Holocene	0	0.280	0.389
LC	New Caledonia	Lingula anatina	shell	sandstone	estuary	Holocene	0	1.630	3.492
This study	D 1 11	1. 1. 1		1.	1.0		02.1	2.50	1.00
PC21	France	fish	tooth	limestone	platform		82.1	3.50	1.80
H2	Malakoff, France	undetermined fish	tooth	limestone	platform		73.8	25.11	51.76
M3	Hallencourt, France	Scapanorhynchus sp.	tooth	limestone	offshore		82.1	0.92	0.57
D10	Sens, France	Squalicorax pristodontus	tooth	limestone	offshore		82.1	21.59	11.28
PI27	Somme, France	undetermined fish	tooth	limestone	upper offshore	e	87.4	11.03	7.01
D12	Beauval, France	undetermined	tooth	limestone	upper offshore	9	77.4	0.41	0.28
Н6	Authon, France	undetermined fish	tooth	limestone	offshore		84.6	157.41	323.37
M2	Le Mans, France	Squalicorax falcatus	tooth	shales	upper offshore	e	94.5	14.28	22.79
PI23	Ardèche, France	undetermined fish	tooth	sandy limestone	upper offshore	e	91.2	40.35	86.60

Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	$\Sigma(La +$	(La/Sm)	(Sm/Yb)	Analytical method
(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)) (ppm)	(ppm)	Sm + Yb	N	Ν	
47.12	190	36.53	8.37	48.56	7.10	41.40	8.78	22.30		12.72	1.64	217.25	0.67	1.46	ICP-MS
51.88	203	36.48	8.30	45.20	7.03	42.88	9.01	22.69		12.58	1.35	237.06	0.75	1.47	ICP-MS
60.81	267	61.14	12.26	71.64	9.68	50.93	9.98	23.76		12.58	1.71	256.72	0.43	2.47	ICP-MS
65.20	275	58.56	13.65	74.83	10.45	57.97	11.81	29.04		16.67	2.24	297.23	0.55	1.78	ICP-MS
87.13	377	82.36	18.74	102.00	14.20	78.26	15.74	38.85		22.68	2.97	404.04	0.53	1.85	ICP-MS
48.24	191	41.41	7.71	46.49	6.28	32.34	6.06	14.61		8.55	1.17	243.96	0.68	2.46	ICP-MS
20.44	85.40	16.73	4.01	22.41	3.25	19.05	4.08	10.53		6.9	0.9	111.13	0.76	1.23	ICP-MS
314	1533	378	64.56	315	33.70	150	24.12	46.03		21.41	3.03	4964.82	0.18	8.97	ICP-MS
171	739	174	27.32	133	14.45	57.51	8.93	18.42		9.53	1.39	2875.16	0.28	9.28	ICP-MS
17.58	75.50	15.50	3.30	17.18	2.38	13.00	2.64	6.78		4.47	0.61	86.97	0.63	1.76	ICP-MS
0.029	0.119	0.025	0.007	0.026	0.004	0.020	0.004	0.011		0.007	0.001	0.645	0.78	1.76	ICP-MS
0.024	0.109	0.022		0.026	0.004	0.022	0.005	0.012		0.008	8 0.001	0.560	0.63	1.33	ICP-MS
0.061	0.249	0.051		0.054	0.008	0.045	0.010	0.025		0.020	0.003	1.298	0.77	1.28	ICP-MS
0.052	0.225	0.050	1	0.066	0.010	0.068	0.016	0.040	1	0.031	0.005	1.226	0.82	0.82	ICP-MS
0.354	1.334	0.215		0.231	0.025	0.109	0.019	0.043		0.025	0.003	7.477	1.10	4.41	ICP-MS
0.38	1.51	0.23	0.06		0.04	0.33		0.25		0.20		3.92	2.21	0.60	ICP-MS
6.72	30.47	6.41	1.58		1.18	7.88		3.67		1.64		33.16	0.57	1.99	ICP-MS
0.11	0.43	0.06	0.02		0.01	0.09		0.06		0.04		1.02	2.20	0.77	ICP-MS
2.49	9.71	1.42	0.33		0.29	2.18		1.73		1.46		24.47	2.20	0.50	ICP-MS
1.77	7.26	1.18	0.27		0.19	1.21		0.64		0.31		12.52	1.36	1.92	ICP-MS
0.05	0.21	0.03	0.01		0.01	0.05		0.04		0.04		0.48	1.86	0.44	ICP-MS
71.72	317.72	62.51	15.32		9.11	55.04		26.67		10.71		230.63	0.37	2.97	ICP-MS
2.31	9.44	1.66	0.36		0.24	1.64		0.91		0.56		16.49	1.25	1.51	ICP-MS
9.01	36.99	6.87	1.66		0.98	5.48		2.84		1.79		49.01	0.85	1.95	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	l La (ppm)	Ce (ppm)
This study	_	- · ·							
M1	Les Renardières, France	Carcharias amonensis	tooth	sandy shales	upper offshore		94.5	7.59	18.06
D9	Yonne, France	Lamna acuminata	tooth	limestone	upper offshore		97.4	35.71	47.60
D5	Ardennes, France	Odontaspis sp.	tooth	green clays, phosphates	platform		105.5	25.15	84.21
D7	Courcelles, France	Lamniform	tooth	shales	upper offshore		105.6	262.72	533.56
PS25	La Houpette, France	Otodus sp.	tooth	sands, phosphorites	upper offshore		105.5	106.90	372.68
D2	Ardèche, France	Otodus sp.	tooth	shales	offshore		114.7	30.79	80.56
D3	Ardèche, France	Pycnodus sp.	tooth	shales	offshore		114.7	18.73	47.31
PI31	Ain, France	undetermined fish	tooth	limestone	platform		105.5	70.95	156.69
PI26	Viry, France	undetermined fish	tooth	unknown	shoreface		105.5	77.77	163.88
D4	Grusse, France	Lamniform	tooth	sandstone	shoreface		109.3		113.88
D6	Bellegarde, France	Odontaspididae gracilis	tooth	shales	upper offshore		120	79.27	165.69
D13	Martigues, France	undetermined fish	tooth	limestone	lower offshore		116.1	90.99	171.20
D1	Yonne, France	Sphaerodus neocomiensis	tooth	sandy limestone	upper offshore		129.5	16.81	41.47
V42	Auberson, Suisse	undetermined fish	tooth	limestone	upper offshore		134.8	255.18	948.68
V40	Bonvillars, Suisse	undetermined fish	tooth	limestone	offshore		137.5	94.66	564.92
V39	Ponte du Suchet, Suisse	undetermined fish	tooth	unknown	platform		136.2	396.39	1306.14
G2	Val de Fier, France	Pycnodus sp.	tooth	limestone	upper offshore		137	53.68	226.85
VSR	Gard, France	undetermined fish	tooth	limestone	offshore		136.75	6.43	40.30
G1	Ardèche, France	undetermined fish	tooth	shales	offshore		138.5	43.40	258.55
M4	Texas, USA	undetermined fish	tooth	unknown	platform		96.2	108.58	216.16
M5	Agadir, Morocco	Squalicorax falcatus	tooth	limestone	platform		91.25	44.29	54.09
M6	Texas, USA	undetermined fish	tooth	unknown	platform		88.5	72.01	101.84
Girard and	Lecuyer (2002)								
K1-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	65.38	174.96
K1-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	63.43	175.02

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
2.10	9.89	2.10	0.50	ui /	0.29	1.64	ui)	0.67	ui /	0.42	ui /	10.11	0.53	2.55	ICP-MS
5.83	27.15	5.63	1.31		1.06	7.36		2.81		2.00		43.34	0.92	1.43	ICP-MS
6.74	27.55	5.90	1.45		0.99	5.98		3.29		2.23		33.28	0.62	1.35	ICP-MS
70.60	273.30	51.48	10.50		5.08	27.70		10.73		5.49		319.69	0.74	4.77	ICP-MS
23.91	82.31	14.85	3.27		1.80	8.76		2.83		1.80		123.55	1.05	4.19	ICP-MS
4.90	15.87	2.57	0.57		0.37	2.20		0.91		0.92		34.29	1.74	1.42	ICP-MS
4.71	24.92	5.52	1.33		0.91	5.21		2.44		1.53		25.79	0.49	1.83	ICP-MS
17.53	60.90	11.16	2.62		1.71	10.05		5.18		2.90		85.01	0.92	1.95	ICP-MS
16.19	62.20	12.05	2.84		2.02	12.72		6.50		4.50		94.32	0.94	1.36	ICP-MS
9.32 17.12	37.79 80.99	6.93 14 07	1.66 3.18		1.43	10.63 15.06		6.49 7.81		5.63 5.26		193.76 98.61	0.82	0.63	ICP-MS ICP-MS
14.70	51.80	9.44	2.24		1.84	13.56		9.10		6.88		107.30	1.40	0.70	ICP-MS
4.02	14.53	2.76	0.63		0.45	2.93		1.53		1.14		20.71	0.89	1.22	ICP-MS
111.30	487.93	91.91	19.95		11.20	59.80		20.12		10.02		357.11	0.40	4.66	ICP-MS
37.01	150.63	33.20	7.86		4.51	25.29		8.76		3.78		131.64	0.41	4.46	ICP-MS
167.73	746.70	175.97	35.73		20.82	94.23		31.27		11.17		583.53	0.33	8.00	ICP-MS
23.13	104.96	23.19	4.81		2.37	10.09		3.14		1.26		78.13	0.34	9.36	ICP-MS
9.30	65.17	22.50	5.46		3.51	18.28		4.22		1.26		176.42	0.04	9.09	ICP-MS
55.02	383.82	135.79	33.95		20.09	99.72		24.72		7.27		1062.32	0.05	9.49	ICP-MS
21.13	84.29	13.45	2.78		1.84	11.66		5.28		3.52		125.55	1.17	1.94	ICP-MS
7.21	27.56	4.40	1.06		0.72	4.83		2.68		1.68		50.36	1.46	1.33	ICP-MS
9.81	38.60	6.46	1.46		1.21	9.14		5.81		5.40		83.87	1.62	0.61	ICP-MS
32.90	159.03	37.76	8.04	38.65	5.09	23.04		6.73		2.79		105.93	0.33	7.19	ICP-MS
32.36	147.48	34.09	7.07	33.34	4.34	19.24		6.24		2.71		100.23	0.35	6.69	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Propose age (Ma	ed La a) (ppm)	Ce (ppm)
Girard and	d Lecuyer (2002)								
K1-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	78.72	206.98
K1-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	35.38	88.46
K1-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	73.77	194.86
K4-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	57.96	123.48
K4-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	37.49	98.02
K4-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	58.91	141.50
K4-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	33.05	78.63
K4-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	27.68	68.99
K8-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	56.53	92.24
K8-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	61.86	99.24
K8-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	52.87	86.25
K8-4	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	58.58	94.48
K13-1	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	64.03	172.03
K13-2	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	58.60	146.29
K13-3	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	277.59	689.24
K13-4	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	108.74	253.79
K13-5	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	142.78	354.03
K15-1	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	238.56	549.37
K15-2	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	301.91	727.65
K15-3	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	220.56	535.97
K15-4	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	190.76	481.19
K15-5	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	194.91	484.35
K18-1	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	61.98	144.39
K18-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	113.37	274.74
K18-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	43.76	100.27

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yh)$	(La/Sm) N	(Sm/Yb) N	Analytical method
(ppin)	(ppin)	(ppin)	(ppm)	(ppiii)	(ppiii)	(ppiii)	(ppin)	(ppm)	(ppm)	(ppm)	(ppm)	5111 (10)	1	14	
38.87	184.16	42.94	9.54	42.42	5.65	25.71		7.94		3.59		125.25	0.35	6.36	ICP-MS
16.49	77.91	18.82	4.00	19.73	2.64	11.95		3.69		1.36		55.56	0.36	7.37	ICP-MS
36.22	172.28	41.23	8.24	40.24	5.51	25.01		7.75		3.04		118.04	0.34	7.20	ICP-MS
23.16	108.21	25.62	5.62	26.92	3.71	18.34		6.79		3.73		87.31	0.43	3.65	ICP-MS
17.78	81.16	19.14	4.15	19.62	2.75	12.70		4.87		2.37		59	0.37	4.29	ICP-MS
26.07	122.94	28.45	6.42	29.46	4.04	19.42		6.43		2.61		89.97	0.39	5.78	ICP-MS
14.24	66.36	15.57	3.39	16.66	2.27	10.81		3.75		1.44		50.06	0.40	5.74	ICP-MS
12.78	59.83	13.78	3.05	13.80	1.93	9.23		2.92		1.08		42.54	0.38	6.80	ICP-MS
18.62	82.03	17.79	3.50	16.97	2.40	11.52		3.74		1.08		75.4	0.60	8.77	ICP-MS
20.08	90.07	19.62	4.03	20.60	2.79	13.74		4.63		1.86		83.34	0.60	5.62	ICP-MS
17.46	79.65	17.17	3.52	17.67	2.50	12.28		4.11		1.66		71.7	0.58	5.49	ICP-MS
18.95	85.37	18.53	3.71	18.60	2.60	12.51		4.56		1.69		78.8	0.60	5.83	ICP-MS
29.19	128.39	30.07	6.88	30.86	4.36	20.91		8.20		3.74		97.84	0.40	4.27	ICP-MS
24.57	108.02	24.52	5.45	23.69	3.32	16.15		5.26		1.98		85.1	0.45	6.59	ICP-MS
119.85	553.83	127.88	26.17	125.20	17.69	88.34		32.39		15.50		420.97	0.41	4.38	ICP-MS
45.00	206.24	47.03	10.72	48.17	6.81	33.11		12.28		5.33		161.1	0.44	4.69	ICP-MS
62.61	289.35	67.14	15.03	67.91	9.53	47.71		17.26		8.25		218.17	0.40	4.32	ICP-MS
96.43	442.31	97.71	20.20	98.41	13.54	64.03		22.39		9.68		345.95	0.46	5.36	ICP-MS
127.99	590.41	129.95	26.31	127.99	17.26	81.26		27.50		11.20		443.06	0.44	6.16	ICP-MS
93.11	430.19	93.63	19.81	91.69	12.52	58.87		19.95		8.06		322.25	0.44	6.17	ICP-MS
84.70	391.69	89.09	18.92	86.11	11.77	56.49		19.27		8.45		288.3	0.40	5.60	ICP-MS
84.56	385.76	84.22	18.14	81.80	11.01	52.35		17.13		6.95		286.08	0.44	6.43	ICP-MS
22.95	101.82	23.23	4.74	22.40	2.94	12.96		3.66		1.32		86.53	0.50	9.33	ICP-MS
44.25	196.16	44.21	9.06	41.79	5.47	24.24		7.39		2.85		160.43	0.48	8.25	ICP-MS
15.85	72.49	16.00	3.58	16.49	2.15	9.53		2.47		0.61		60.37	0.52	13.89	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Propose age (M	ed La a) (ppm)	Ce (ppm)
Girard and	l Lecuyer (2002)								
K18-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	248.90	563.82
K18-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Frasnian	365	74.26	172.70
K23B-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	83.93	160.41
K23B-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	87.41	163.55
K23B-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Frasnian	365	113.95	213.88
K23B-4	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	103.19	190.23
K23B-5	Kowala,	Palmatolepis	conodont	limestone	distal	Frasnian	365	52.27	97.70
K24B1-1	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	200.08	359.29
K24B1-2	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	148.31	273.88
K24B1-3	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	186.96	347.09
K24B1-4	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	190.43	337.06
K24B1-5	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	215.44	391.30
K24B2-1	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	186.08	324.71
K24B2-2	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	164.91	295.27
K24B2-3	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	180.51	327.91
K24B2-4	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	139.51	239.78
K24B2-5	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	178.22	308.70
K24B3-1	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	245.19	419.79
K24B3-2	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	227.26	386.66
K24B3-3	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	224.14	391.91
K24B3-4	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	98.61	167.67
K24B3-5	Kowala,	Palmatolepis	conodont	limestone	distal	Famennian	360	188.41	325.29
K25A-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	31.57	54.84
K25A-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	43.57	76.05
K25A-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	100.18	163.74

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
90.21	414.84	92.83	19.16	95.00	12.47	58.86		19.31		8.71		350.44	0.51	5.66	ICP-MS
27.83	127.86	28.11	6.04	29.75	3.96	16.64		4.51		1.00		103.37	0.50	14.91	ICP-MS
26.83	122.53	26.10	6.24	29.13	3.93	18.91		6.69		2.07		112.1	0.61	6.70	ICP-MS
26.80	124.67	26.72	6.14	30.16	4.24	19.17		6.28		2.03		116.16	0.62	6.99	ICP-MS
36.04	166.37	35.12	8.30	40.21	5.24	25.14		9.30		3.95		153.02	0.61	4.73	ICP-MS
30.49	138.95	29.25	6.75	33.00	4.49	21.00		7.31		2.27		134.71	0.67	6.84	ICP-MS
16.22	74.40	15.82	3.76	18.40	2.62	12.15		4.45		1.80		69.89	0.62	4.67	ICP-MS
63.92	299.26	65.81	15.27	77.46	10.41	48.95		19.09		8.75		274.64	0.57	4.00	ICP-MS
45.11	211.31	46.74	11.38	54.41	7.39	37.06		14.40		6.76		201.81	0.60	3.67	ICP-MS
56.84	262.09	54.45	12.72	59.88	7.83	40.41		15.39		6.16		247.57	0.65	4.70	ICP-MS
58.85	282.28	60.90	14.68	73.72	9.64	48.01		18.33		8.63		259.96	0.59	3.75	ICP-MS
64.75	304.36	65.26	15.62	74.74	10.21	50.76		20.38		9.27		289.97	0.62	3.74	ICP-MS
68.25	334.12	77.02	18.20	87.30	11.90	59.82		22.59		10.12		273.22	0.46	4.04	ICP-MS
57.70	283.68	62.76	15.30	73.51	10.05	51.82		19.75		8.61		236.28	0.50	3.87	ICP-MS
64.80	314.02	70.25	17.44	80.70	11.36	53.70		20.70		9.66		260.42	0.49	3.86	ICP-MS
49.09	235.36	49.70	11.23	53.49	7.18	37.11		12.42		5.84		195.05	0.53	4.52	ICP-MS
62.54	311.15	69.84	16.58	81.26	11.27	55.17		21.11		9.70		257.76	0.48	3.82	ICP-MS
89.07	432.57	99.27	21.52	110.32	15.60	75.56		29.45		12.64		357.1	0.47	4.17	ICP-MS
83.20	401.43	89.89	21.70	109.68	15.96	75.17		27.70		13.99		331.14	0.48	3.41	ICP-MS
81.12	398.04	92.54	22.15	109.21	15.62	75.98		30.24		15.37		332.05	0.46	3.20	ICP-MS
35.85	180.33	42.30	9.93	52.20	7.25	34.65		13.68		5.86		146.77	0.44	3.83	ICP-MS
67.82	330.67	76.34	18.40	91.65	12.60	61.96		23.92		10.60		275.35	0.47	3.83	ICP-MS
11.14	54.58	12.81	2.91	15.25	2.11	10.18		3.52		1.32		45.7	0.47	5.16	ICP-MS
14.49	75.71	15.50	3.60	19.87	2.75	13.49		4.56		2.24		61.31	0.53	3.67	ICP-MS
34.15	161.22	36.58	7.94	40.61	5.69	28.46		11.14		4.29		141.05	0.52	4.53	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Propose age (M	ed La a) (ppm)	Ce (ppm)
Girard and	d Lecuyer (2002)								
K25A-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	38.86	63.43
K25A-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	120.28	194.89
K25B-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	49.50	86.53
K25B-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	92.27	157.26
K25B-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	32.41	54.75
K25B-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	50.13	86.40
K25B-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	97.45	167.07
K25C-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	44.05	76.98
K25C-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	70.57	102.70
K25C-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	116.43	197.76
K25C-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	70.48	122.18
K25C-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	53.58	95.01
K26B2-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	145.83	266.13
K26B2-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	232.21	389.11
K26B2-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	400.86	764.56
K26B2-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	318.56	602.91
K26B-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	358.37	666.39
K28-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	354.57	694.38
K28-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	239.81	443.72
K28-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	327.16	637.61
K28-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	339.14	650.94
K28-5	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	245.73	471.60
K31-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	177.27	371.79
K31-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal	Famennian	360	205.13	439.74
K31-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	115.98	230.72

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
12.90	60.55	12.99	2.79	12.54	1.63	8.49		2.75		0.93		52.78	0.57	7.43	ICP-MS
41.08	205.54	45.47	10.72	56.81	7.97	38.21		14.62		6.74		172.49	0.50	3.58	ICP-MS
17.66	86.78	19.97	4.26	23.32	3.44	15.54		5.28		2.07		71.54	0.47	5.12	ICP-MS
33.21	162.14	36.06	8.83	43.68	6.04	28.55		10.66		4.97		133.3	0.48	3.85	ICP-MS
10.87	53.62	12.40	2.71	13.99	2.03	9.43		3.20		1.28		46.09	0.49	5.16	ICP-MS
17.73	85.72	19.99	4.47	23.32	3.31	15.05		5.43		2.02		72.14	0.47	5.25	ICP-MS
34.24	164.86	38.38	8.67	44.89	6.12	30.01		10.91		4.70		140.53	0.48	4.34	ICP-MS
15.32	77.64	16.71	3.71	20.46	3.10	12.95		4.45		2.05		62.81	0.50	4.33	ICP-MS
21.77	106.37	23.52	5.71	29.19	4.08	19.74		6.98		2.90		96.99	0.57	4.31	ICP-MS
40.44	196.81	44.14	10.55	53.49	7.50	35.33		12.84		5.47		166.04	0.50	4.28	ICP-MS
25.25	123.53	27.22	6.40	33.19	4.52	21.58		7.97		2.89		100.59	0.49	5.00	ICP-MS
19.37	96.72	22.20	4.90	27.39	3.88	17.63		6.04		2.68		78.46	0.46	4.40	ICP-MS
56.58	279.39	64.85	14.08	69.40	9.42	44.52		15.77		6.76		217.44	0.42	5.10	ICP-MS
84.73	429.34	100.51	22.25	116.46	15.58	75.68		29.92		13.47		346.19	0.44	3.96	ICP-MS
163.18	767.97	176.96	39.76	181.07	24.30	115.48		39.91		18.89		596.71	0.43	4.98	ICP-MS
131.93	644.47	148.81	32.93	157.92	21.18	101.74		36.35		16.15		483.52	0.40	4.89	ICP-MS
145.49	713.80	165.79	35.02	177.54	23.93	116.36		42.91		20.00		544.16	0.41	4.40	ICP-MS
155.54	756.42	176.07	39.21	179.54	24.30	115.11		39.33		18.47		549.11	0.38	5.06	ICP-MS
98.23	452.28	102.30	21.45	96.80	12.76	60.18		20.54		8.97		351.08	0.44	6.06	ICP-MS
142.04	693.60	159.65	33.70	164.79	21.82	102.53		34.40		15.09		501.9	0.39	5.62	ICP-MS
142.91	681.20	154.89	33.43	155.05	20.46	95.09		31.78		14.14		508.17	0.41	5.82	ICP-MS
103.90	487.45	109.77	23.57	105.06	13.89	63.94		21.51		9.30		364.8	0.42	6.27	ICP-MS
81.08	393.90	89.38	18.57	89.65	11.65	53.64		16.81		6.77		273.42	0.37	7.01	ICP-MS
93.78	439.40	98.53	20.36	90.51	11.75	52.44		15.89		5.87		309.53	0.39	8.91	ICP-MS
50.50	242.22	54.84	11.64	54.04	7.00	32.03		9.99		3.86		174.68	0.40	7.55	ICP-MS

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	La (ppm)	Ce (ppm)
Girard and	Lecuyer (2002)								
K31-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	162.71	325.20
K35B-1	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	46.57	81.58
K35B-2	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	69.06	122.22
K35B-3	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	50.25	88.51
K35B-4	Kowala, Poland	Palmatolepis	conodont	limestone	distal platform	Famennian	360	248.90	479.25
Wright et a	(1984)								
JWC56	Utah, USA	conodont, fish	not precised	Thaynes Fm	not precised	Smithian- Spathian	240	107	369
JWC54	Texas, USA	fish	not precised	Pinery Fm	not precised	Upper Guadalupian	265	202	158
JWC51	Ohio, USA	conodont	not	Ames Ls	not precised	Virgilian	295	43.8	89.8
JWC46	Ohio, USA	conodont	not	Ames Ls	not precised	Virgilian	295	48	83
JWC45	Ohio, USA	conodont	not	Portersville Ls	not precised	Upper Missourian	305	16.8	38.5
JWC41	Illinois, USA	conodont	not	Spoon Fm	not precised	Lower	310	27.5	54
JWC52	Nevada, USA	conodont	not	Basal Riepe	not precised	Lower	310	64.8	29.5
JWC53	Nevada, USA	fish	not	Basal Riepe	not precised	Lower	310	970	436
JW4	Nevada, USA	conodont, fish	not	Basal Riepe	not precised	Lower	310	103	52
JWC43	Ohio, USA	conodont	not	L. Mercer Ls	not precised	Middle Atokan	320	22.9	50.8
JWC40	Texas, USA	conodont	not	Barnett Fm	not precised	Lower	325	118	100
JW6_1	Lancashire,	conodont	not	unknown	not precised	Mississippian	350	21.9	21.6
JWC39	Indiana, USA	conodont	not	New Albany	not precised	Upper Kinderhookian	350	41.3	131
JWC38	Indiana, USA	conodont	not	New Albany	not precised	Upper Vinderhookian	350	44	110
JWC37	Wyoming, USA	conodont	not	Lodgepole	not precised	Middle	350	104	93
JWC36	Missouri, USA	conodont	not precised	Bushberg	not precised	Kinderhookian Middle	350	77.9	159
JWC35	Wyoming, USA	conodont	not	Madison	not precised	Middle	350	124	228
JWC5_1	Missouri, USA	conodont	not	Holt summit	not precised	Famennian	360	84.1	205
JWC33	Nevada, USA	conodont	not precised	Pilot shale	not precised	Famennian	360	104	261

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
70.05	335.58	76.27	16.53	76.83	9.71	45.99		14.56		5.32		244.3	0.40	7.62	ICP-MS
16.61	76.55	16.69	3.54	17.50	2.33	11.36		3.56		1.30		64.56	0.53	6.82	ICP-MS
24.50	112.61	24.63	5.08	25.93	3.52	17.16		5.60		2.16		95.85	0.53	6.05	ICP-MS
17.68	82.47	18.01	3.70	19.08	2.58	12.96		4.28		1.41		69.67	0.53	6.77	ICP-MS
101.13	480.98	106.15	23.36	107.62	14.03	65.04		21.41		8.08		363.13	0.44	6.98	ICP-MS
	178	33.1	5.9		4.4					3.9	0.35	144	0.58	4.62	Neutron
	181	54.8	8.6		7.8					8.8	0.95	265.6	0.66	3.39	activation Neutron
	50	15.4	3.63		2.34					2.81	0.41	62.01	0.51	2.98	activation Neutron activation
	90	19	3.89							4.4	0.43	71.4	0.45	2.35	Neutron activation
		7.68	2		1.03					1.57	0.22	26.05	0.39	2.66	Neutron activation
	60	9.5	3.2		1.68					2		39	0.52	2.58	Neutron activation
	24	9.7	5.09		1.1					2.1	0.18	76.6	1.19	2.51	Neutron activation
	600	117.4	29.4		12.3					47	37	1134.4	1.47	2.01	Neutron activation
	22	14.4	0.5		2.2					3.9	0.50	24.46	0.41	2.01	activation
	33	10	2.24		0.85					1.50	0.17	34.40	0.41	5.49 2.65	activation
	108	11.4	1.17		2.0					4.4	0.4	24.25	0.98	6.23	activation
	211	41.1	1.17		0.07					5	0.43	94.55 87 A	0.18	0.25	activation
	143	88	10.8		3					56	0.45	137.6	0.09	8 55	activation
	160	9	10.0		37					3.6		116.6	2.06	1.36	activation
	97	19.5	4.16		2.78					3.63	0.35	101.03	0.71	2.92	activation Neutron
	168	35.8	6.2		4.1					3.8	0.63	163.6	0.62	5.12	activation Neutron
	90	24.7	7.5		5.1					4.1	0.46	112.9	0.61	3.28	activation Neutron
	170	27	8.8		4.5					5.6		136.6	0.69	2.62	activation Neutron activation

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	La (ppm)	Ce (ppm)
Wright et al	. (1984)								
JWC32	Nevada, USA	conodont	not precised	Devil's gate limestone	not precised	Frasnian	367	108	142
JWC30	New York,	conodont	not	Genesee Fm	not precised	Frasnian	367	31.1	124
JWC28	Indiana, USA	conodont	not	New Albany	not precised	Givetian	375	35.3	72.3
JWC27	Ohio, USA	conodont	not	Deleware	not precised	Eifelian	385	55.9	70.9
JWC26	Ohio, USA	conodont	not	Deleware	not precised	Eifelian	385	85.4	92
JWC25	Ohio, USA	conodont	not	Columbus	not precised	Eifelian	385	95	103
JWC23	Sunny Hill quarry, England	conodont	not precised	Upper Bringewood	not precised	Upper Ludlovian	420	139	331
JWC4_1	England	conodont	not	unknown	not precised	Wenlockian	425	160	513
JW8	California, USA	conodont	not precised	Hidden valley	not precised	Wenlockian	425	179	373
JWC22	Kentucky, USA	conodont	not	Brassfield Fm	not precised	Llandoverian	435	137	370
JWC21	Ohio, USA	conodont	not	Brassfield Fm	not precised	Llandoverian	435	179	594
JWC20	Kentucky, USA	conodont	not precised	Ashlock Fm	not precised	Lower Ashgillian	445	57.4	118
JWC19	Kentucky, USA	conodont	not precised	Ashlock Fm	not precised	Lower Ashgillian	445	56.5	102
JWC17	Oklahoma, USA	conodont, fish	not precised	Corbin Ranch Fm	not precised	Lower Caradocian	455	54.2	61.6
JWC16	Oklahoma, USA	conodont	not	Tulip Crk. Fm	not precised	Llandeilian	464	90	352
JWC3_16	Öland, Sweden	conodont	not	unknown	not precised	Llanvirnian	467	66	182
JWC15	Oklahoma,	conodont	not	McLish Fm	not precised	Llanvirnian	467	25	78
JWC14	Oklahoma,	conodont	not	Joins Fm	not precised	Llanvirnian	467	76.8	387
JWC3_34	Oklahoma,	conodont	not	Signal Mtn	not precised	Tremadocian	487	102.6	274
JWC3_24	Texas, USA	conodont	not	Wilbern Fm	not precised	Tremadocian	487	156	479
JW7	Nevada, USA	conodont	not precised	Dunderberg shale	not precised	Dresbachian	495	501	1200
Felitsyn et d	ıl. (1998)								
Ma-U1	Estonia/Russia	brachiopod	shell	sandstones	littoral	Middle Cambrian	504	116	270
T_3/28	Estonia/Russia	brachiopod	shell	sandstones	littoral	Late Cambrian	491	172	577
E_10/2	Estonia/Russia	unidentified	unidentified	unidentified	littoral	Late Cambrian	493	160	414

Pr (ppm)	Nd (ppm)	Sm (ppm)	Eu (ppm)	Gd (ppm)	Tb (ppm)	Dy (ppm)	Ho (ppm)	Er (ppm)	Tm (ppm)	Yb (ppm)	Lu (ppm)	$\Sigma(La + Sm + Yb)$	(La/Sm) N	(Sm/Yb) N	Analytical method
	97	20	3 67		24					3.6	0.27	131.6	0.96	3.02	Neutron
	21	20	5.07		2.1					5.0	0.27	101.0	0.90	5.02	activation
	153	54.3	13.9		7.7					2.58	0.238	87.98	0.10	11.45	Neutron
	53	15.6	4.09		3.4					3.53	0.36	54.43	0.40	2.40	Neutron
	73	16.6	4.58		3.3					2.07	0.266	74.57	0.60	4.36	Neutron
	103	25.8	6.44		4.6					4.5	0.41	115.7	0.59	3.12	Neutron
	170	39	5 53		33					4	0.25	138	0.43	5 30	activation
	170	39	5.55		5.5					4	0.23	158	0.45	5.50	activation
	300	78.3	15.4		8					6.6	0.42	223.9	0.32	6.45	Neutron
															activation
	360	122	22.1		15.4					11.8	0.98	293.8	0.23	5.62	Neutron
	604	60	6.2		5.8					2.6	0.38	241.6	0.53	12.55	Neutron
															activation
	430	100	24		9					12.8	0.9	249.8	0.24	4.25	Neutron
											0.01				activation
	423	93	21.3		16.2					9.7	0.84	281.7	0.34	5.21	Neutron
	52	9 67	2.76		2.01					18	0.17	68 87	1.06	2.92	Neutron
	02	2107	2.70		2.01					110	0117	00107	1100	2.72	activation
		11.3	2.2		1.8					1.9		69.7	0.89	3.23	Neutron
															activation
	22	6.95	1.33		0.85					2.53	0.2	63.68	1.39	1.49	Neutron
	250	8 2	12.4		6.5					74	0.57	170.4	0.20	6.02	activation
	230	82	12.4		0.5					/.4	0.57	1/9.4	0.20	0.05	activation
	110	63	8.1		5.4					3.4	0.25	132.4	0.19	10.08	Neutron
															activation
	100	5.7	5.2		2.3					4		34.7	0.78	0.78	Neutron
															activation
	421	91	16.6		8.6					2.1	0.24	169.9	0.15	23.57	Neutron
	180	47	67		2.8					32		152.8	0.39	7 99	Neutron
	100	.,	0.7		2.0					5.2		102.0	0.59	1.55	activation
	180	120	9.5		6.3					5.9	0.51	281.9	0.23	11.06	Neutron
															activation
		197	17.5		24					11.4	1.38	709.4	0.45	9.40	Neutron
															activation
	140	30	7.9		6.5		8			10.4		156.4	0.69	1.57	Neutron
															activation
	401	73	14.6		11.9		10.5			14		259	0.42	2.84	Neutron
															activation
	260	47	10.3		9		10			13.6		220.6	0.61	1.88	Neutron activation

Table 2 (continued)

Samples	Location	Taxon	Material	Lithology	Environment	Period/stage	Proposed age (Ma)	Ce (ppm)	
Felitsyn et d	al. (1998)								
Syas_1	Estonia/Russia	brachiopod	shell	sandstones	littoral	Late Cambrian	491	210	660
Lava_1	Estonia/Russia	brachiopod	shell	sandstones	littoral	Late Cambrian	491	241	760
U_83_6	Estonia/Russia	brachiopod	shell	sandstones	littoral	Late Cambrian	491	158	397
U_83_8/9	Estonia/Russia	brachiopod	shell	sandstones	littoral	Early Ordovician	489	165	456
MBIbeta	Estonia/Russia	unidentified	conodont	limestones	littoral	Early Ordovician	481	367	1298
Tonu_5	Estonia/Russia	brachiopod	shell	limestones	littoral	Early Ordovician	476	701	1722
Tonu_24	Estonia/Russia	brachiopod	shell	limestones	littoral	Early Ordovician	474	586	1425
EST_1	Estonia/Russia	unidentified	unidentified	unidentified	littoral	Middle	470	519	1559
EST_2	Estonia/Russia	unidentified	unidentified	unidentified	littoral	Middle Ordevision	470	681	1671
EST_3	Estonia/Russia	unidentified	unidentified	unidentified	littoral	Middle Ordovician	470	393	842
Shields and	Stille (2001)								
SSF1	Tayshir, West	unidentified	shelly fossil	dolomitic phosphorite	not precised	Lower Cambrian	530	209.4	357.6
SSF2	Tayshir, West	unidentified	shelly fossil	dolomitic	not precised	Lower Cambrian	530	242.3	386.8
SSF3_1	Tayshir, West Mongolia	unidentified	shelly fossil	dolomitic	not precised	Lower Cambrian	530	152.9	168.9
SSF3_2	Tayshir, West Mongolia	unidentified	shelly fossil	dolomitic phosphorite	not precised	Lower Cambrian	530	150.4	251.8

Data have been compiled from Bertram et al. (1992), Elderfield and Pagett (1986), Felitsyn et al. (1998), Girard and Lécuyer (2002), Grandjean (1989), Grandjean et al. (1987, 1988), Kemp and Trueman (2003), Lécuyer et al. (1998, 2002), Picard et al. (2002), Shields and Stille (2001) and Wright et al. (1984).

 $(Sm/Yb)_N$ ratios in Fig. 3a. For samples younger than 80 Ma, most $(Sm/Yb)_N$ ratios fall within the modern fresh and oceanic water range (only three outliers over more than 50 samples), and can thus be explained by various mixtures of shoreface and offshore components. $(Sm/Yb)_N$ ratios of samples older than 110 Ma fall above the modern seawater range. Such values are characteristic of old seawaters, for instance, in the Jurassic (Picard et al., 2002). Note that this observation would still hold if taking altered samples into account, as they show the highest $(Sm/Yb)_N$ ratios.

The major change in $(Sm/Yb)_N$ ratios of biogenic phosphates occurred progressively during the Cretaceous (Fig. 4a). This change is concurrent with a progressive decrease of the Ce anomaly (Fig. 4b) from positive values to negative values comparable to those observed in modern oceans (Elderfield and Greaves, 1982; De Baar et al., 1985; Elderfield, 1988; Alibo and Nozaki, 1999).

4. Discussion

4.1. REE contents: seawater composition or alteration signature?

The observed changes in REE patterns over time may either reflect seawater compositional changes

Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	$\Sigma(La +$	(La/Sm)	(Sm/Yb)	Analytical method
(ppm)	Sm + Yb)	Ν	Ν												
	351	63	16.7		11		12			17.6		290.6	0.59	1.95	Neutron
	330	76	19.7		13		17			23.6		340.6	0.56	1.75	Neutron
	238	43	10.8		9.2		11			14.2		215.2	0.65	1.65	Neutron activation
	260	48	13.2		9.9		12.2			15.4		228.4	0.61	1.70	Neutron activation
	795	148	30.8		21		18.8			25.4		540.4	0.44	3.17	Neutron
	1368	264	54.2		36		35.1			46.1		1011.1	0.47	3.11	Neutron
	1089	198	40.7		27		29.5			43.6		827.6	0.53	2.47	Neutron activation
	864	195	44	198	31					31	3	745	0.47	3.42	Neutron
	1225	256	58	258	38.6					34.4	3.4	971.4	0.47	4.05	Neutron activation
	664	128	28	126	26.6					27.1	3.2	548.1	0.55	2.57	Neutron activation
50.66	221.3	47.3	10.97	49.1	5.851	28.86	5.117	12.02	1.253	6.1	0.777	262.8	0.79	4.22	ICP-MS
52.67	236.9	50.7	11.63	54.88	6.334	30.84	5.442	12.53	1.233	6	0.785	299	0.85	4.60	ICP-MS
33.3	146.3	30.8	6.985	32.3	3.691	17.75	3.154	7.311	0.592	3.7	0.489	187.4	0.88	4.53	ICP-MS
33.32	146.7	30.9	7.104	33.59	3.843	19.48	3.343	8.072	0.871	4.43	0.579	185.73	0.87	3.79	ICP-MS

(Wright et al., 1984; Grandjean et al., 1987; Grandjean-Lécuyer et al., 1993) or various diagenetic processes such as:

- REE contributions from host sediments linked to lithological variations or;
- progressive alteration of REE contents with increasing geological age.

The REE budget of biogenic phosphates depends on contributions from both sediment pore waters and overlying water column (Elderfield and Pagett, 1986). Therefore, variations in host lithology of marine biogenic phosphates may influence their REE contents due to differences in permeability, REE composition, organic and oxide-hydroxide contents. To test this hypothesis, lithologies have been identified on the $(Sm/Yb)_N$ versus age plot (Fig. 3b). The REE contents of biogenic phosphates deposited in clays (6% of the database) are influenced by REE derived from the detrital flux which has a shale-like signal flat REE pattern (Grandjean et al., 1987), yielding $(Sm/Yb)_N$ ratios close to 1 (Fig. 3b). Samples from limestones and phosporites are deposited in domains that are relatively well protected from detrital influence and show the largest variations in their $(Sm/Yb)_N$ ratios. Biochemical sediments that precipitated directly from seawater have REE patterns reflecting the composi-

Fig. 1. Examples of the three main types of REE patterns recorded in our collection of analyzed Cretaceous marine biogenic apatites (Table 1). (1) "Bell-shaped" patterns of two recrystallized shark teeth from the Lower Cretaceous (137 and 138 Ma); (2) pre-Turonian fish teeth represented by thick streaked lines and characterized by no or weak negative Ce anomalies and HREE depletion relatively to LREE; (3) post-Turonian fish teeth and modern Atlantic seawater (De Baar et al., 1985) represented by thin dotted lines showing strong negative Ce anomalies and increasing REE abundance with atomic number. Fish tooth of Ypresian age (53 Ma) was sampled from northern Morocco phosphorite deposits (Grandjean et al., 1988).

tion of the overlying water column. This property of marine carbonates has been demonstrated by Elderfield et al. (1981) who measured REE patterns of foraminifer skeletons that reproduce those of surrounding marine waters. Similarly, biogenic apatites have been shown to acquire seawater-like REE patterns during early diagenesis close to water-sediment interface (Elderfield and Pagett, 1986). We must emphasize that our database includes mainly samples from carbonate and carbonate-phosporite deposits (65% of the database) (Fig. 3b). Samples from sandstones (about 10% of the database) have an intermediate pattern (e.g. Grandjean et al., 1987; Felvitsin et al., 1998), some similar to limestones, other similar to clays. Except for clays and clayey sandstones, we consider that the REE composition of biogenic phosphates from various lithologies reflect the REE composition of seawater.

Diagenesis following deposition can alter the absolute and relative abundance of the REE in biogenetic apatites. This is observed in samples exhibiting bell-shaped patterns characteristic of extensive diagenesis (Reynard et al., 1999). Interestingly, these patterns are observed in ancient (e.g. Devonian) as well as relatively recent (e.g. Cretaceous) samples, implying that this phenomenon is not dependent on age and results from specific events such as low grade metamorphic overprint and/or extensive dissolutionrecrystallization. This is not the case for the (Sm/Yb)_N ratios which are observed in the 110-540 Ma period. This could be attributed to a progressive low temperature alteration. In this latter case, systematic changes in the sum of REE could be expected but no such trend is observed with increasing age (Fig. 5). We only observe contents below 10 ppm in samples younger than 160 Ma.

The absence of significant correlation between the (Sm/Yb)_N ratio and sum of the three selected REE (La + Sm + Yb) over the whole sample set (Fig. 6a) confirms that if any alteration occurred, it did not affect significantly the REE contents. Variations of the (Sm/Yb)_N ratio and total REE content can be correlated with bathymetry when subsets from Elderfield and Pagett (1986) on contemporary fish remains and Picard et al. (2002) on Jurassic fish and reptile remains are considered (Fig. 6b). In contemporary samples, this correlation is due to REE fractionation in the water column; both the REE content and (Sm/ Yb)_N ratio decrease with increasing bathymetry. In contrast, Jurassic samples show a positive correlation between (Sm/Yb)_N (and to a smaller extent the sum of REE) and palaeobathymetry. This is due to relative depletion of Yb and Lu in the water column demonstrated by Picard et al. (2002), and is consistent with estimation of bathymetry made from thermocline reconstruction with oxygen isotope studies on brachiopods (Picard et al., 1998). Part of the vertical scattering may be explained by variations in REE concentration between parts of fish remains such as tooth enamel and dentine (e.g. Picard et al., 2002). The homogeneity of REE patterns in different tissues (Grandjean and Albarède, 1989) further suggests the robustness of the REE record. Finally, progressive alteration over time would produce a smooth variation

Fig. 2. Variations of $(La/Sm)_N$ ratios of marine biogenic phosphates (fish teeth, conodonts, lingulid shells) as a function of geological times (data from Table 2). Samples represented by diamonds fulfill the criterion of extensive diagenesis leading to strongly fractionated "bell-shaped" REE patterns with $(La/Sm)_N < 0.3$.

of the $(Sm/Yb)_N$ ratios, while the change between modern and ancient REE patterns are observed to occur over a limited time span (80-110 Ma), when compared with the stable high $(Sm/Yb)_N$ ratio over the 110-550 Ma interval and stable low $(Sm/Yb)_N$ ratio from 80 Ma to present. Thus, we attribute the change in REE patterns between 110 and 80 Ma to a change in seawater REE composition rather than to a change in the REE uptake mechanism in biogenic apatites.

4.2. Possible causes for a change in REE seawater composition

Having shown that the REE patterns of most samples can be reasonably associated to palaeoenvironmental factors and may thus be interpreted as reflecting the REE pattern of seawater at the time of deposition, we explore possible explanations for changes in REE seawater composition throughout geological times. In present-day seawater, dissolved REE contents increase from Sm to Yb: this pattern is attributed to scavenging of REE by organic or inorganic primary carriers (Elderfield and Greaves, 1982; Fowler et al., 1987). The REE compositional changes revealed in this study may therefore be due to concurrent changes in the composition and abundance of primary REE carriers throughout the Phanerozoic as previously suggested by Grandjean-Lécuyer et al. (1993). From Cambrian to Lower Cretaceous, the (Sm/Yb)_N ratio of biogenic apatites from the Tethyan ocean ranges from 1 to 10, while "modern" seawater, younger than 80 Ma, is characterized by (Sm/Yb)_N ratios generally lower than 1. This observation suggests that an efficient HREE removal or scavenging process existed in pre-Cretaceous seawater (Picard et al., 2002). To our knowledge, there is no present-day marine environment with such a strong relative depletion of the heaviest REE. Change in planktonic biomass or of physico-chemical properties such as redox conditions in seawater could have been responsible for a change in the REE seawater composition reflected by that of fossil biogenic apatites. However, we cannot propose any definitive explanation for the REE patterns of marine biogenic phosphates older than 110 Ma.

The amplitude of the Ce anomaly recorded in marine fish debris has been considered as a proxy

Fig. 3. Variations of $(Sm/Yb)_N$ ratios of marine biogenic phosphates (fish teeth, conodonts, lingulid shells) as a function of geological time (data from Table 2, filtered for extensive diagenesis according to Fig. 2): (a) all unaltered samples; (b) subset (host sediment known) of biogenic apatites from limestones, sandstones, shales and phosphorites.

of paleo-oceanic redox conditions (Wright et al., 1984, 1987; Liu et al., 1988). The proxy is based on the progressive oxidation of Ce^{3+} to Ce^{4+} with increasing seawater oxygenation; insoluble Ce^{4+} is readily incorporated into metal-oxide coatings (Piper, 1974; Elderfield et al., 1981; Elderfield, 1988; De Baar et al., 1988). An increase of dissolved

oxygen in surface seawater could have been favored by cooler sea surface temperature, wind intensification, and enhanced oceanic stirring. The observed correlation between $(Sm/Yb)_N$ ratio and Ce anomaly of Cretaceous fish teeth, as shown in Fig. 4, supports the hypothesis of a progressive change in dynamics and chemistry of the Tethyan

Fig. 4. Evolution of REE seawater chemistry through the Cretaceous as recorded in marine biogenic apatites from the Tethyan open marine platform environments (data from Table 1). Decreasing of $(Sm/Yb)_N$ ratios (a) are correlated with increasing negative Ce anomalies (b). This observation is interpreted as a progressive oxygenation of seawater resulting from major oceanographic changes consequently to the opening of the Atlantic ocean.

and proto-Atlantic waters between 110 and 80 Ma. On the basis of these observations, we propose that water masses evolved from stratified and poorly oxygenated surface seawaters prior to 110 Ma towards well-mixed and oxygenated waters at present. This major change in oceanic circulation could result from the contemporaneous opening of the Southern Atlantic Ocean (Scotese et al., 1988). Increased stirring, mixing, and oxygenation of water is potentially driven by new circulation patterns resulting from palaeogeography changes between Albian (≈ 110 Ma) and Turonian times (\approx 80 Ma) (Poulsen et al., 2001). This conclusion was also reached by Stille et al. (1996) from Nd isotopic compositions of Tethyan carbonates and phosphate concretions, fixing the period of circulation change around 80 Ma. We cannot also exclude that increasing oxygenation of surface waters was enhanced by global cooling after the Cenomanian/Turonian boundary as suggested by the increase of oxygen isotope compositions of both foraminifera (Saito and Van Donk, 1974; Huber et al., 1995; Frakes, 1999) and fish remains (Kolodny and Raab, 1988; Lécuyer et al., 1993). Finally, the overall modification of oceanic circulation may have modified the distribution of nutrients in the water column. This could constitute the main extrinsic parameter at the origin of the progressive colonization by the calcareous plankton of pelagic environments during the Middle and Late Cretaceous (Tappan and Loeblich, 1973; Bralower and Thierstein, 1984; Bolli et al., 1985; Roth, 1986).

5. Conclusion

Compilation of a database of biogenic apatite REE contents from the Phanerozoic and new data acquired on Cretaceous biogenic apatites from the Tethyan domain show that the REE patterns have changed through time. These data reveal a change in the relative REE compositions in Tethyan seawater between 110 and 80 Ma. At the end of the Cretaceous, the REE chemistry of seawater is constant until present-day. Prior to 110 Ma, REE patterns are all different from those of present-day seawater, although many of the analyzed samples come from open marine sedimentary environments. This is tentatively attributed to a change in the scavenging mechanism of REE in the water column.

In the 110–80 Ma period, changes in the mechanism of REE scavenging within the water column is marked by the decrease of $(Sm/Yb)_N$ ratio and the increase of Ce anomalies (Ω Ce) that could reflect an evolution from stratified and poorly oxygenated waters towards well-mixed and oxygenated waters. This change is proposed to result from the coeval opening of the Atlantic ocean.

Fig. 5. Variations of the sum of the three selected REE (La + Sm + Yb) with age (data from Table 2). Only La, Sm and Yb are used because they are light, middle and heavy REE, respectively, and they represent adequately the pattern shape and are the most commonly analyzed REE in Table 2. Note that, apart from low concentration samples (sum <10 ppm) occurring only in some samples younger than 160 Ma, the variation range has not significantly changed with time. Symbols as for Fig. 2.

Acknowledgements

The authors are grateful to F. Cordey who edited the English of this manuscript. E. H. Oelkers, B. Schmitz and D. Kidder are thanked for their constructive reviews that helped to improve the scientific content of this work. This study was supported by the French CNRS Program 'ECLIPSE'. [EO]

References

- Alibo, D.S., Nozaki, Y., 1999. Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim. Cosmochim. Acta 63, 363–372.
- Aplin, A.C., 1984. Rare earth element geochemistry of central Pacific ferromanganese encrustations. Earth Planet. Sci. Lett. 71, 13–22.
- Bernat, M., 1975. Les isotopes de l'uranium et du thorium et les terres rares dans l'environnement marin. Cah.-ORSTOM, Ser. Geol. 7, 68–83.
- Bertram, C.J., Elderfield, H., Aldridge, R.J., Conway Morris, S., 1992. ⁸⁷Sr/⁸⁶Sr, ¹⁴³Nd/¹⁴⁴Nd and REEs in Silurian phosphatic fossils. Earth Planet. Sci. Lett. 113, 239–249.
- Bolli, H.M., Saunders, J.B., Perch-Nielsen, K., 1985. Plankton Stratigraphy. Cambridge Univ. Press, Cambridge.

- Boyle, E.A., Edmond, J.M., Sholkovitz, E.R., 1977. The mechanism of iron removal in estuaries. Geochim. Cosmochim. Acta 41, 1313–1324.
- Bralower, T.J., Thierstein, H.R., 1984. Low productivity and slow deep-water circulation in mid-Creteceous oceans. Geology 12, 614–618.
- De Baar, H.J.W., Bacon, M.P., Brewer, P.G., 1985. Rare earth elements in the Pacific and Atlantic oceans. Geochim. Cosmochim. Acta 49, 1943–1959.
- De Baar, H.J.W., German, C.R., Elderfield, H., Van Gaans, P., 1988. Rare earth element distributions in anoxic waters of the Cariaco Trench. Geochim. Cosmochim. Acta 52, 1203–1219.
- Elderfield, H., 1988. The oceanic chemistry of the rare-earth elements. Philos. Trans. R. Soc. Lond. 325, 105–126.
- Elderfield, H., Greaves, M.J., 1982. The rare earth elements in seawater. Nature 296, 214–219.
- Elderfield, H., Pagett, R., 1986. Rare Earth elements in Ichthyoliths: variations with redox conditions and depositional environment. In: Riley, J.P. (Ed.), Sciences of the Total Environment, 49, 175–197.
- Elderfield, H., Sholkovitz, E.R., 1987. Rare earth elements in porewater of reducing nearshore sediments. Earth Planet. Sci. Lett. 82, 280–288.
- Elderfield, H., Hawkesworth, C.J., Greaves, M.J., Calvert, S.E., 1981. Rare earth element geochemistry of oceanic ferromanganese nodules and associated sediments. Geochim. Cosmochim. Acta 45, 513–528.
- Felitsyn, S., Sturesson, U., Popov, L., Holmer, L., 1998. Nd isotope

Fig. 6. Variations of sum of the three selected REE (La+Sm+Yb) with $(Sm/Yb)_N$ ratio (data from Table 2). (a) Whole set, note the weak correlation. (b) Subsets from: (1) contemporary fish remains (Elderfield and Pagett, 1986), open squares; (2) Jurassic fish and reptile remains (Picard et al., 2002), filled squares. Note that bathymetry mostly decreases the sum of REE in contemporary oceans with little decrease of the $(Sm/Yb)_N$ ratio, while in Jurassic environments, palaeobathymetry causes a significant increase of the $(Sm/Yb)_N$ ratio and a slight increase of the REE sum. This more likely reflects a change in REE scavenging in oceans prior to 110 Ma and after 80 Ma than a change in the REE uptake mechanism in biogenic apatites.

composition and rare earth element distribution in early Paleozoic biogenic apatite from Baltoscandia: a signature of Iapetus ocean water. Geology 26, 1083–1086.

Fowler, S.W., Buat-Menard, P., Yokoyama, Y., Ballestra, S., Holm, E., Van Nguyen, H., 1987. Rapid removal of Chernobyl fallout from Mediterranean surface waters by biological activity. Nature 329, 56–58.

Frakes, L.A., 1999. Estimating the global thermal state from Cretaceous sea surface and continental temperature data. In: Barrera, E., Johnson, C.C. (Eds.), Evolution of the Cretaceous Ocean-Climate System. Spec. Pap.-Geol. Soc. Am., pp. 49-57.

- Girard, C., Lécuyer, C., 2002. Variations in Ce anomalies of conodonts through the Frasnian/Famennian boundary of Poland (Kowala–Holy Cross Mountains): implications for the redox state of seawater and biodiversity. Palaeogeogr. Palaeoclimatol. Palaeocol. 181, 299–311.
- Grandjean, P., 1989. Les terres rares et la composition isotopique du néodyme dans les phosphates biogènes: traceurs des processus paléo-océanographiques et sédimentaires. PhD Thesis, I.N.P.L. Nancy, France. 319 pp.
- Grandjean, P., Albarède, F., 1989. Rare earth elements in old biogenic apatites. Geochim. Cosmochim. Acta 57, 2507–2514.
- Grandjean, P., Cappetta, H., Michard, A., Albarède, F., 1987. The assessment of REE patterns and ¹⁴³Nd/¹⁴⁴Nd ratios in fish remains. Earth Planet. Sci. Lett. 84, 181–196.
- Grandjean, P., Cappetta, H., Albarède, F., 1988. The REE and ε_{Nd} of 40–70 Ma old fish debris from the West-African platform. Geophys. Res. Lett. 15, 389–392.
- Grandjean-Lécuyer, P., Feist, R., Albarede, F., 1993. Rare earth elements in old biogenic apatites. Geochim. Cosmochim. Acta 57, 2507–2514.
- Gromet, L.P., Dymek, R.F., Haskin, L.A., Korotev, R.L., 1984. The North American Shale composite: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta 48, 2469–2482.
- Huber, B.T., Hodell, D.A., Hamilton, C.P., 1995. Middle–Late Cretaceous climate of the southern high latitudes: stable isotopic evidence for minimal equator-to-pole thermal gradients. Geol. Soc. Amer. Bull. 107, 1164–1191.
- Kemp, R.A., Trueman, C., 2003. Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the paleoenvironment. Sediment. Geol. 155, 109–127.
- Koeppenkastrop, D., De Carlo, E.H., 1992. Sorption of rare earth elements from seawater onto synthetic mineral particles: an experimental approach. Chem. Geol. 95, 251–263.
- Koeppenkastrop, D., De Carlo, E.H., Roth, M., 1991. A method to investigate the interaction of rare earth elements in aqueous solution with metal oxides. J. Radioanal. Nucl. Chem. 152, 337–346.
- Kolodny, Y., Raab, M., 1988. Oxygen isotopes in phosphatic fish remains from Israel: paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeogr. Palaeoclimatol. Palaeoecol. 64, 59–67.
- Lécuyer, C., Grandjean, P., O'Neil, J.R., Cappetta, H., Martineau, F., 1993. Thermal excursions in the ocean at the Cretaceous– Tertiary boundary (northern Morocco): the δ^{18} O record of phosphatic fish debris. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 235–243.
- Lécuyer, C., Grandjean, P., Barrat, J.A., Emig, C.C., Nolvak, J., Paris, F., Robardet, M., 1998. δ¹⁸O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochim. Cosmochim. Acta 62, 2429–2436.
- Lécuyer, C., Bogey, C., Garcia, J.-P., Grandjean, P., Barrat, J.-A., Floquet, M., Bardet, N., Pereda-Superbiola, X., 2002. Stable isotope compositions and rare earth element content of verte-

brate remains from the late Cretaceous of northern Spain (Laño): did the environmental record survive? Palaeogeogr. Palaeoclimatol. Palaeoecol. 193, 457–471.

- Liu, Y.-G., Miah, M.R.U., Schmitt, R.A., 1988. Cerium: a chemical tracer for paleo-oceanic redox conditions. Geochim. Cosmochim. Acta 52, 1361–1371.
- Picard, S., Garcia, J.P., Lécuyer, C., Sheppard, S.M.F., Cappetta, H., Emig, C., 1998. δ^{18} O values of coexisting brachiopods and fish: temperature differences and estimates of paleo-water depths. Geology 26, 975–978.
- Picard, S., Lécuyer, C., Barrat, J.-A., Garcia, J.-P., Dromart, G., Sheppard, S.M.F., 2002. Rare earth element contents of Jurassic fish and reptile teeth and their potential relation to seawater composition (Anglo-Paris Basin, France and England). Chem. Geol. 186, 1–16.
- Piper, D.Z., 1974. Rare earth elements in the sedimentary cycle: a summary. Chem. Geol. 14, 285–304.
- Poulsen, C.J., Barron, E.J., Arthur, M.A., Peterson, W.H., 2001. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO₂ forcings. Paleoceanography 16, 576–592.
- Pucéat, E., Lécuyer, C., Sheppard, S.M.F., Dromart, G., Reboulet, S., Grandjean, P., 2003. Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18, 1029 (doi: 10.1029/2002PA000823).
- Reynard, B., Lécuyer, C., Grandjean, P., 1999. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem. Geol. 155, 233–241.
- Roth, P.H., 1986. Mesozoic palaeoceanography of the North Atlantic and Tethys Oceans. In: Summerhayes, C.P., Shackleton, N.J. (Eds.), North Atlantic Palaeoceanography. Spec. Publ.-Geol. Soc., pp. 299–320.
- Saito, T., Van Donk, J., 1974. Oxygen and carbon isotope measurements of late cretaceous and early tertiary foraminifera. Micropaleontology 20, 152–177.
- Scotese, C.R., Gahagan, L.M., Larson, R.L., 1988. Plate tectonic reconstructions of the cretaceous and cenozoic ocean basins. Tectonophysics 155, 27–48.
- Shields, G., Stille, P., 2001. Diagenetic constraints on the use of Ce anomalies as paleoseawater redox proxies: an isotopic and REE study of Cambrian phosphorites. Chem. Geol. 175, 29–48.
- Stille, P., Steinmann, M., Riggs, S.R., 1996. Nd isotopic evidence for the evolution of paleocurrents in the Atlantic and Tethys Oceans during the past 180 Ma. Earth Planet. Sci. Lett. 144, 9–19.
- Tappan, H., Loeblich, A.R., 1973. Evolution of the oceanic plankton. Earth Sci. Rev. 9, 207–240.
- Wright, J., Seymour, R.S., Shaw, H.F., 1984. REE and Nd isotopes in conodont apatite: variations with geological age and depositional environment. In: Clarck, D.L. (Ed.), Conodont Biofacies and Provincialism. Spec. Pap.-Geol. Soc. Am., vol. 196, pp. 325–340.
- Wright, J., Schrarder, H., Holser, W.T., 1987. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim. Cosmochim. Acta 51, 631–644.

102