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INTRODUCTION

Cycling of redox-sensitive elements such as Fe is affected by not only ambient Eh-
pH conditions, but also by a signifi cant biomass that may derive energy through changes 
in redox state (e.g., Nealson 1983; Lovely et al. 1987; Myers and Nealson 1988; Ghiorse 
1989). The evidence now seems overwhelming that biological processing of redox-sensitive 
metals is likely to be the rule in surface- and near-surface environments, rather than the 
exception. The Fe redox cycle of the Earth fundamentally begins with tectonic processes, 
where “juvenile” crust (high-temperature metamorphic and igneous rocks) that contains Fe 
which is largely in the divalent state is continuously exposed on the surface. If the surface is 
oxidizing, which is likely for the Earth over at least the last two billion years (e.g., Holland 
1984), exposure of large quantities of Fe(II) at the surface represents a tremendous redox 
disequilibrium. Oxidation of Fe(II) early in Earth’s history may have occurred through 
increases in ambient O2 contents through photosynthesis (e.g., Cloud 1965, 1968), UV-
photo oxidation (e.g., Braterman and Cairns-Smith 1987), or anaerobic photosynthetic Fe(II) 
oxidation (e.g., Hartman 1984; Widdel et al. 1993; Ehrenreich and Widdel 1994). Iron oxides 
produced by oxidation of Fe(II) represent an important sink for Fe released by terrestrial 
weathering processes, which will generally be quite reactive. In turn, dissimilatory microbial 
reduction of ferric oxides, coupled to oxidation of organic carbon and/or H2, is an important 
process by which Fe(III) is reduced in both modern and ancient sedimentary environments 
(Lovley 1991; Nealson and Saffarini 1994). Recent microbiological evidence (Vargas et al. 
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1998), together with a wealth of geochemical information, suggests that microbial Fe(III) 
reduction may have been one of the earliest forms of respiration on Earth. It therefore seems 
inescapable that biological redox cycling of Fe has occurred for at least several billion years 
of Earth’s history.

Signifi cant Fe isotope variations in nature are generally restricted to relatively low-
temperature systems, including hydrothermal fl uids and chemically precipitated minerals 
(Beard and Johnson 1999; Beard et al. 1999; Zhu et al. 2000; Bullen et al. 2001; Sharma et al. 
2001; Beard et al. 2003b; Johnson et al. 2003; Matthews et al. 2004). Experiments investigating 
metabolic processing of Fe have shown that measurable Fe isotope fractionations are produced 
during dissimilatory Fe(III) reduction by bacteria (Beard et al. 1999, 2003a; Icopini et al. 
2004; Johnson et al. 2004a), as well as anaerobic photosynthetic Fe(II) oxidation (Croal et 
al. 2004). In addition, the role of organic ligands in promoting mineral dissolution has been 
investigated in experiments (Brantley et al. 2001, 2004). Iron isotopes may also be fractionated 
in abiologic systems, including ion-exchange chromatography (Anbar et al. 2000; Roe et al. 
2003), abiotic precipitation of ferric oxides or oxyhydroxides (Bullen et al. 2001; Skulan et 
al. 2002), and sorption of aqueous Fe(II) to ferric hydroxides (Icopini et al. 2004). The largest 
abiotic fractionations in experiment have been measured between Fe(III) and Fe(II) species in 
solution, and both kinetic (Matthews et al. 2001) and equilibrium (Johnson et al. 2002; Welch 
et al. 2003) fractionations have been observed. 

In this chapter we review some of the major pathways of biological Fe metabolism, 
and discuss experimental studies that have investigated Fe isotope fractionations in several 
systems. We largely focus on the results from experiments because our goal is to understand 
Fe isotope fractionations at a mechanistic level. We fi nd that experimental results refl ect both 
kinetic and equilibrium effects, sometimes in the same experiment, making it important to 
scale laboratory results to the kinetic realm of natural environments. An important concept 
that we develop is consideration of the residence time of Fe in the various reservoirs involved 
in biological processing of Fe relative to the timescales of isotopic exchange; this, in addition 
to evaluating the isotopic mass balance in a system, form the underpinnings for understanding 
the measured Fe isotope fractionations in experimental studies. We compare Fe isotope 
fractionations that are produced in abiologic and biologic systems, looking to situations where 
isotopic variations produced by biochemical cycling of Fe is likely to be found in nature. 
Throughout the chapter, we highlight some areas of future research that are critical to our 
understanding of Fe isotope geochemistry and its uses in tracing biogeochemical cycling of 
Fe.
Nomenclature

We discuss Fe isotope variations using standard δ notation, in units of per mil (parts per 
1000, or ‰):
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where 56Fe/54FeBULK EARTH is defi ned by a wide variety of terrestrial and lunar igneous rocks 
that have δ56Fe = 0.00 ± 0.05‰ (Beard et al. 2003a). Data from different laboratories may be 
compared using the IRMM-14 standard, which on the Bulk Earth scale defi ned above, has a 
δ56Fe value of −0.09‰ (Beard et al. 2003a). Other notations are used in the literature, and the 
reader is referred to the previous chapter for a detailed discussion (Chapter 10A, Beard and 
Johnson 2004). When describing Fe isotope fractionations between coexisting phases A and 
B, we follow the traditional defi nitions for the isotope fractionation factor αA-B, which, in the 
case of Fe, is defi ned as:
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Note that αA-B may refl ect either kinetic or equilibrium isotope partitioning between phases A 
and B. As discussed in the previous chapter, αA-B for 56Fe/54Fe ratios typically varies between 
0.997 and 1.003 (Chapter 10A; Beard and Johnson 2004). In general, we will describe isotopic 
fractionations using ∆A-B, following standard defi nitions:

 ∆A-B A B A-BFe Fe= − ≈δ δ α56 56 310 ln  (3)
Given the range in Fe isotope compositions measured so far, use of the approximation ∆A-B to 
describe isotopic fractionations introduces an error of at most 0.02‰, which is not signifi cant 
relative to analytical uncertainties. 

BIOLOGICAL PROCESSING OF IRON

Detailed understanding of the pathways by which biological processing of Fe occurs is 
required before we may identify the potential steps in which Fe isotope fractionation may 
be produced. Organisms process Fe in three general ways: (1) lithotrophic or phototrophic 
metabolism, where Fe(II) acts as an electron donor for energy generation and/or carbon 
fi xation (e.g., Emerson 2000; Straub et al. 2001); (2) dissimilatory Fe(III) reduction, where 
Fe(III) acts as an electron acceptor for respiration (e.g., Nealson and Saffarini 1994); and 
(3) assimilatory Fe metabolism, which involves uptake and incorporation into biomolecules 
(e.g., Lowenstam 1981) (Table 1). For lithotrophic, phototrophic, and dissimilatory Fe 
metabolism, electron transfer occurs between the cell and Fe that is bound to the cell surface or 
incorporated in the outer membrane. Bacteria may cycle Fe through valence changes when it is 
energetically favorable for them to do so, and where they are able to out-compete abiotic redox 
reactions and other metabolic pathways that would naturally occur under specifi c conditions. 
For example, photosynthetic Fe(II) oxidation is generally restricted to anaerobic environments 
because high ambient O2 contents would convert aqueous Fe(II) to ferric oxides at a rate that 
is substantially faster than oxidation by bacteria.
Fe(II) oxidation

Aqueous Fe(II) is common in many subaerial and submarine hot springs, and mid-ocean 
ridge hydrothermal activity likely provided a large source of soluble and reactive Fe(II) to 
the ancient oceans (e.g., Ewers 1983; Bau et al. 1997; Sumner 1997). Terrestrial weathering 
in the Archean, if it occurred under conditions of low atmospheric O2 (e.g., Holland 1984), 
would have provided additional sources of soluble Fe(II). Photosynthesis, which may or may 
not involve a direct role for Fe, is likely to have been a major process for oxidizing Fe(II) over 
Earth’s history. Molecular evidence suggests that anoxygenic photosynthesis evolved quite 
early in Earth’s history (e.g., Xiong et al. 2000), although fi nding defi nitive morphologic or 
isotopic biomarkers in the rock record that would indicate the existence of photosynthesis or 
cycling of elements by bacteria in the Hadean or Early Archean has been challenging (e.g., 
Schopf 1993; Mojzsis et al. 1996; Eiler et al. 1997; Brasier et al. 2002; Fedo and Whitehouse 
2002; Schopf et al. 2002).

Modern layered microbial communities provide a view into biochemical redox cycling. 
Oxidation of Fe(II) through high O2 contents generated by cyanobacteria generally occurs in 
the top most (photic) portions of microbial mats. The upper, near-surface layers of microbial 
mats that are rich in cyanobacteria are commonly underlain by purple and green anoxygenic 
photosynthetic bacteria that thrive in the IR photic spectra (Stahl et al. 1985; Nicholson 
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et al. 1987); if atmospheric O2 contents were low early in Earth’s history, anoxygenic 
photosynthetic bacteria likely thrived on the surface of layered microbial communities. 
Although ferric oxide precipitates formed by cyanobacterial activity would not be directly 
related to metabolic processing of Fe, anoxygenic photosynthetic bacteria would derive 
energy from Fe(II) oxidation. It is expected that geochemical cycling of Fe in the upper 
layers of layered microbial communities will be dominated by Fe(II) oxidation, both in the 
presence and absence of oxygen, where Fe(II) may be supplied by the sediment substrate 
through dissolution of silicates, carbonates, or sulfi des. In the case of mats associated with 
thermal springs, or in shallow marine settings, dissolved Fe(II) may be supplied by thermal 
or upwelling marine waters. The magnitude of visible radiation, oxygen gradients, and iron 
supply would be among some of the factors that govern the rate of ferric oxide deposition in 

Table 1.  Biogeochemical cycles for Fe.

Metabolic pathways/organisms
Electron 
donor/

acceptor
Oxygen 
levels Product

Fe(II) oxidation

Photosynthesis

Cyanobacteria H2O (donor) oxygenic Ferric oxide 
and hydroxide 
precipitation due to 
high ambient O2.

Phototrophic Fe(II) oxidation

“Purple bacteria” (e.g., 
Rhodomicrobium)

“Green bacteria” (e.g., Chlorobium)

Fe(II) (donor) anaerobic Ferric oxide 
and hydroxide 
precipitation under 
anoxic conditions.

Chemolithotrophs

Acidophiles (e.g., Thiobacillus) oxygenic (low 
pH)

Ferric oxide 
and hydroxide 
precipitation.

Neutrophiles (e.g. Gallionella, 
ES1/ES2/PV1, TW2)

oxygenic 
(neutral pH)

Aqueous Fe(III).

Nitrate reduction NO3
− (acceptor) anaerobic (in 

dark)
Aqueous Fe(III); 
Ferric oxide 
and hydroxide 
precipitation.

Dissimilatory Fe(III) reduction

Shewanella; Geobacter; many others Fe(III) 
(acceptor)

Aqueous 
Fe(II), FeCO3, 
CaFe(CO3)2, Fe3O4, 
FeOOH.

Assimilatory Fe metabolism Fe biomolecules 
(siderophores, 
ferritin); magnetite 
(magnetotactic 
bacteria).
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layered microbial communities (e.g., Pierson et al. 1999; Pierson and Parenteau 2000). The 
primary products of Fe(II) oxidation are ferric oxides or oxyhydroxides, and this process may 
provide a source of oxidants that may be exploited by anaerobic Fe(III)-reducing bacteria. 

The importance of anaerobic photosynthetic Fe(II)-oxidation by bacteria was highlighted 
by Widdel et al. (1993), and these organisms may have played a major role in formation of 
ferric iron deposits in the absence of an oxygenated atmosphere. Experimental studies have 
used a variety of Fe(II) species as the electron donor, including FeCO3, FeS, and FeSO4, 
suggesting that these organisms may utilize a wide variety of Fe(II) sources. Some purple 
(non-sulfur) bacteria, such as Rhodomicrobium vannielli, become encased in ferric oxides, 
which ultimately limits their growth, and this has been taken as evidence that Fe(II) oxidation 
is a “side activity” in some cases (Heising and Schink 1998). In contrast, Fe(II)-oxidizing 
green bacteria such as Chlorobium ferrooxidans appear to precipitate ferric oxides that fall 
away from the cell and form ferric oxide deposits outside the cell region (Heising et al. 1999). 
Some Fe(III) may remain in solution, possibly bound by “iron solubilizing compounds” that 
are postulated to be excreted by the cells (Straub et al. 2001), although this hypothesis has not 
been confi rmed in recent experimental studies (Kappler and Newman 2004).

Several other pathways for bacterially-related Fe(II) oxidation exist. In both circumneutral 
and low-pH hydrothermal systems, chemolithotrophic iron-oxidizing microorganisms may 
thrive under aerobic conditions (e.g., Emerson 2000; Ehrlich 1996). In addition, Fe(II)-
oxidizing metabolism that involves NO3

− as the terminal electron acceptor may occur in the 
absence of light (e.g., Straub et al. 2001). Nitrate-reducing bacteria may grow with or without 
Fe(II) as the electron donor where other compounds such as acetate may supply electrons (e.g., 
Straub et al. 1996). Although it is possible that anaerobic nitrate-reducing bacteria may have 
been a globally important means by which Fe(II) oxidation occurred in dark conditions in 
the absence of photosynthesis (e.g., Benz et al. 1998; Straub et al. 1996, 2001), it is not clear 
where the abundant nitrate needed for this process would come from. 
Fe(III) reduction

Dissimilatory reduction of ferric oxide/hydroxide minerals such as hematite, goethite, 
and ferrihydrite occurs by a number of pathways (e.g., Lovley 1987; Nealson and Myers 
1990). The occurrence of reductase components such as c-type cytochromes or proteins 
in the outer cell membranes (e.g., Gaspard et al. 1998; Magnuson et al. 2000; Myers and 
Myers 1993, 2000; Beliaev et al. 2001; DiCristina et al. 2002), although debated for some 
species (Seeliger et al. 1998; Lloyd et al. 1999), has been taken as evidence that direct 
contact between microorganisms and ferric oxide substrates is required for Fe(III) reduction. 
Experiments in which ferric substrates were physically isolated from the cells support the 
apparent requirement of direct contact for the strict anaerobes Geobacter sulfurreducens 
and Geobacter metallireducens (e.g., Lloyd et al. 1999; Nevin and Lovley 2000, 2002a,b). 
A number of workers, however, have proposed that Fe(III) may be solubilized prior to 
reduction (by Fe(III) chelating compounds) or reduced by redox-active electron shuttle 
compounds such as excreted quinones, phenazines, or natural humic substances (e.g., Lovley 
et al. 1996; Newman and Kolter 2000; Hernandez and Newman 2001; Shyu et al. 2002; 
Hernandez et al. 2004), raising the possibility that direct contact between microorganism and 
ferric iron substrate may not be required in all cases. Although the energy required to secrete 
large quantities of chelators or electron shuttle compounds may be an issue, many natural 
groundwater systems that are rich in organic carbon are also rich in humic substances that 
may act as shuttle compounds (e.g., Nevin and Lovley 2002b). Experiments in which the 
ferric substrate was physically isolated from the cells (Nevin and Lovley 2002a,b), as well as 
those which used adhesion-defi cient strains of Shewanella algae, where physical attachment 
of cells to ferric iron substrate was signifi cantly reduced as compared to other strains (Caccavo 
et al. 1997; Caccavo and Das 2002), have shown that ferric oxyhydroxide may be reduced 



Johnson, Beard, Roden, Newman & Nealson364

by some species of bacteria without physical contact. Using genetics to knock out fl agellar 
biosynthesis, Dubiel et al. (2002) also showed that attachment does not appreciably affect 
Fe(III)-reduction rates. Although ferric oxyhydroxides have been found inside the cell, it 
remains unclear how common this may be and what role such intracellular minerals may play 
in dissimilatory Fe(III) reduction (Glasauer et al. 2002).

In addition to production of aqueous Fe(II) under anaerobic conditions, the end-products 
of dissimilatory Fe(III)-reduction may include Fe carbonates (siderite and ankerite) and 
magnetite (e.g., Lovley et al 1987; Roden and Zachara 1996; Fredrickson et al. 1998; Roden 
et al. 2002; Zachara et al. 2002). Goethite and lepidocrocite may also be produced where 
aqueous Fe(II) catalyzes phase transformation of poorly crystalline ferric hydroxides such 
as ferrihydrite (Hansel et al. 2003; Glasauer et al. 2003). Banded iron formations (BIFs) 
have been proposed as repositories for magnetite and Fe carbonate that may have formed 
through dissimilatory Fe(III) reduction (Nealson and Myers 1990). In addition, magnetite 
produced by magnetotactic bacteria has been proposed to occur in rocks spanning ages from 
the Proterozoic (Gunfl int Formation) to modern sediments (e.g., Frankel et al. 1979, 1981; 
Chang and Kirschvink 1985; Chang et al. 1989). The rate of magnetite production on a per 
cell basis by dissimilatory Fe(III)-reducing bacteria is ~5,000 times greater than that at which 
magnetotactic bacteria produce magnetite (Konhauser 1998). Nevertheless, despite the vastly 
more rapid rate of magnetite production by dissimilatory Fe(III)-reducing bacteria, with a few 
notable exceptions (Karlin et. al. 1987; Eggar-Gibbs et al. 1999), production of magnetite by 
these organisms is relatively rare in modern environments.

Iron carbonate is a common early diagenetic phase in sedimentary rocks and occurs as 
either disseminated fi ne-grained authigenic material in sandstones and mud-rocks or as large 
(cm-sized or greater) concretions in mudrocks (Mozley 1989; Mozley and Wersin 1992; 
Mozley and Burns 1993; Macquaker et al. 1997; Uysal et al. 2000; Raiswell and Fisher 2000). 
In general, Fe carbonate is formed in anoxic diagenetic environments where the rate of Fe(III) 
reduction is greater than that of bacterial sulfate reduction (Pye et al. 1990; Coleman 1993). 
The growth of siderite apparently requires biotic mediation to provide the source of both 
Fe(II) and carbonate through oxidation of organic carbon coupled to dissimilatory Fe(III) 
reduction (Coleman 1993; Coleman et al. 1993). Authigenic Fe carbonates typically have 
much higher Mg and Ca contents than can be accommodated if they formed in thermodynamic 
equilibrium at low temperatures (e.g., Pearson 1974; Curtis et al. 1986; Mozley and Carothers 
1992; Laverne 1993; Baker et al. 1995; Hendry 2002). These metastable compositions are 
signifi cantly different as compared to Fe(II)-carbonates in, for example, BIFs, which tend 
to have compositions that are similar to those expected for formation under equilibrium 
conditions (Machamer 1968; Butler 1969; Floran and Papike 1975; Klein 1974, 1978; Lesher 
1978; Klein and Gole 1981; Klein and Beukes 1989; Beukes and Klein 1990). The apparently 
non-equilibrium major-element compositions of many authigenic carbonates suggests that 
such compositions may identify biologically-mediated carbonate precipitation, and may 
represent a “biomarker” in and of themselves.
Implications for Fe isotope fractionations

Phase transformations that occur through biological processing of Fe may produce isotopic 
fractionations that are distinct from those in “equivalent” abiologic systems if organic ligands 
produce distinct isotopic effects, or if biology produces kinetic or equilibrium conditions or Fe 
products that are not commonly found in abiologic systems. For example, of the four pathways 
for Fe(II) oxidation illustrated in Figure 1, those which involve Fe(II) as the electron donor (e.g., 
anoxic photosynthetic Fe(II) oxidation) are most likely to be intimately bound to the cell so that 
electron transfer is facilitated, raising the possibility that Fe isotope fractionations produced 
by these pathways may be distinct from those where oxidation occurs indirectly, such as 
through oxygenic photosynthesis. The large number of different pathways and related reactions 
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involved in reduction of ferric hydroxides listed in Table 2 highlights the many opportunities 
to produce Fe isotope fractionations among the various reduction products, including aqueous 
Fe(II), sorbed Fe, and a wide variety of solid products. If some of these components are 
isotopically distinct and unlikely to be present in the absence of biology, it is possible to 
produce isotopic variations that may be confi dently ascribed to biochemical cycling. Finally, 
the diverse pathways involved in Fe biochemical cycling may record distinct fractionations 
under equilibrium and kinetic conditions, requiring consideration of the rates of biochemical 
processing of Fe in laboratory experiments as compared to those expected in nature.

ISOTOPIC FRACTIONATION DURING DISSOLUTION
AND PRECIPITATION OF MINERALS

Dissolution of minerals, such as may occur during dissimilatory Fe(III) reduction, or 
precipitation of new biominerals during reductive or oxidative processing of Fe, represent 
important steps in which Fe isotope fractionation may occur. We briefl y review several 
experiments that have investigated the isotopic effects during mineral dissolution, as well 
as calculated and measured isotopic fractionations among aqueous Fe species and in fl uid-
mineral systems. In some studies, the speciation of aqueous Fe is unknown, and we will 
simply denote such cases as Fe(III)aq or Fe(II)aq.
Congruent dissolution

The term “congruent dissolution” often refers to a process by which a mineral is dissolved 
in stoichiometric proportions into solution without formation of a new solid phase, and this 
usage is convenient for isotopic studies because it constrains the phases or components that may 
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Figure 1. Schematic diagram of Fe redox cycling through biological processes. A large number of 
pathways are involved in dissimilatory Fe(III) reduction, as listed in Table 2. Processes that occur under 
oxic conditions are placed near the upper part of the diagram, and those that occur under anoxic conditions 
are placed in the lower part of the diagram. Major lithologic sources of Fe are noted for high and low 
oxygen environments. 
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develop isotopically distinct compositions. Congruent dissolution may occur through complex 
interactions with heterogeneous surfaces and boundary layers (e.g., Jeschke and Dreybrodt 
2002), but may be satisfactorily described as a progressive stripping of layers or sections from 
the mineral surface. If the mineral is isotopically homogeneous, no isotopic contrast should 
exist between solid and dissolved components. Although preferential extraction of one isotope 
might be envisioned to occur within surface monolayers or other surface sections, such a process 
would create an excess of the excluded isotope as successive surface sections are removed, 
balancing the overall isotope composition of the dissolved material to be equal to that of the 
bulk solid. Partial dissolution of µm- to 100 nm-size hematite crystals in HCl confi rms that no 
measurable Fe isotope fractionation occurs during congruent partial dissolution (Fig. 2). The 
low pH of these experiments ensured that Fe(III)aq does not precipitate and form an additional 
phase that might have a different isotopic composition than Fe in solution. In the experiments 
illustrated in Figure 2, partial dissolution of hematite in HCl likely dissolves complete surface 
sections of hematite crystals, and is distinct from a leaching process that selectively removes 
a specifi c element from a portion of the crystal in non-stoichiometric proportions; the later 
process would be considered incongruent dissolution, and for the purposes of characterizing 
isotopically distinct reservoirs, this may be considered a new phase. In addition to the studies 
of hematite dissolution, Brantley et al. (2004) investigated abiotic dissolution of goethite in 
the presence of the siderophore desferrioxamine mesylate (DFAM), and found that dissolution 
occurred congruently, where the isotopic composition of Fe in solution was identical to that of 
the ferric hydroxide starting material.

Incongruent dissolution
Signifi cant Fe isotope fractionations may be produced during incongruent dissolution in 

the presence of organic ligands (Brantley et al. 2001, 2004). Dissolution of hornblende by 
siderophore-producing bacteria was shown to be enhanced relative to abiologic dissolution, 
and was interpreted to refl ect preferential extraction of Fe from the mineral, accompanied by 
creation of an Fe-depleted layer in at least the upper 100 Å of the mineral surface (Kalinowski 
et al. 2000; Liermann et al. 2000). Because preferential mobilization of elements occurred, 
as shown by changing Fe/Si and Fe/Al ratios, the Fe-depleted layer represents a new phase. 
The extent of Fe leaching and apparent isotopic shift for aqueous Fe increased with increasing 
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Figure 2. Isotopic effects of congruent partial dissolution of hematite. Within the 2σ error of the analyses, 
there is no signifi cant Fe isotope fractionation over wide ranges of percent dissolution. Gray bars denote 
bulk composition (2σ) of the two hematite grains. Data from Skulan et al. (2002) and Beard et al. 
(2003a).
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ligand association constant for abiotic experiments, where the largest effects (~0.3‰) were 
observed for the siderophore DFAM (Fig. 3). Larger isotopic contrasts between aqueous Fe 
and the initial hornblende were observed for leaching in bacterial cultures, on the order of 0.5 
to 0.8‰ (Fig. 3).

Brantley et al. (2001) interpret Fe isotope fractionation to occur during hydrolysis of 
surface complexes, and to refl ect a kinetic isotope fractionation that is dependent upon the 
strength of the organic ligand. The isotopic fractionations measured in the experiments of 
Brantley et al. (2001) refl ect those produced during very small extents of dissolution or 
leaching, where at least 0.037% dissolution/leaching occurred based on estimation of the Fe 
content of the hornblende and reported Si/Al and Fe/Si ratios. Assuming spherical grains of 
an average diameter of 340 µm (Brantley et al. 2001), the minimum thickness of the leached 
layer may be calculated at ~210 Å. Based on isotopic mass-balance, the δ56Fe value of the 
Fe-depleted layer would be relatively high, where the highest values would be associated with 
a relatively thin leached layer, and rapidly decrease if the thickness of the leach layer was 
greater. If the leached layer was 250 Å thick, its δ56Fe value, based on mass balance, should be 
almost 5‰ higher that that of the Fe in solution; at 500 Å thickness, the leached layer should 
be ~1.5‰ higher than Fe in solution.

In a more detailed study, Brantley et al. (2004) observed non-stoichiometric dissolution 
of hornblende in abiotic experiments using acetate, oxalate, citrate, and siderophore (DFAM), 
where the δ56Fe values of the aqueous Fe that was released became more negative in this order, 
relative to the starting material. The isotopic fractionations were modeled as a kinetic process 
during transport of Fe through the surface leached layer. This model predicts that signifi cant 
changes in the δ56Fe value for aqueous Fe will occur before the system reaches steady-state 
conditions during dissolution. 
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Figure 3. Effects on Fe isotope compositions of partial dissolution of hornblende in the presence of various 
organic ligands, as well as Streptomyces and Arthrobacter bacteria (identifi cation of Arthrobacter sp. has 
been revised to Bacillus sp.; S. Brantley, pers. commun. 2004). For abiotic experiments, Fe isotope data 
are plotted relative to the association constant (Kassoc) for the indicated ligands. Fe isotope composition of 
starting hornblende shown in gray bar. Gray circles refl ect Fe isotope composition of residual hornblende 
(error bars noted), and gray boxes denote range in δ56Fe values measured for aqueous Fe (error bars shown) 
after partial dissolution. Partial dissolution occurs incongruently in these experiments, accompanied by 
formation of an Fe-poor leached layer in the hornblende. Data from Brantley et al. (2001).
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The processes by which Fe isotope fractionations are associated with mineral dissolution 
and leaching by organic molecules, including those produced by bacteria, remains little 
explored, but, as Brantley et al. (2001, 2004) point out, are important components to 
understanding Fe isotope variations in natural weathering systems. At very small extents of 
dissolution or leaching (<0.1%; Brantley et al. 2001), it is diffi cult to constrain the reservoirs 
involved in producing isotopic fractionations because the Fe reservoirs that are complementary 
to the isotopically light aqueous Fe are diffi cult to identify, let alone analyze. Partial extractions 
of labile Fe components from soils show that these components may have δ56Fe values that are 
signifi cantly lower than the bulk solid, which is interpreted to refl ect the effects of incongruent, 
non-stoichiometric dissolution of silicate minerals by Fe-organic complexes (Brantley et al. 
2001, 2004). These results indicate that soils may contain isotopically variable components 
when soil formation involves organic substances that dissolve minerals incongruently. In 
terms of large-scale Fe cycling, it seems most likely that the isotopic variations of these 
labile components will be seen in the dissolved load of Fe in hydrologic systems; they are not 
apparently recorded in the bulk clastic detritus of eolian and fl uvial systems, given the isotopic 
homogeneity of bulk clastic material (Beard et al. 2003b).
Isotopic fractionations among aqueous species and minerals in abiologic systems

Signifi cant isotopic fractionations are observed among several Fe-bearing aqueous 
species and solid phases in abiologic systems that are pertinent to biochemical processing 
of Fe (Tables 1 and 2). Some of the largest Fe isotope fractionations occur between oxidized 
and reduced species (Polyakov and Mineev 2000; Schauble et al. 2001), where, for example, 
the experimentally determined equilibrium isotope fractionation between [FeIII(H2O)6]3+ and 
[FeII(H2O)6]2+ (∆Fe(III)aq–Fe(II)aq) at room temperature is +2.9‰ (Johnson et al. 2002; Welch et al. 
2003). The equilibrium isotope fractionation between [FeIII(H2O)6]3+ and Fe2O3 (hematite) is 
estimated to be ~ −0.1‰ at room temperature (Skulan et al. 2002). Experimental determination 
of the equilibrium isotope fractionation between [FeII(H2O)6]2+ and FeCO3 (siderite) is estimated 
to be +0.5‰ at room temperature (Wiesli et al. 2004). It remains unknown if the large isotopic 
effects that are predicted for Ca, Mg, and Mn substitution into Fe carbonates (Polyakov and 
Mineev 2000), up to 1.5‰ at room temperature, will be confi rmed by experimental studies 
in abiologic systems. Isotopic fractionation between [FeII(H2O)6]2+ and Fe3O4 (magnetite) is 
predicted to be −4.2‰ at room temperature under equilibrium conditions, but this has yet 
to be confi rmed experimentally; experimental confi rmation of predicted fractionations is 
important, because in many cases the predicted Fe isotope fractionations based on theory have 
been shown to be signifi cantly different from those determined by experiment. The reader is 
referred to the previous chapter (Chapter 10A; Beard and Johnson 2004) for a more detailed 
discussion of predicted and measured Fe isotope fractionation factors in abiologic systems. We 
will return to the fractionations in abiologic systems in later sections.

ISOTOPIC MASS BALANCE

In complex systems that involve multiple Fe-bearing species and phases, such as those 
that are typical of biologic systems (Tables 1 and 2), it is often diffi cult or impossible to 
identify and separate all components for isotopic analysis. Commonly only the initial starting 
materials and one or more products may be analyzed for practical reasons, and this approach 
may not provide isotope fractionation factors between intermediate components but only 
assess a net overall isotopic effect. In the discussions that follow on biologic reduction and 
oxidation, we will conclude that signifi cant isotopic fractionations are likely to occur among 
intermediate components.

We illustrate some examples of the differences between apparent (measured) Fe isotope 
fractionations between starting materials and a single product and those that are postulated 
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to occur among intermediate products in Figure 4. In calculating the isotopic mass balance 
during mineral leaching (Brantley et al. 2001), a leached layer thickness of 500 Å is assumed 
in calculating the δ56Fe value for the leach layer, which results in a calculated fractionation 
between the leached layer and Fe(II)aq of +1.5‰ (Fig. 4). The correlation of increasing percent 
leaching with increasing ligand association constant (Kassoc) observed by Brantley et al. (2001, 
2004) indicates that the isotopic mass balance between the leached layer and aqueous Fe was 
likely to have changed. Brantley et al. (2004) interpret their data to refl ect kinetic fractionation 
during transport through a leached layer. It is, however, possible that the observed correlation 
between δ56Fe values for Fe(II)aq and Kassoc (Fig. 3) in part refl ects changes in the isotopic mass 
balance of the leached layer and aqueous Fe rather than a kinetic isotope fractionation that is 
dependent upon Kassoc, and demonstrates the importance of assessing isotopic mass balance in 
experiments. 

In the sorption experiments of Icopini et al. (2004), the measured isotopic contrast 
between Fe(II)aq and the goethite starting material was −0.8‰ after Fe(II) had sorbed to the 
surface over 24 hours; in this case, the isotopic fractionation between sorbed Fe(II) and Fe(II)aq 
is not the 0.8‰ measured difference, but is approximately +2.1‰ based on an inferred δ56Fe 
value for the sorbed component as calculated from Fe mass balance (Fig. 4), as was noted in 
that study. Measured differences in Fe isotope compositions between ferric oxide/hydroxide 
and Fe(II)aq during dissimilatory Fe(III) reduction and photosynthetic Fe(II) oxidation have 
been proposed to refl ect fractionation between soluble Fe(II) and Fe(III) species, where the 
soluble Fe(III) component is postulated to be bound to the cell and is not directly measured 
(Beard et al. 2003a; Croal et al. 2004). In the case of dissimilatory Fe(III) reduction, assuming 
a static model simply for purposes of illustration, if 50% of the Fe in a pool that is open to 
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Figure 4. Examples of Fe isotope mass 
balance in experimental systems that 
have studied Fe isotope fractionation in 
biological systems or those that are pertinent 
to biogeochemical processing of Fe. Dark 
gray circles refl ect measured Fe isotope 
compositions (where one component has 
been normalized to δ56Fe=0.0) Light gray 
squares refl ect calculated or inferred Fe 
isotope compositions for a component 
that is inferred from isotopic mass balance 
in the experiments, but which has not 
been analyzed directly. Data for mineral 
leaching from Brantley et al. (2001), and 
inferred δ56Fe value for leached Fe layer 
(“LL”) based on calculations described in 
the text. Data for Fe(II) sorption to goethite 
(“Goe.”) from Icopini et al. (2004), and 
inferred δ56Fe value for sorbed Fe based on 
calculations presented in that study. δ56Fe 
value for ligand-bound Fe(III) (“Fe(III)-
L”) based on discussion of dissimilatory 
Fe(III) reduction of ferric oxide/hydroxide 
(“FO”) in Beard et al. (2003a) and in the 
text, assuming a 50:50 mixture of Fe(II)aq 
and Fe(III)-L. δ56Fe values for anaerobic 
photosynthetic Fe(II) oxidation based 
on inferred soluble Fe(III) component 
(“Fe(III)-L”) as discussed in text and in 
Croal et al. (2004).
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isotopic exchange occurs as ligand-bound Fe(III) (not measured) and the remaining 50% 
exists as Fe(II)aq (measured), then the 1.3‰ measured differences in isotopic compositions 
between the ferric oxide/hydroxide starting material and Fe(II)aq may actually refl ect a +2.6‰ 
fractionation between the intermediate species of ligand-bound Fe(III) and the fi nal Fe(II)aq 
product (Fig. 4). Similarly, the differences in isotopic compositions between Fe(II)aq starting 
material and ferric hydroxide precipitate formed during anaerobic photosynthetic Fe(II) 
oxidation may in fact refl ect the combined effect of a large fractionation between ligand-
bound Fe(III) and Fe(II)aq, followed by a second fractionation between Fe(III) and the ferric 
hydroxide precipitate (Croal et al. 2004); the δ56Fe value of the ligand-bound Fe(III) in such a 
model would be quite high (Fig. 4).

ISOTOPIC FRACTIONATION PRODUCED DURING
DISSIMILATORY Fe(III) REDUCTION

Of the variety of ways in which Fe may be biologically processed (Table 1; Fig. 1), 
experimental investigation of dissimilatory Fe(III) reduction, which we will hereafter refer to 
as DIR, has received by far the most attention. Experimental studies of DIR have highlighted 
the importance of intermediate phases or species such as Fe(III) and Fe(II) surface complexes 
or poorly-crystalline solids (Table 2) to producing a range of end products. Ferrihydrite has 
been most commonly used as the terminal electron acceptor, which is often referred to as 
hydrous ferric oxide (HFO) in the biological literature, and we will follow this convention. 
More crystalline sources of electron acceptors such as hematite (Fe2O3), goethite (α-FeOOH), 
or lepidocrosite (γ-FeOOH) have been used as well. Reduction of Fe(III)-bearing clay minerals 
such as smectite is now recognized as an important component to DIR in natural systems 
(e.g., Kostka et al. 1996, 2002; Kim et al. 2004). Production of magnetite and Fe carbonates 
is readily identifi able in XRD spectra, but several non-aqueous, Fe(II)-bearing components 
that may be produced during DIR are more diffi cult to identify. Production of Fe(OH)2(s) has 
been identifi ed, as well as mixed Fe(II)-Fe(III) hydroxide, or “green rust” (Table 2), which 
may also contain carbonate ion in high-carbonate systems. Surface complexation or sorption 
of Fe(II) on oxide minerals, either ferric oxide/hydroxide starting materials or a product such 
as magnetite may represent a signifi cant repository of labile Fe(II) during DIR (Table 2). 
Fredrickson et al. (1998) demonstrated that intermediate Fe(II) and Fe(III) phases may be 
identifi ed through extraction from partially reacted HFO or reduced products in 0.5 M HCl, 
followed by careful assays of Fe(III) and Fe(II) contents.

A key component to understanding Fe isotope fractionations produced by DIR seems 
likely to be the fate of Fe(III) following dissolution of the ferric oxide/hydroxide starting 
material, given the large isotopic fractionations that occur between oxidized and reduced 
phases (Polyakov and Mineev 2000; Schauble et al. 2001; Johnson et al. 2002; Welch et al. 
2003; Anbar et al. 2004). Experiments in which the ferric substrate was isolated from contact 
with bacterial cells using Geothrix fermentans (a strict anaerobe) or Shewanella algae (a 
facultative anaerobe) did not prevent Fe(III) reduction (Nevin and Lovley 2002a,b), and 
signifi cant quantities of soluble Fe(III) were measured in these experiments. In both the G. 
fermentans and S. algae experiments, ~10% of the soluble Fe in solution existed as Fe(III)aq 
over the course of the 15–20 day experiments. The Fe(III)aq/Fe(II)aq ratio was relatively constant 
over time, including time periods when total aqueous Fe was increasing, as well as decreasing 
at later time periods when precipitation of Fe(II)-bearing phases may have occurred (Nevin and 
Lovley 2002a,b). The signifi cant quantity of Fe(III)aq in these experiments stands in contrast 
to parallel experiments using Geobacter metallireducens, which did not produce measurable 
quantities of Fe(III)aq when G. metallireducens was isolated from physical contact with the 
ferric substrate (Nevin and Lovley 2002b). It has been hypothesized that the Fe(III)aq produced 
in the G. fermentans and S. algae experiments refl ects release of electron shuttling compounds 
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and/or Fe(III) chelators (Nevin and Lovley 2002a,b). In experiments using S. algae where the 
cells were allowed free contact with the ferric substrate, however, no detectable Fe(III)aq existed 
(Johnson et al. 2004a). Nevertheless, the evidence seems to support a model where Fe(III) is 
fi rst solubilized by an organic ligand, followed by reduction and release to the ambient aqueous 
solution and/or reacted to form a solid phase, although the quantity of “soluble” Fe(III) may be 
quite variable depending upon the organism and experimental conditions.

The process of DIR may be conceptualized as a series of reactions that occur at various 
rates and produce changing pools of Fe that are able to undergo isotopic exchange to variable 
degrees. Isotopic fractionations generally occur through uni-directional processes such as 
precipitation, or through exchange between pools of an element that are open to isotopic 
exchange over the timescales of the process. Based in part on the evidence that at least some 
species of bacteria solubilize Fe(III) during DIR, Beard et al. (2003a) hypothesized that the 
−1.3‰ fractionation in 56Fe/54Fe ratios measured between Fe(II)aq and ferric oxide/hydroxide 
substrate (the electron acceptor) may primarily refl ect isotopic fractionation between pools of 
ligand-bound Fe(III) and Fe(II) that are open to isotopic exchange (Fig. 5). For the moment, 
we will ignore the effects of other reduced products such as Fe carbonate and magnetite, as 
well as the effects of Fe(II) that may be sorbed to solid phases, although these issues will be 
discussed in detail later. The fi rst stage in which Fe isotope fractionation may occur during 
DIR is upon dissolution (∆1, Fig. 5). If dissolution occurs congruently, however, no Fe isotope 
fractionation is expected, as discussed above. The second step in which isotopic fractionation 
may occur is during reduction (∆2, Fig. 5), between ligand-bound or ambient Fe(II) and soluble 
Fe(III) that is delivered to the cell via an electron shuttle or extracellular protein. It is also 
possible that isotopic fractionation may occur between ligand-bound Fe(III) and the ferric 
substrate (∆3, Fig. 5), although isotopic exchange with solids at low temperatures will be quite 
slow. Finally, isotopic fractionation may occur between Fe(II)aq and Fe(II) that is sorbed to the 
ferric substrate (∆4, Fig. 5).

When viewed in a temporal context, the model illustrated in Figure 5 implicitly predicts 
changes in the proportions of ferric substrate, ligand-bound Fe(III), and the Fe(II) product over 
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Ferric Oxide/Hydroxide Substrate

CELL

Fe(II) - LFe(II)∆2: Fe(III)LFe(III)
 - Fe(II)LFe(II)

Fe(III)-LFe(III)

∆4: Fe(II)LFe(II)
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Figure 5. Possible pathways by which Fe isotopes may be fractionated during dissimilatory Fe(III) 
reduction (DIR). Dissolution, if it occurs congruently, is unlikely to produce isotopic fractionation (∆1). If 
Fe(II) is well complexed in solution and conditions are anaerobic, precipitation of new ferric oxides (∆3) 
is unlikely to occur. Signifi cant isotopic fractionation is expected during the reduction step (∆2), possibly 
refl ecting isotopic fractionation between soluble pools of Fe(III) and Fe(II). The soluble Fe(III) component 
is expected to interact with the cell through an electron shuttle compound and/or an outer membrane 
protein, and is not part of the ambient pool of aqueous Fe. Sorption of aqueous or soluble Fe(II) to the 
ferric oxide/hydroxide substrate (∆4) is another step in which isotopic fractionation may occur. Modifi ed 
from Beard et al. (2003a).
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time as reduction proceeds. For completeness, we hypothesize that two Fe(II) components 
exist, one bound to the cell immediately after reduction, and one that accumulates in the 
ambient pool of Fe(II)aq. We therefore assume that the reduction process, where the initial 
ferric substrate is hematite (Fe2O3) or HFO/ferrihydrite (denoted as Fe(OH)3 for simplicity), 
may be described as:

 Fe2O3 or Fe(OH)3 → Fe(III)-LFe(III) → Fe(II)-LFe(II) → Fe(II)aq (4)
where the ligand-bound Fe(III) is the terminal electron acceptor (“Fe(III)-LFe(III)”; Fig. 5), and 
Fe(II) is the immediate reduced product, possibly bound to organic ligands (“Fe(II)-LFe(II)”), and 
eventually released to a larger pool of Fe(II), including Fe(II)aq. In terms of quantities that may 
be measured for their Fe isotope compositions, these would include the ferric substrate, Fe(II)aq, 
and likely Fe(II)-LFe(II) (although not a discrete phase) if this exists in the aqueous solution 
component. We assume that the Fe(III)-LFe(III) component is not represented in a sample of the 
ambient aqueous solution, but instead is closely bound to or associated with the cells. 

Fe(II) production during experiments investigating Fe isotope fractionation coupled to 
DIR generally followed a fi rst-order rate law in terms of the rate of production of total Fe(II) 
(Beard et al. 1999, 2003a; Johnson et al. 2004a). Exponential regressions of the total Fe(II) 
contents (liquid + solid) versus time for these experiments produce high R2 values (>0.95 
for all but one case), and show that the initial reduction rates are a function of substrate, cell 
densities, and growth media, varying over a factor of 300 for these studies. The proportions 
of possible phases involved in DIR may be calculated using fi rst-order kinetics, assuming a 
closed system and no initial product phases. The pertinent rate equations are:
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where we have represented the substrate as hematite and where k1, k2, and k3 are fi rst-order 
rate constants.

In this model, Fe isotope exchange is envisioned to most likely occur between “soluble” 
Fe(III) and Fe(II) components, such as Fe(III)-LFe(III) and Fe(II)-LFe(II) (Beard et al. 2003a), 
although only the Fe(II)aq component is measured. If this model is valid, a critical issue is 
whether isotopic equilibrium may be attained between these soluble pools of Fe, despite the 
changing reservoir sizes and fl uxes that occur through Equations (5)–(8). As noted in the 
previous chapter (Chapter 10A; Beard and Johnson 2004), attainment of isotopic equilibrium 
will depend upon the elemental residence time in an Fe pool relative to the time required for 
isotopic exchange. We can defi ne the residence time for Fe(III)-L, for example, using standard 
defi nitions, as:

 
τFe(III)-L

Fe(III)-L

Fe(III)-L
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M
J
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where MFe(III)-L is the total moles of Fe in the Fe(III)-LFe(III) reservoir, and JFe(III)-L is the fl ux of 
Fe through the Fe(III)-LFe(III) reservoir. Substituting the rate equations into Equation (9), we 
obtain:
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Fe(III)

2 3 Fe(III
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If we defi ne the time to reach isotopic equilibrium through isotopic exchange as tex, then we 
can expect isotopic equilibrium to be attained between [Fe(III)-LFe(III)] and [Fe(II)-LFe(II)] when:

 τFe(III)-L ex� t  (11)

It is important to note that, as discussed in the previous chapter (Chapter 10A; Beard and 
Johnson 2004), attainment of isotopic equilibrium is not related to the time required to reach 
steady-state in terms of the concentration or molar ratios of Fe in various species, such as the 
[Fe2O3]/[Fe(III)-LFe(III)] ratio. The time required to reach isotopic equilibrium (tex) has been 
determined for Fe(III)-Fe(II) exchange in dilute aqueous solutions of varying Cl− contents, and 
isotopic equilibrium is essentially complete within ~10 seconds at room temperature (Welch et 
al. 2003). It is possible that tex is signifi cantly longer if Fe(III) and/or Fe(II) are bound to strong 
organic ligands, but it seems unlikely that tex could exceed timescales of hours; this inference, 
however, needs to be confi rmed by experiments.

Assuming that k2 > k1 and k3 > k1, the system will eventually reach steady-state in terms of 
the concentration ratios of [Fe2O3]/[Fe(III)-LFe(III)] and [Fe2O3]/[Fe(II)-LFe(II)]. The time to reach 
steady-state in, for example, the [Fe2O3]/[Fe(III)-LFe(III)] ratio, may be defi ned as:

 t kSteady State =1 2
 

(12)

(Lasaga 1981), although more conservative formulations tend to be used in the short-lived 
radionuclide literature that are related to the half-life, such as:

 t n kSteady State = ( )ln 2 2  (13)

We will use Equation (13) to defi ne the time to reach steady-state, setting n = 7 because this 
provides a close match to the time required to reach steady-state in Figure 6.
Calculation of Fe isotope compositions

Once temporal changes in the relative proportions of the species Fe2O3, Fe(III)-LFe(III), 
Fe(II)-LFe(II), and Fe(II)aq are computed, the δ56Fe values for the various components may be 
defi ned by a simple mass-balance equation:

 δ δ δ δ δSys Hem Hem Fe(III)-L Fe(III)-L Fe(II)-L Fe(II)-L Fe(= + + +X X X III)aq Fe(II)aqX
 

(14)

where X is the mole fraction of various components, “Sys” refers to the total system, “Hem” 
refers to hematite, and “Fe(III)-L”, “Fe(II)-L”, and “Fe(II)aq” are defi ned above. Equation 
(14) assumes that the fi nal product of DIR is Fe(II)aq. We cannot use Equation (14) where the 
fi nal products are magnetite and carbonate, or where there is signifi cant quantities of surface-
sorbed Fe if these components have distinct isotopic compositions (see discussion below). We 
may, however, simplify Equation (14) because δSys = δHem, and implicit in this relation is that 
there is no Fe isotope fractionation during the dissolution step or isotopic exchange between 
hematite and aqueous Fe, as discussed above. Additionally, we defi ne the following Fe isotope 
fractionation factors:

 ∆Fe(III)L Fe(II)L Fe(III)-L Fe(II)-L− = −δ δ
  (15)

 
∆Fe(II) Fe(II)L Fe(II) Fe(II)-Laq aq− = −δ δ

 

 (16)



Isotopic Constraints on Biogeochemical Cycling of Fe 375

Initial Value

0.0

0.1

0.2

0.3

0.4

1 1 0 100
Time (Days)

0.00

0.04

0.06

0.08

0.10

0.12

%
[F

e
(I

II
)-

L
]

o
r

[F
e

(I
I)

-L
]

[Fe(II)aq]

[Fe(III)-L]

[Fe(II)-L]

[Fe(III)-L]Ex Pool

F
ra

c
[F

e
(I

II
)-

L
] E

x
P

o
o

l

τ [Fe(III)-L]

0.0

0.2

0.4

0.6

0.8

1.0

1 1 0 100
Time (Days)

0.0

2.0

4.0

6.0

8.025

20

15

10

5

102

10

1

0.0

-0.4

-0.8

-1.2

-1.6

-2.0

%
[F

e
(I

I)
a

q
]

τ [
F

e
(I

II
)-

L
]

(d
a
y
s
)

δ5
6

F
e

[F
e

(I
I)

a
q

]
(‰

)

[Fe(II)aq]

τ [Fe(III)-L]

[Fe(III)-L]Ex Pool

Initial Value

[Fe(III)-L]

k1=0.00301/d
k2/k1 = 10

t Steady-State = 161.2 d

t Steady-State = 1.612 d

103

k1=0.00301/d
k2/k1 = 1000

0.02

26.0%26.0%

0

[Fe(II)-L]

k1=0.00301/d
k2/k1 = 10

k1=0.00301/d
k2/k1 = 10

k1=0.00301/d
k2/k1 = 1000

k1=0.00301/d
k2/k1 = 1000

Measured Data

A

B

C

E

D

F

Measured Data

Figure 6. Reservoir sizes, residence times, and δ56Fe values for aqueous Fe(II), as calculated 
for DIR assuming fi rst-order rate laws. Timescale arbitrarily set to 100 days. Calculations 
based on rate constant k1 determined for a 23 day DIR experiment involving hydrous ferric 
oxide (HFO) by S. algae (Beard et al. 1999). The percent total reduction at 100 days is shown 
in the grey box on the lower right side of the lower diagrams, based on the value of k1. Parts 
A-C assume a k2/k1 ratio of 10, whereas parts D-F assume a k2/k1 ratio of 1000. As constrained 
by fi rst-order rate laws, the proportion of the intermediate products Fe(III)-L, followed by 
Fe(II)-L, increase before substantial accumulation of the fi nal Fe(II)aq product (Parts A and 
D). The fraction of Fe(III)-L in the exchangeable pool of Fe (Fe(III)-L + Fe(II)-L + Fe(II)aq) 
decreases with time, primarily due to accumulation of the Fe(II)aq end product, where the rate 
of change is a function of the k2/k1 ratio. 

Left panels (A-C): Where the k2/k1 ratio is 10, the system will not reach steady-state 
until 161.2 days, producing large changes in the residence time (τ) of Fe(III)-L; however, 
for virtually all time periods, the residence time of Fe(III)-L is several orders of magnitude 
longer than the time required for isotopic exchange, indicating that isotopic equilibrium 
will be maintained among the exchangeable pool of Fe, despite the fact that steady-state 
conditions are not attained when the k2/k1 ratio is 10. The difference in predicted δ56Fe values 
for ferrihydrite substrate and aqueous Fe(II) are similar to those measured by Beard et al. 
(1999) if the Fe(III)-L - Fe(II)-L fractionation is +2.0‰.

Right panels (D-F): For a k2/k1 ratio of 1000, the system reaches steady-state conditions 
in 1.6 days. The proportion of Fe(III)-L in the exchangeable pool is exceedingly small under 
steady-state conditions and at high k2/k1 ratios, resulting in a shift in the isotopic mass balance 
such that the predicted δ56Fe values for ferrihydrite substrate and aqueous Fe(II) are far from 
the inferred Fe(III)-L - Fe(II)-L fractionation.
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Note that Equation (15) is the parameter that is of primary interest in this discussion, and 
the ultimate goal is determining the relation between the measured δ56Fe value for Fe(II)aq 
and the true ∆Fe(III)L-Fe(II)L fractionation, which is not measured directly. Substitution of the 
fractionation factors into Equation (14) produces:

 
  Fe(II)aq Hem 

Fe(III)-L Fe(III)L-Fe(II)L Fe(II)aq-Fδ δ= −
−X ∆ ∆ ee(II)L Fe(III)L Fe(II)L

Fe(III)L Fe(II)L Fe(II)aq

X X

X X X

+( )
+ +

 
(17)

We will further assume that ∆Fe(II)aq-Fe(II)L is zero, that is, there is no Fe isotope fractionation 
between Fe(II)-LFe(II) and Fe(II)aq. This is primarily for convenience, but is equivalent to letting 
Fe(II)-LFe(II) and Fe(II)aq be the same species. Setting ∆Fe(II)aq-Fe(II)L to zero, and re-arrangement 
into measured quantities (δHem and δFe(II)aq) on the left side, produces:

 
δ δHem Fe(II)aq 

Fe(III)-L Fe(III)L-Fe(II)L

Fe(III)L Fe(I
− =

+
X

X X
∆

II)L Fe(II)aq+ X
 

(18)

Equation (18) illustrates that the measured δ56Fe value for Fe(II)aq is dependent not only on 
∆Fe(III)L-Fe(II)L, but on the proportion of Fe(III)-LFe(III) in the components that are open to isotopic 
exchange, which additionally includes Fe(II)-LFe(II) and Fe(II)aq; we will refer to these three 
components as the “exchangeable pool” of Fe in the system. We stress that the isotopic mass 
balance described by Equation (18) assumes that the ligand-bound Fe(III) component is not 
sampled in the aqueous phase component, but instead exists as a component that is bound to 
the cells.
Temporal changes in reservoir sizes and isotopic compositions

Figure 6 illustrates the proportions of Fe(III)-LFe(III), Fe(II)-LFe(II), and Fe(II)aq using 
the rate constants (k1) determined for the experiments of Beard et al. (1999). Because k2 is 
unknown, we illustrate two examples, arbitrarily setting the ratio k2/k1 to 10 and 1000. The 
system will not reach steady-state in terms of the concentration ratio [HFO]/[Fe(III)-LFe(III)] 
until 161.2 days (when k2/k1 = 10) using the criterion of Equation (13), well past the length 
of the 23 day experiment (Fig. 6). However, during the 23-day run, the residence time for 
Fe(III)-LFe(III) varies from ~1 day to ~100 days if k2/k1 = 10, which exceeds the time required for 
isotopic exchange (tex) by several orders of magnitude, even if we assume that tex is relatively 
long if strong organic ligands are involved. In the case of k2/k1 = 1000, the system will reach 
steady-state in 1.6 days, which is refl ected in establishment of a constant residence time early 
in the experiment (Fig. 6), commensurate with the invariant MFe(III)-L/JFe(III)-L ratio (Eqn. 9) 
under steady-state conditions. 

Based on Equation (18), we expect the calculated variations in the δ56Fe value for Fe(II)aq 
to be related to the fraction of Fe(III)-LFe(III) in the exchangeable pool, where the difference 
between the measured δ56Fe value for the ferric substrate and Fe(II)aq will most closely refl ect 
the isotopic fractionation between Fe(III)-LFe(III) and Fe(II)-LFe(II) as the fraction of Fe(III)-
LFe(III) in the exchangeable pool (Fe(III)-LFe(III) + Fe(II)-LFe(II) + Fe(II)aq) approaches unity; 
this condition will exist at the start of an experiment. For example, in the case of the HFO 
reduction experiment of Beard et al. (1999), the calculated fraction of Fe(III)-LFe(III) in the 
exchangeable pool varies from ~0.8 at 1 day to ~0.25 at 100 days, which corresponds to 
changes in the δ56Fe value for Fe(II)aq from −1.6‰ at 1 day to −0.5‰ at 100 days (Fig. 6). 
These calculations assume that the ∆Fe(III)L - Fe(II)L fractionation was +2.0‰, which produces 
δ56Fe values for the measured Fe(II)aq component that reasonably describe the observed data 
(Fig. 6). The variations in the relative proportions of species in the soluble Fe pool indicate that 
the measured quantity δHFO/Hem-δFe(II)aq may deviate signifi cantly from ∆Fe(III)L-Fe(II)L, preventing a 
precise estimate of the Fe isotope fractionation between Fe(III)-LFe(III) and Fe(II)-LFe(II). 
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Two important observations may be made from the calculations illustrated in Figure 
6. First, isotopic equilibrium should be maintained between Fe(III)-LFe(III) and Fe(II)-LFe(II) 
despite the generally large changes that occur in their relative proportions prior to reaching 
steady-state conditions because the residence times of Fe in the exchangeable pools are 
many orders of magnitude longer than the expected time required for isotopic exchange. The 
second observation is that the measured quantity δHFO/Hem-δFe(II)aq only lies close to the isotopic 
fractionation between Fe(III)-LFe(III) and Fe(II)-LFe(II) at low total % reaction, when the system 
is actually very far from steady-state conditions, and where the proportion of Fe(III)-LFe(III) in 
the exchangeable pool is high. If the time required for isotopic exchange is short, as expected 
for soluble components, then isotopic equilibrium will be maintained among the Fe(III)-LFe(III), 
Fe(II)-LFe(II), and Fe(II)aq components even early in the experiment. The true ∆Fe(III)L-Fe(II)L 
fractionation may be signifi cantly larger, however, than the measured differences in the δ56Fe 
values for the ferric substrate and Fe(II)aq. 
Sorption effects

Sorption of Fe(II)aq to the ferric oxide/hydroxide starting material (substrate) may 
represent a signifi cant proportion of total Fe(II) that is produced during DIR, particularly in 
the early stages of Fe(III) reduction (e.g., Burgos et al. 2002; Zachara et al. 2002). In addition, 
sorption of Fe(II)aq may occur on the surfaces of bacteria (e.g., Urrutia et al. 1998; Liu et al. 
2001; Roden and Urrutia 2002). Icopini et al. (2004) investigated Fe isotope fractionation 
upon abiotic sorption of Fe(II)aq to goethite under anaerobic conditions. Sorption occurred 
rapidly, where after 24 hours, ~39% of the initial Fe(II)aq was sorbed to goethite. Based 
on isotopic analyses of the initial FeCl2 reagent and Fe(II)aq after sorption, the Fe(II)sorbed-
Fe(II)aq fractionation calculated from mass balance was estimated at +2.1‰. These results 
are important because they suggest that sorption may play an important role in producing 
low δ56Fe values for Fe(II)aq that is produced during DIR. Icopini et al. (2004) concluded that 
a large component of the fractionation observed between Fe(II)aq and ferric oxide/hydroxide 
substrates in DIR experiments may occur by entirely abiotic means, which stands in contrast 
to the model discussed above where the major fractionation step is inferred to occur between 
ligand-bound pools of Fe(III) and Fe(II).

A different view on the role of Fe(II) sorption during DIR was presented by Johnson et al. 
(2004a), who suggested that early rapid sorption of Fe(II)aq during the initial stages of DIR is 
accompanied by signifi cant kinetic isotope fractionation, followed by approach toward isotopic 
equilibrium over longer timescales, when the Fe(II)sorbed-Fe(II)aq fractionation converges 
toward zero. Because the δ56Fe values of Fe(II)aq was correlated with Fe reduction rates (Fig. 
7), where the lowest values occurred when the major repository of Fe(II) existed as sorbed 
Fe, Johnson et al. (2004a) estimated that the initial kinetic fractionation between Fe(II)sorbed 
and Fe(II)aq during sorption was ~2‰ or larger, which is similar to that observed by Icopini 
et al. (2004). HFO was progressively converted to lepidocrocite over time in an experiment 
using Geobacter sulfurreducens in the study of Johnson et al. (2004a), such that the major 
proportion of HFO, if not all, was converted within ~16 days. The solid phase conversion 
was likely accompanied by a large reduction in surface area, which released isotopically 
heavy Fe that had been sorbed early in the experiment. At relatively low Fe reduction rates, 
the isotopic contrast between Fe(II)aq and ferric oxyhydroxide substrate approached that 
observed in longer-term experiments (Fig. 7), which Johnson et al. (2004a) inferred to refl ect 
the equilibrium fractionation between ligand-bound Fe(III) and Fe(II) and a zero fractionation 
between sorbed Fe(II) and Fe(II)aq. Johnson et al. (2004a) note that if abiotic sorption is the 
primary explanation for the low δ56Fe values observed for Fe(II)aq during DIR, as argued by 
Icopini et al. (2004), this suggests that the fractionation between any ligand-bound Fe(III) 
and Fe(II) components (“Fe(III)-LFe(III)” and “Fe(II)-LFe(II)” in Fig. 5) must be near zero, which 
seems unlikely given the major effect of redox state on Fe isotope fractionations.
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The isotopic effects of sorption may also be explored using mass-balance relations 
between sorbed and aqueous Fe. If, for example, the isotopic fractionation observed by Icopini 
et al. (2004) refl ects closed-system equilibrium exchange, the δ56Fe value of Fe(II)aq should 
be a function of the proportion of Fe sorbed (Fig. 8). The proportion of sorbed Fe(II) may 
be calculated for the DIR experiments of Beard et al. (1999, 2003a) using surface areas and 
saturation capacities from the literature (e.g., Roden and Zachara 1996, and references within), 
and these, in addition to the measured sorption from Johnson et al. (2004a), are plotted in 
Figure 8, relative to mass-balance sorption lines based on the single determination by Icopini 
et al. (2004). Although there is some uncertainty in the calculated sorption capacities for 
HFO and hematite in the experiments of Beard et al. (1999, 2003a), it seems likely that the 
proportion of sorbed Fe(II) must have been quite different among these studies, and yet all 
produced similar δ56Fe values for Fe(II)aq (Fig. 8). If the isotopic fractionations determined 
by Beard et al. (1999, 2003a) and Johnson et al. (2004a) refl ected only sorption of Fe(II)aq 
and a +2.1‰ Fe(II)Sorbed-Fe(II)aq fractionation (Icopini et al. 2004), the data should lie along 
the diagonal mass-balance lines if closed-system equilibrium fractionation describes the 
process; instead, they have a relatively constant δ56Fe values for Fe(II)aq over a wide range of 
% sorption.

The isotopic effects of sorption remain relatively unknown, with disparate interpretations 
of its signifi cance during DIR. An important avenue of future research will be to quantify 
the rates of isotopic exchange between sorbed Fe(II) and Fe(II)aq, and to investigate a range 
of ferric oxide/hydroxide substrates. Because traditional sorption experiments generally 
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Figure 7. Changes in the fractionation between Fe(II)aq and the solid ferric hydroxide substrate for a 
comparative study of DIR by G. sulfurreducens and S. algae, as a function of Fe reduction rates. Reduction 
rate plotted as decreasing to the right, which refl ects increasing time. The initial ferric hydroxide substrate 
is HFO, which undergoes phase conversion to lepidocrocite in the G. sulfurreducens experiment by the 
end of the third time sample. The decrease in ∆Fe(II)aq-Solid fractionations with decreasing Fe reduction rates 
are interpreted by Johnson et al. (2004a) to refl ect an early, large-magnitude fractionation due to kinetic 
effects upon rapid sorption of Fe(II), followed by an approach to isotopic equilibrium with time. The large 
decrease in sorption capacity during conversion of HFO to lepidocrocite that occurs in the G. sulfurreducens 
experiment is accompanied by an increase in the δ56Fe value for Fe(II)aq, producing a decrease in the 
magnitude of the ∆Fe(II)aq-Solid fractionation. The equilibrium fractionation between Fe(II)aq and ferric substrate 
is taken to be that measured in the experiments of Beard et al. (1999, 2003a), which involved much slower 
Fe reduction rates (10−1 to 10−3 % Fe(II)/day). Modifi ed from Johnson et al. (2004a).
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involve very rapid uptake from high-Fe(II) solutions (e.g., Burgos et al. 2002), which are 
conditions that are far from the very slow Fe(II) production rates that were associated with 
the DIR experiments of Beard et al. (1999, 2003a), as well as DIR in nature (e.g., Glausauer 
et al. 2003), constraining the kinetic effects of sorption will be important. If the equilibrium 
isotope fractionation between sorbed and aqueous Fe(II) is near zero as suggested by Johnson 
et al. (2004a), then a sorption term does not need to be introduced into Equations (5)–(8). If, 
however, early kinetic isotope fractionation occurs during rapid DIR, then the equations would 
need to be modifi ed, although they may still be applicable to slow rates of DIR where isotopic 
equilibrium may be approached. 
Solid products of DIR

A wide variety of solid products may form during DIR (Table 2). Magnetite readily forms 
through reaction of soluble Fe(II) that is produced during DIR with the ferric substrate (e.g., 
Lovley et al. 1987; Roden and Lovely 1993; Fredrickson et al. 1998; Zachara et al. 2002). 
G. sulfurreducens, for example, produces magnetite and siderite as primary end-products 
of synthetic HFO reduction when a bicarbonate-buffered medium is used (e.g., Caccavo et 
al. 1994; Lloyd et al. 2000). Recent studies have demonstrated that production of siderite 
occurs during HFO reduction by Shewanella putrefaciens strain CN32, without formation of 
magnetite (Fredrickson et al. 1998; Parmar et al. 2000; Roden et al. 2002). We fi rst focus on 
the results of experimental studies where a single phase was produced because of the additional 
complexities in interpreting Fe isotope fractionations where multiple solid phases are formed.
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Figure 8. Isotopic mass-balance relations between sorbed Fe(II) and fraction of Fe sorbed for abiotic 
sorption experiment of Icopini et al. (2004) and those calculated for long-term DIR experiments of Beard 
et al. (1999, 2003a) and Johnson et al. (2004a). The lowest δ56Fe value for Fe(II)aq measured by Johnson 
et al. (2004a) is shown by the vertical dashed line, which is interpreted to be a kinetic effect due to rapid 
sorption. Data normalized to a system δ56Fe value of zero to aid in comparison. Measured data for Fe(II)aq 
after sorption shown in light gray circle for study of Icopini et al. (2004), and solid diagonal lines indicate 
calculated isotopic mass balance from that study, assuming a closed-system equilibrium model. Measured 
data for Fe(II)aq from DIR studies of Beard et al. (1999, 2003a) shown in dark gray squares. Percent Fe(II) 
sorbed for experiment by Johnson et al. (2004a) is calculated from the measured total and Fe(II)aq contents; 
if calculated using measured Fe(II)aq contents and an assumed surface area of 600 m2/g and capacity of 
3×10−6 mol/g, the% sorbed Fe(II) is 83.8% instead of the 89.0% based on the measured data. Percent Fe(II) 
sorbed for the experiments of Beard et al. (1999, 2003a) calculated using measured Fe(II)aq contents and 
assuming surface areas for HFO and hematite of 600 m2/g and 5 m2/g, respectively, and capacity of 3×10−6 
mol/g. A factor of 2 change in surface area correlates with a 6% (hematite) and 17% (HFO) change in the 
% Fe(II) sorbed.
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Production of solid phases during DIR may be highly path dependent, determined by 
bacterial species and experimental conditions such as growth media and ferric substrate. 
Because formation of the solid phases during DIR is analogous to mineral synthesis 
experiments, the same uncertainties exists in interpreting measured fl uid-mineral isotope 
fractionations in terms of kinetic or equilibrium effects as are present in abiologic synthesis 
experiments (e.g., Chapter 1; Johnson et al. 2004b). For example, large crystals that formed 
during early rapid precipitation may record highly variable Fe isotope compositions because 
they may not have been in isotopic equilibrium with aqueous Fe when they formed, and may 
not fully respond to changes in the Fe isotope composition of the aqueous phase with time 
due to limited solid-state equilibration or dissolution/re-precipitation at low temperatures. 
Fine-grained crystals, or the outer portions of large crystals, however, may be closer to 
isotopic equilibrium with the aqueous phase if they are actively undergoing dissolution and 
re-precipitation, provided that such processes occurred suffi ciently slowly so as to maintain 
isotopic equilibrium. 

Calculated and measured Fe isotope fractionation factors between Fe(II)aq and magnetite 
vary between −4 and 0‰ (Fig. 9), which is a signifi cant range given the few per mil variations 
seen in chemically precipitated sediments to date (Beard and Johnson 1999; Zhu et al. 2000; 
Johnson et al. 2003; Matthews et al. 2004). The largest magnitude ∆Fe(II)-Magnetite fractionation, 
−4.2‰ (Fig. 9), is calculated from spectroscopic data, using the reduced partition function 
ratios (β factors) from Polyakov and Mineev (2000) and Schauble et al. (2001). A more 

Figure 9. Comparison of isotopic fractionations between Fe in solution (Fe(II)aq and Fe(III)aq) and magnetite 
from predictions based on spectroscopic data (Polyakov and Mineev 2000; Schauble et al. 2001), natural 
samples (Johnson et al. 2003), and experimental studies of biogenic magnetite formation (Mandernack 
et al. 1999; Johnson et al. 2004a). Error bars shown refl ect estimated uncertainties from specifi c studies; 
analytical errors for data reported for DIR by Johnson et al. (2004a) are smaller than the size of the symbol. 
Fe(II)aq–magnetite fractionations shown on left side of fi gure, and Fe(III)aq - magnetite fractionations 
shown on right side of fi gure. The measured Fe(II)aq–magnetite fractionation in the DIR study also has been 
converted to Fe(III)aq–magnetite using the Fe(III)aq–Fe(II)aq fractionation reported by Johnson et al. (2002) 
and Welch et al. (2003), so that these results may be compared to the Fe(III)aq–magnetite fractionations 
measured for magnetotactic bacteria by Mandernack et al. (1999). The results for DIR contrast strongly 
with those calculated from spectroscopic data, but just overlap those predicted using natural data, within 
the estimated uncertainties. Isotopic fractionations measured by Johnson et al. (2004a) are signifi cantly 
different, however, from those measured by Mandernack et al. (1999) for magnetotactic bacteria; the later 
also show unexplained inconsistencies between Fe(II)aq–magnetite and Fe(III)aq–magnetite fractionations. 
Adapted from Johnson et al. (2004a).
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moderate ∆Fe(II)-Magnetite fractionation of approximately −2.4‰ (Fig. 9) is calculated using 
natural samples (Johnson et al. 2003) and the Fe(II)aq β factor from Schauble et al. (2001), and 
this fractionation more closely matches that estimated to be produced during DIR (Johnson 
et al. 2004a). The Fe(II)aq - magnetite fractionation factor measured by Johnson et al. (2004a) 
during DIR is interpreted to refl ect an equilibrium isotope fractionation based on experimental 
runs that produced simple solid phase assemblages and isotopically homogeneous crystals 
as determined by partial dissolutions. The Fe isotope fractionations measured in the study 
of magnetite formation by DIR are, however, signifi cantly different from those measured for 
magnetotactic bacteria (Fig. 9; Mandernack et al. 1999). 

It is unclear if the ∆Fe(II)aq-Magnetite fractionations that were measured for magnetite formation 
by magnetotactic bacteria (Mandernack et al. 1999) refl ect equilibrium conditions because of 
inconsistencies in the Fe(II)aq–magnetite and Fe(III)aq–magnetite fractionations (Fig. 9). For 
example, Mandernack et al. (1999) report similar Fe(II)aq–magnetite and Fe(III)aq–magnetite 
fractionations, which is not at all expected if the experimental conditions refl ected equilibrium 
conditions, given the +2.9‰ fractionation between [FeIII(H2O)6]3+ and [FeII(H2O)6]2+ in 
solution (Johnson et al. 2002; Welch et al. 2003). Using the experimentally determined 
Fe(III)aq–Fe(II)aq fractionation, recalculation of the estimated equilibrium Fe(II)aq–magnetite 
fractionation measured in the study of Johnson et al. (2004a) to Fe(III)aq–magnetite produces 
∆Fe(III)-Magnetite = +1.7‰, which stands in marked contrast to that measured for three experiments 
using Fe(III)Cl3 by Mandernack et al. (1999) (Fig. 9). Calculation of ∆Fe(III)-Magnetite by this 
method assumes isotopic equilibrium exists between Fe(III)aq and magnetite, independent 
of the pathways in which isotopic equilibrium may be attained in a system that contains 
mixed valance states of Fe. Most of the magnetotactic experiments were done at 28°C, which 
produced very rapid formation of magnetite, and a possible explanation is that the measured 
isotope fractionations refl ect kinetic isotope effects.

The equilibrium ∆Fe(II)aq-Fe Carbonate fractionation for pure siderite during DIR is estimated to 
be near zero, and that for Ca-bearing Fe carbonates is ≥1‰ (Fig. 10) (Johnson et al. 2004a). In 
contrast, kinetic ∆Fe(II)aq-Fe Carbonate fractionations produced during DIR are ~1‰ higher than those 
estimated for equilibrium fractionations, for both pure siderite and Ca-bearing siderite (Fig. 
10). A wide range in Fe(II)aq–Fe-carbonate fractionations are predicted from spectroscopic 
and natural data, spanning values from −0.7 to +3.5‰ (Fig. 10; Polyakov and Mineev 2000; 
Schauble et al. 2001; Johnson et al. 2003). The equilibrium Fe(II)aq–siderite fractionation 
in abiotic systems is estimated at +0.5‰ (Fig. 10; Wiesli et al. 2004), which is somewhat 
larger than that estimated from DIR experiments. The Fe(II)aq–Fe-carbonate fractionations 
inferred from natural mineral assemblages and those predicted from theory suggest that 
the ∆Fe(II)aq-Fe carbonate fractionations should increase with decreasing mole fraction of Fe, from 
“siderite” to “ankerite” (Fig. 10). The effect of increasing ∆Fe(II)aq-Fe carbonate upon Ca substitution 
was observed by Johnson et al. (2004a), suggesting that the bonding changes and distortions in 
the crystal lattice that accompany even small amounts of Ca substitution into siderite produce 
signifi cant Fe isotope effects. Because natural Fe carbonates commonly contain signifi cant Ca, 
Mn, and Mg, it seems likely that carbonate stoichiometry may exert a substantial control on 
Fe isotope fractionations between Fe(II)aq and carbonate, and it is anticipated that this will be 
seen in both biologic and abiotic systems. 

In addition to producing biogenic magnetite and siderite during DIR, formation of poorly 
crystalline Fe(II)-bearing solid phases commonly occurs (Table 2), and these may be diffi cult 
to detect using XRD spectra. Partial dissolution of solids using weak acids has been used to 
isolate non-magnetic, non-carbonate Fe(II) solids (e.g., Fredrickson et al. 1998; Roden et al. 
2002), and such approaches may also be used to isolate such components for isotopic analysis 
(Johnson et al. 2004a). Treatments with weak acids may also, however, dissolve unreduced 
ferric oxide/hydroxide substrates or sorbed Fe components, and determination of Fe(III) and 
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Fe(II) contents of the material that has been partially dissolved is required to confi dently 
identify the solid components that have been sampled. In the DIR experiments of Johnson 
et al. (2004a), signifi cant quantities of a non-magnetic, non-carbonate Fe(II)(s) phase, which 
we will refer to as NMNC Fe(II)(s), were produced under some conditions, and this phase 
may exert a strong infl uence on the Fe isotope compositions of Fe(II)aq. In cases where rapid 
formation of NMNC Fe(II)(s) occurs early, such material appears to have very low δ56Fe values 
relative to those of Fe(II)aq, driving the remaining Fe(II)aq to very high δ56Fe values (Johnson et 
al. 2004a). In contrast, slow production of small quantities of NMNC Fe(II)(s) appears to have 
δ56Fe values that are similar to those of Fe(II)aq, suggesting that the equilibrium fractionation 
between NMNC Fe(II)(s) and Fe(II)aq is near zero (Johnson et al. 2004a).

The isotopic effects of DIR using Fe(III)-bearing clay minerals are unknown, but 
represent an important avenue of future research. Reduction of smectite by DIR bacteria 
produces signifi cant changes in clay structures (e.g., Kostka et al. 1999a,b). In addition, DIR 
may catalyze phase transformations in clay minerals, such as conversion of smectite to illite 
(Kim et al. 2004). The very high surface areas of clay minerals, as well as their high sorption 
capacity, suggest that there may be signifi cant Fe isotope fractionations during DIR involving 
Fe(III)-bearing clay minerals as the terminal electron acceptor.
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Figure 10. Comparison of isotopic fractionations determined between Fe(II)aq and Fe carbonates relative 
to mole fraction of Fe from predictions based on spectroscopic data (Polyakov and Mineev 2000; Schauble 
et al. 2001), natural samples (Johnson et al. 2003), DIR (Johnson et al. 2004a), and abiotic formation of 
siderite under equilibrium conditions (Wiesli et al. 2004). Fe(II)aq exists as the hexaquo complex in the 
study of Wiesli et al. (2004); hexaquo Fe(II) is assumed for the other studies. Total cations normalized to 
unity, so that end-member siderite is plotted at XFe = 1.0. Error bars shown refl ect reported uncertainties; 
analytical errors for data reported by Johnson et al. (2004a) and Wiesli et al. (2004) are smaller than the 
size of the symbol. Fractionations measured on bulk carbonate produced by DIR are interpreted to refl ect 
kinetic isotope fractionations, whereas those estimated from partial dissolutions are interpreted to lie closer 
to those of equilibrium values because they refl ect the outer layers of the crystals. Also shown are data for 
a Ca-bearing DIR experiment, where the bulk solid has a composition of approximately Ca0.15Fe0.85CO3, 
“high-Ca” and “low-Ca” refer to the range measured during partial dissolution studies (Johnson et al. 
2004a). Adapted from Johnson et al. (2004a).
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Summary of Fe isotope fractionations produced during DIR
The Fe isotope fractionations that have been observed to date in experimental studies 

of DIR are summarized in Figure 11. The isotopic compositions are calculated using the 
fractionation factors listed in Table 3, setting the δ56Fe value of the ferric substrate starting 
material (HFO, goethite, hematite, etc.) or magnetite solid product to zero, consistent with the 
general observation that Fe mass balance is dominated by these phases in DIR experiments. 
During the initial stages of reduction and over short time periods, the δ56Fe values for 
Fe(II)aq, NMNC Fe(II)(s), and sorbed Fe(II) are interpreted to largely refl ect kinetic isotope 
fractionations. Note, however, that although any ligand-bound Fe(III) components might be 
in isotopic equilibrium with Fe(II)aq, based on the long residence times that are calculated 
(e.g., Fig. 6), the δ56Fe values for Fe(II)aq are likely to be controlled by rapid formation of 
other components at early stages. These components may include sorbed Fe(II) and NMNC 
Fe(II)(s). If early, rapid sorption of Fe(II)aq produces a kinetic isotope fractionation that results 
in anomalously low δ56Fe values for Fe(II)aq, this is opposite the effect that is produced by 
rapid precipitation of NMNC Fe(II)(s). The net changes in δ56Fe values for Fe(II)aq during the 
initial stages of rapid DIR are therefore likely to be strongly dependent on the relative rates of 
Fe(II) sorption and formation of NMNC Fe(II)(s).

The general progression in importance of sorbed Fe(II) to NMNC Fe(II)(s) illustrated in 
Figure 11 follows that observed in experimental studies. The changes in isotopic fractionations 
between Fe(II)aq and NMNC Fe(II)(s) are well documented by partial dissolutions of the 
solid phases produced during DIR (Johnson et al. 2004a). The inferred changes in Fe(II)aq–
Fe(II)sorbed fractionations, however, are less well constrained and this component of DIR needs 
further study, as noted above. For simplicity, we have omitted Fe carbonate as a solid product 
in Figure 11, but note that similar changes in isotopic fractionation between Fe(II)aq and solid 
are inferred to occur, recording initial kinetic conditions that existed during rapid reduction, 
as well as movement toward equilibrium with time (Johnson et al. 2004a). Finally, we note 
that besides magnetite, many of the components illustrated in Figure 11 have negative δ56Fe 
values, suggesting that there is a missing, relatively high-δ56Fe component that has not been 
analyzed in these experiments. Following the model developed above (Fig. 6), we assume this 
high-δ56Fe component is a reservoir of Fe(III), which we termed “Fe(III)-LFe(III)” to refer to a 
ligand- or cell-bound Fe(III) component that would not be present in samples of Fe(II)aq or 
other Fe-bearing solids that are analyzed in a typical experiment.

ANAEROBIC PHOTOSYNTHETIC Fe(II) OXIDATION

Investigation of Fe isotope fractionation produced by anaerobic photosynthetic Fe(II) 
oxidation is much less extensive than it is for DIR. Possible pathways where Fe isotopes 
may be fractionated during anaerobic photosynthetic Fe(II) oxidation, which we will refer 
to as APIO, are illustrated in Figure 12. There are four possible steps in which Fe isotope 
fractionation may occur (Croal et al. 2004). Isotopic fractionation may occur during binding 
of Fe from the ambient aqueous Fe(II)Cl2 starting material to a redox-active site or ligand. 
Because there is no change in oxidation state at this stage, however, it is anticipated that Fe 
isotope fractionation, if any, will be relatively small for this step. Iron oxidation occurs in the 
next step (Fig. 12), and Croal et al. (2004) postulate that a signifi cant step in which Fe isotope 
fractionation may occur is between ligand-bound Fe(III) and Fe(II) (∆1, Fig. 12), given the 
fact that relatively large Fe isotope fractionations occur between Fe(III) and Fe(II) phases. 
Isotopic fractionation at this step in the model of Figure 12 is similar to that illustrated for 
DIR in Figure 5, although the process is occurring in the opposite direction, and, as will be 
discussed below, likely involves different pools of exchangeable Fe. Formation of the fi nal 
ferric hydroxide end products may also be accompanied by Fe isotope fractionation, which is 
essentially an isotopic fractionation upon precipitation (∆2, Fig. 12). Finally, it is possible that 
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Figure 11. Summary of Fe isotope fractionations produced during DIR, based on isotopic fractionations 
factors in Table 3. δ56Fe values for measured species shown by boxes with heavy lines, and those that are 
inferred for species not directly measured shown by boxes with thin lines. Isotopic compositions calculated 
assuming the δ56Fe values for ferric oxide/hydroxide substrate and magnetite equal zero. During the initial 
stages of DIR (bottom fi gure), when Fe reduction rates are highest, rapid formation of Fe(II)aq results in 
rapid sorption to the ferric oxide/hydroxide substrate (small solid dots), producing very low δ56Fe values 
that are interpreted to refl ect kinetic isotope fractionation. At later stages of DIR, when Fe reduction 
rates are slower, but prior to formation of signifi cant quantities of reduced solid products (second from 
bottom fi gure), the δ56Fe values of Fe(II)aq are interpreted to refl ect equilibrium fractionation between 
ligand-bound Fe(III) and Fe(II)aq, and the δ56Fe value of sorbed Fe(II) is inferred to be similar to that of 
Fe(II)aq. Formation of signifi cant quantities of Fe(II)-bearing solid products is illustrated in the third from 
the bottom fi gure, including magnetite (Fe3O4) in diamonds and non-magnetic, non-carbonate Fe(II)(s) 
[NMNC Fe(II)(s)] in small open circles; the later phase, if formed rapidly, is interpreted to have very low 
δ56Fe values that refl ect kinetic isotope fractionation. Over the long term, when the system more closely 
refl ects equilibrium conditions (top fi gure), the isotopic effects of NMNC Fe(II)(s) are minimal, and the 
δ56Fe values of Fe(II)aq are interpreted to refl ect equilibrium fractionation with magnetite.
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CELL

∆1: Fe(II)aq - Fe(III)aq

∆2: Fe(III)aq - Ferric hydroxide

Ferric hydroxide precipitate

?

?

Fe(II)aq
e-

∆3: Fe(II)aq - Ferric hydroxide

Fe(III)aq

Figure 12. Possible isotope fractionation steps during anaerobic photosynthetic Fe(II) oxidation (APIO). 
It is assumed that the process of oxidation proceeds through an oxidation step, where Fe(II)aq is converted 
to soluble Fe(III) in close proximity to the cell, followed by precipitation as ferric oxides/hydroxides. As in 
DIR (Fig. 5), the most likely step in which the measured Fe isotope fractionations are envisioned to occur 
is during oxidation, where isotopic exchange is postulated to occur between pools of Fe(II) and Fe(III) (∆1). 
As discussed in the text and in Croal et al. (2004), however, it is also possible that signifi cant Fe isotope 
fractionation occurs between Fe(III)aq and the ferrihydrite precipitate (∆2); in this case the overall isotopic 
fractionation measured between Fe(II)aq and the ferrihydrite precipitate would refl ect the sum of ∆1 and 
∆2, assuming the proportion of Fe(III) is small (see text for discussion). Isotopic exchange may also occur 
between Fe(II)aq and the ferric hydroxide precipitate (∆3), although this is considered unlikely.

Table 3.  Summary of Fe isotope fractionations during biogenic mineral formation.

Species Kinetic
∆A-B

Equilibrium
∆A - B

Ref.

Dissimilatory Fe(III) reduction:
Fe(II)aq - FeCO3 +1.2‰ +0.0‰ 1
Fe(II)aq - Ca0.15Fe0.85CO3 +2.2‰ +0.9‰ 1
Fe(II)aq - Fe3O4 −1.3‰ 1
Fe(II)aq - Ferric oxide/hydroxide substrate (DIR) −2.3‰ −1.3‰ 2
Fe(II)aq - NMNC Fe(II)(s) +0.8‰ ~0‰ 1
Fe(II)aq - ≡Fe(II) [HFO] −2.1‰ ~0‰ 3
Fe3O4 - FeCO3 +3.5‰ +1.3‰ 1
Fe3O4 - Ca0.15Fe0.85CO3 +4.5‰ +2.2‰ 1

Anaerobic photosynthetic Fe(II) oxidation:
Fe(II)aq - Ferric oxide/hydroxide precipitate (APIO) −1.5‰ 4

References:
1 - Johnson et al. (2004a).
2 - Beard et al. (1999; 2003a); Johnson et al. (2004a).
3 - Icopini et al. (2004); Johnson et al. (2004a).
4 - Croal et al. (2004).
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isotopic exchange may occur between the ferric hydroxide precipitates and Fe(II)aq (∆3, Fig. 
12); such exchange is most likely to occur if the precipitate is nm-size ferrihydrite, but seems 
unlikely if ferrihydrite consists of larger diameter crystals or is converted to more crystalline 
forms such as goethite, given the very low rate of isotopic exchange between aqueous Fe and 
oxides at low temperatures (Poulson et al. 2003).

Although there may be several steps that produce isotopic fractionation during APIO, 
the process is simpler in some ways than DIR in that a single solid phase is produced, and 
sorption effects on the isotopic composition of Fe(II)aq are insignifi cant during the early stages 
of oxidation when the proportion of Fe(II)aq to ferrihydrite precipitate is very large (Croal et 
al. 2004). We can describe the APIO process as:

 Fe(II)aq → Fe(III)aq → Fe(OH)3(s) (19)
which is identical to that used to describe abiotic oxidation of Fe(II)aq in the previous chapter 
(Chapter 10A; Beard and Johnson 2004). Equation (19) explicitly assumes that precipitation 
of ferric hydroxide is preceded by formation of Fe(III)aq. Although the overall process of APIO 
may appear similar to abiotic oxidation of Fe(II)aq, the former occurs in the absence of O2 and 
involves binding to biologic sites, whereas the later involves inorganic oxidation of Fe(II) 
by oxygen. In the case of APIO, it may be that one of more pools of soluble Fe are bound to 
biological ligands, where, for example, Fe(III)aq would be better represented as Fe(III)-LFe(III). 
The quantities of ligand-bound Fe(III) present during APIO, however, is likely to be very 
small, given the very low levels of Fe(III)-specifi c organic ligands that have been detected 
(Kappler and Newman 2004). Nevertheless, the binding environments may be suffi ciently 
distinct for soluble Fe(II) and Fe(III) during oxidation in the outer cell membrane or at the 
surface, as compared to simple aqueous solutions of Fe(II) and Fe(III), raising the possibility 
that Fe isotope fractionations produced by APIO may be distinct from those measured between 
Fe(III)aq and Fe(II)aq in abiotic solutions.
Proportions of reacting species

If the process of APIO is properly described by Equation (19), which infers the presence 
of a soluble Fe(III) intermediate species, it will be diffi cult to analyze this species directly, 
given the low levels that are expected. We must therefore develop mathematical approaches 
to estimating the isotopic composition of this component, as was done for DIR. The equations 
used in the previous chapter (Chapter 10A; Beard and Johnson 2004) to describe abiotic Fe(II) 
oxidation are useful for illustrating possible isotopic fractionations that may occur during 
APIO. We will assume that the overall oxidation process occurs through a series of fi rst-order 
rate equations, where relatively slow oxidation of Fe(II)aq to a soluble Fe(III) component 
occurs, which we will denote as Fe(III)aq for simplicity. The oxidation step is followed by 
precipitation of Fe(III)aq to ferrihydrite at a much faster rate, which maintains a relatively 
low level of Fe(III)aq relative to Fe(II)aq. The assumption of fi rst-order kinetics is not strictly 
valid for the experiments reported in Croal et al. (2004), where decreasing Fe(II)aq contents 
with time do not closely follow either zeroth-, fi rst-, or second-order rate laws. However, use 
of a fi rst-order rate law allows us to directly compare calculations here with those that are 
appropriate for abiologic Fe(II) oxidation, where experimental data are well fi t to a fi rst-order 
rate law (Chapter 10A; Beard and Johnson 2004). 

Croal et al. (2004) investigated APIO using an enrichment culture of Fe(II)-oxidizing 
photoautotrophs, as well as a pure culture of the genus Thiodictyon, which was cultured at 
three different light intensities (40, 80, and 120 cm distances from a 40W light source) to 
investigate possible kinetic effects on isotopic fractionations. Using the three different rates 
(k1) that fi t the extent of reactions at the end of the 20 day experiments at the three different 
light intensities, we calculate the relative proportions of Fe(II)aq, Fe(III)aq, and ferrihydrite 
precipitate (noted as Fe(OH)3(s) for simplicity) at various ratios of k2/k1 (Fig. 13). We illustrate 
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calculations for several k2/k1 ratios (10, 20, and 50), all of which would produce small 
quantities of Fe(III)aq. Oxidation rates were fastest for the experiment that involved the highest 
light intensity (40 cm distance), and, for a k2/k1 ratio of 20, steady-state conditions in terms 
of Fe(II)aq/Fe(III)aq ratios would be attained in 0.56 days (Fig. 13). Under such conditions, 
the residence time of Fe(III)aq quickly reaches a maximum value of 2.3 days early in the 
experimental run. Such long residence times, relative to the timescales of isotopic exchange, 
ensures that isotopic equilibrium would have been maintained between Fe(II)aq and Fe(III)aq 
during the 20 day experiment. The very slow k1 rate constant for the experiment at 120 cm 
light distance would prevent this experiment from attaining steady-state conditions over its 
20-day timescale (Fig. 13), and therefore the residence time for Fe(III)aq would not reach its 
maximum prior to termination of the experiment. We calculate, however, that during virtually 
the entire experiment the residence time of Fe(III)aq would be on the order of days for the 
experiments run at distances of 80 and 120 cm from the light source, indicating that isotopic 
equilibrium should have been maintained between Fe(II)aq and Fe(III)aq.
Constraints on isotopic variations

Using simple mass-balance relations, we may calculate the δ56Fe values for Fe(II)aq, 
Fe(III)aq, and Fe(OH)3(s), as was done in the section on DIR above, as well as the approach 
outlined in the previous chapter for abiotic oxidation of Fe(II)aq (Chapter 10A; Beard and 
Johnson 2004). For example, if isotopic equilibrium is maintained between Fe(II)aq and 
Fe(III)aq, the δ56Fe value for the Fe(III)aq component is given by:
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where δFe(aq)-Total is the δ56Fe value of the total aqueous Fe pool (Fe(II)aq and Fe(III)aq), and XFe(II) 
and XFe(III) are the mole fractions of Fe(II)aq and Fe(III)aq in the total system, respectively. Note 
that if XFe(III) is very small, which is the case for large k2/k1 ratios (Fig. 13), then δFe(aq)-Total is 
essentially equal to the δ56Fe value of Fe(II)aq. Note also that the ratio XFe(II)/(XFe(II) + XFe(III)) will 
be unity at the beginning of the experiment (prior to oxidation), and will move to a constant 
value under steady-state conditions that is determined by the k2/k1 ratio. 

At high k2/k1 ratios, the isotopic mass balance among the soluble (exchangeable) pools of 
Fe (Fe(II)aq and Fe(III)aq) is essentially invariant with time. When δFe(aq)-Total ≈ δFe(II)aq and XFe(II)/
(XFe(II) + XFe(III)) ≈ 1, we may simplify Equation (20) to:

 δ δFe(III)aq Fe(II)aq Fe(III)-Fe(II)≈ + ∆
  (21)

Equation (21) is an excellent approximation to Equation (20) for moderate to high k2/k1 
ratios (~10 and higher) for processes that occur by fi rst-order kinetics. It is important to note, 
however, that a specifi c rate law does not appear anywhere in Equations (20) and (21), and 
they are equally valid for any reaction process where XFe(III) is small. Equation (21) illustrates 
that oxidation of Fe(II)aq to Fe(III)aq produces a markedly different isotopic mass balance than 
that associated with DIR. In cases where the product of DIR is Fe(II)aq, the concentration 
of this component is continually increasing, changing the relative mass balance among the 
exchangeable pools of Fe over time.

Next we explore using the δ56Fe value of the ferric oxide/oxyhydroxide precipitate as a 
proxy for δFe(III)aq, which allows Equation (21) to be used to calculate the ∆Fe(III)-Fe(II) fractionation 
from the measured δ56Fe values for the ferric precipitate and Fe(II)aq. This approach is valid 
when the molar proportion of Fe(III)aq is very small. However, if there is a signifi cant Fe 
isotope fractionation between Fe(III)aq and ferric hydroxide precipitate, this must be taken into 
account. As discussed in the previous chapter (Chapter 10A; Beard and Johnson 2004), at low 
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Fe(III)aq/Fe(II)aq ratios, and where isotopic equilibrium is maintained between Fe(III)aq and 
Fe(II)aq, the effect of Fe isotope fractionation upon precipitation may be incorporated into the 
form of Equation (21) as:

 δ δFe(II)aq FH Fe(III)-FH Fe(III)-Fe(II)− ≈ −∆ ∆   (22)

where the δ56Fe values for Fe(II)aq and the ferrihydrite precipitate are defi ned as δFe(II)aq and δFH, 
respectively, and the Fe isotope fractionation between Fe(III)aq and ferrihydrite precipitate, and 
Fe(III)aq and Fe(II)aq, is given by ∆Fe(III)-FH and ∆Fe(III)-Fe(II), respectively.

Croal et al. (2004) measured an approximate −1.5‰ fractionation between Fe(II)aq 
and ferrihydrite precipitate that formed during APIO. This fractionation is independent of 
the overall rate of oxidation, particularly if data early in the experiment are considered, 
when the measured isotopic differences between phases is least dependent upon a specifi c 
mechanistic model, such as closed-system equilibration or Rayleigh fractionation (Fig. 14). 
Precipitates that are removed early in the experiment are least likely to “back exchange” with 
the ambient aqueous Fe unless exchange rates are very rapid because they are not in contact 
with aqueous Fe for extended periods (∆2, Fig. 12). In interpreting these data, however, we 
are immediately faced with the ambiguity posed by Equation (22), which shows that in the 
absence of independent knowledge of the ∆Fe(III)-FH fractionation, we cannot infer the Fe isotope 
fractionation produced during the oxidation step (∆Fe(III)-Fe(II)). The Fe isotope fractionations 
measured by Croal et al. (2004), therefore, have several possible interpretations. First, the 
data may be interpreted to refl ect Fe isotope fractionation between Fe(II)aq and Fe(III)aq of ~ 
−1.5‰, if ∆Fe(III) - FH is zero. In this case, the long residence time that is expected for Fe(III)aq 
(Fig. 13), relative to the time required to reach isotopic equilibrium between Fe(II)aq and 
Fe(III)aq, suggests that the −1.5‰ Fe(II)aq-Fe(III)aq fractionation would refl ect an equilibrium 
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Figure 14. Measured Fe isotope fractionations between Fe(II)aq and ferrihydrite precipitates for the 
APIO experiments by Croal et al. (2004), relative to % total reaction (precipitation). A simple Rayleigh 
fractionation model is illustrated in the solid black curve, using a ∆Fe(II)aq-FH fractionation of −1.5‰. Solid 
grey curves illustrate a two-step model, where the overall Fe(II)aq–ferrihydrite fractionation proceeds fi rst 
through a −2.9‰ equilibrium fractionation between Fe(II)aq and Fe(III)aq, followed by a +1.4‰ between 
Fe(III)aq and ferrihydrite. Because the k2/k1 ratio in the fi rst-order rate model affects the relative proportions 
of Fe(II)aq and Fe(III)aq, the two-step model is a function of k2/k1 ratio; two examples are illustrated, one 
where the proportion of Fe(III)aq is relatively high (k2/k1 = 2), and one where the proportion of Fe(III)aq is 
relatively low (k2/k1 = 20). As the k2/k1 ratio increases beyond ~20 (very low proportion of Fe(III)aq), the 
two-step model is well approximated by a single −1.5‰ fractionation between Fe(II)aq and ferrihydrite.
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fractionation factor. This would be approximately half the −2.9‰ fractionation measured 
between Fe(II) and Fe(III) in dilute aqueous solutions (Johnson et al. 2002; Welch et al. 2003), 
and might suggest unique bonding environments for at least one Fe species during APIO as 
compared to Fe(II)aq and Fe(III)aq in abiologic systems. 
The Fe(III)aq–ferrihydrite fractionation factor

The data of Croal et al. (2004) may also be interpreted to refl ect a two-step process, 
where a −2.9‰ fractionation occurs between Fe(II)aq and Fe(III)aq, accompanied by a +1.4‰ 
fractionation between Fe(III)aq and ferrihydrite upon precipitation, produces a net fractionation 
of −1.5‰. When cast in terms of common mechanistic models for separation of solid and 
liquid phases such as Rayleigh fractionation, it becomes clear that the two-step model 
produces essentially the same fractionation trend as a single −1.5‰ fractionation step between 
Fe(II)aq and ferrihydrite if the Fe(III)aq/Fe(II)aq ratio is low (Fig. 14). As the Fe(III)aq/Fe(II)aq 
ratio increases, however, the calculated net Fe(II)aq-ferrihydrite fractionation in the two-step 
model deviates from that of simple Rayleigh fractionation (Fig. 14). Unfortunately, the scatter 
in the data reported by Croal et al. (2004), which likely refl ects minor contamination of Fe(II)aq 
in the ferrihydrite precipitate, prevents distinguishing between these various models without 
consideration of additional factors.

A non-zero ∆Fe(III) - FH fractionation might refl ect kinetic or equilibrium isotope partitioning, 
and in the absence of independent measurements of the ∆Fe(III)-FH fractionation factor under 
equilibrium conditions, as well as at different precipitation rates that are far from equilibrium, 
we must approach the problem indirectly. Equation (22) illustrates that the uncertainty in 
inferring the ∆Fe(III)-Fe(II) fractionation is directly related to the uncertainty posed by the ∆Fe(III)-FH 
fractionation factor when the proportion of Fe(II)aq is very small. The potential range of ∆Fe(III)-FH 
under equilibrium and kinetic conditions may be explored through the experiments of Skulan 
et al. (2002), who investigated kinetic and equilibrium [FeIII(H2O)6]3+–hematite fractionations. 
There is some diffi culty in comparing the experiments of Skulan et al. (2002) with those of 
Croal et al. (2004), because the ferric precipitates and temperatures were different. Skulan 
et al. (2002) observed that the kinetic [FeIII(H2O)6]3+–hematite fractionation, at 98°C, varied 
linearly with precipitation rate when precipitation rates were relatively low, on the order of 
10−3 F/hour, where F is the fraction of the total precipitate. The largest kinetic [FeIII(H2O)6]3+ 
- hematite isotope fractionation observed by Skulan et al. (2002) was +1.3‰, where near-
complete precipitation occurred over ~12 hours, equivalent to a relatively high rate of ~10−1 
F/hour. In contrast, Skulan et al. (2002) estimated that the equilibrium [FeIII(H2O)6]3+–hematite 
fractionation was near zero at 98°C, and it is possible, though unknown, that the equilibrium 
[FeIII(H2O)6]3+–ferrihydrite fractionation is similarly small at room temperature. If we assume 
that similar effects occurred during precipitation of ferrihydrite at the room temperature 
(~ 22°C) of the experiments by Croal et al. (2004), we would infer that moderately rapid 
ferrihydrite precipitation would produce signifi cant kinetic Fe(III)aq-ferrihydrite fractionations, 
but that slow precipitation of ferrihydrite may be associated with a ∆Fe(III) - FH fractionation that 
is closer to zero.

We consider the relations between precipitation rate and the fractionation between 
Fe(III)aq and ferric oxide/hydroxide precipitates in Figure 15. The overall rates of Fe(II) 
oxidation and precipitation of ferrihydrite in the experiments by Croal et al. (2004) were 
several orders of magnitude lower than those studied by Skulan et al. (2002) where signifi cant 
kinetic [FeIII(H2O)6]3+–hematite fractionations were observed, and this may suggest that the 
∆Fe(III)-FH fractionation was low in the experiments of Croal et al. (2004). Through variations in 
light intensity, the Fe(II) oxidation rates during APIO varied by nearly an order of magnitude 
(Fig. 15), and it is striking that the measured Fe(II)aq–ferrihydrite fractionations were relatively 
constant, as determined for Fe(II)aq–ferrihydrite pairs early in the experiment. This might 
suggest that kinetic isotope effects during precipitation were not important, provided the rate-
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limiting step was varied in the experiments during changes in the overall oxidation rate, but this 
remains unknown in the experiments of Croal et al. (2004). The rate constant for precipitation 
of Fe(III)aq to ferrihydrite (k2) is unknown, but is assumed to be signifi cantly larger than k1 in 
our fi rst-order rate model. If the variations in light intensity varied only the rate constant for 
the oxidation step, k1, and not, for example, the precipitation rate, k2, then the range in overall 
oxidation rates place no constraint on inferring the value of the ∆Fe(III) - FH fractionation based on 
the experimental observations of Skulan et al. (2002) (Fig. 15). Paradoxically, if k2 is extremely 
high, as might be the case if the proportion of Fe(III)aq is quite low, very rapid precipitation of 
Fe(III)aq to ferrihydrite is unlikely to produce a signifi cant ∆Fe(III)-FH fractionation, as has been 
observed for very rapid (~1 s) oxidation of Fe(II)aq (Johnson et al. 2002). 
Comparison with abiologic Fe(II) oxidation

The fractionation between Fe(II)aq and ferrihydrite of −1.5‰ measured during APIO by 
Croal et al. (2004) is somewhat similar to the −0.9‰ fractionation measured by Bullen et al. 
(2001) during abiotic oxidation of Fe(II)aq to ferrihydrite through reaction with an oxygenated 
solution. Bullen et al. (2001) interpreted this fractionation to refl ect isotopic equilibrium 
between aqueous Fe(II) species, such as [FeII(OH)(H2O)5]+ and [FeII(H2O)6]2+, with the 
implicit assumption that there was no fractionation between aqueous Fe(II) and Fe(III), or 
upon precipitation of Fe(III)aq to ferrihydrite. As discussed in the previous chapter (Chapter 
10A; Beard and Johnson 2004), the Bullen et al. (2001) model is unlikely, given the −2.9‰ 
equilibrium fractionation between [FeII(H2O)6]2+ and [FeIII(H2O)6]3+ (Johnson et al. 2002; 
Welch et al. 2003), and the fact that isotopic exchange is so rapid between these species that 
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Figure 15. Illustration of possible variations in isotopic fractionation between Fe(III)aq and ferric oxide/
hydroxide precipitate (∆Fe(III)aq-Ferric ppt) and precipitation rate. Skulan et al. (2002) noted that the kinetic 
∆Fe(III)aq-Ferric ppt fractionation produced during precipitation of hematite from Fe(III)aq was linearly related to 
precipitation rate, which is shown in the dashed curve (precipitation rate plotted on log scale). The most 
rapid precipitation rate measured by Skulan et al. (2002) is shown in the black circle. The equilibrium 
Fe(III)aq-hematite fractionation is near zero at 98°C, and this is plotted (black square) to the left of the 
break in scale for precipitation rate. Also shown for comparison is the calculated Fe(III)aq-ferrihydrite 
fractionation from the experiments of Bullen et al. (2001) (grey diamond), as discussed in the previous 
chapter (Chapter 10A; Beard and Johnson 2004). The average oxidation-precipitation rates for the APIO 
experiments of Croal et al. (2004) are also noted, where the overall process is limited by the rate constant 
k1. As discussed in the text, if the proportion of Fe(III)aq is small relative to total aqueous Fe, the rate 
constant for the precipitation of ferrihydrite from Fe(III)aq (k2) will be higher, assuming fi rst-order rate laws, 
although its value is unknown. 



Johnson, Beard, Roden, Newman & Nealson392

isotopic equilibrium will be maintained over the oxidation rates of the Bullen et al. (2001) 
experiment. Instead, these experiments likely refl ect the combination of a −2.9‰ equilibrium 
fractionation between [FeII(H2O)6]2+ and [FeIII(H2O)6]3+, and a +2.0‰ kinetic fractionation 
between [FeIII(H2O)6]3+

 and ferrihydrite upon precipitation, although this later fractionation 
is inferred and has yet to be measured experimentally. The issue of the ∆Fe(III) - FH fractionation 
factor, under both equilibrium and kinetic conditions, once again becomes important. If the 
experiments by Bullen et al. (2001) in part refl ect a +2.0‰ kinetic fractionation between 
Fe(III)aq and ferrihydrite, this is comparable to the kinetic [FeIII(H2O)6]3+–hematite fractionation 
measured by Skulan et al. (2002) when considered in terms of precipitation rates (Fig. 15), and 
the fact that the Bullen et al. (2001) experiments were run at lower temperatures. 

If the rate constant for precipitation of Fe(III)aq to ferrihydrite (k2) was ≥102 times greater 
than the overall oxidation rate (k1) during APIO, it is possible, based on the relations shown 
in Figure 15, that the ∆Fe(III)-FH fractionation factor was +1 to +2‰, as noted in the “two-step” 
scenario above. If, however, k2 was ~ ≤10 times greater than k1, it is possible that the ∆Fe(III)-FH 
fractionation factor was close to zero (Fig. 15). If the former case is correct, then we would 
infer that the isotopic fractionation between Fe(II)aq and Fe(III)aq during APIO is similar to 
that in dilute aqueous solutions. However, if the latter case is correct, the isotopic fractionation 
between soluble pools of Fe(II)aq and Fe(III)aq in the biologic system is unique relative to 
that in dilute aqueous solutions, perhaps indicating unique bonding environments caused by 
binding to biological ligands. If the ∆Fe(III)-FH fractionation is zero in the biologic experiment, 
the relatively similar fractionations between Fe(II)aq and ferrihydrite in the experiments of 
Croal et al. (2004) and Bullen et al. (2001) are merely coincidental, refl ecting the effects of 
kinetic fractionations during precipitation in the later study. Key resolutions to these issues 
include determining the Fe(III)aq–ferrihydrite fractionation, as well as developing strategies to 
analyze the isotopic composition of the Fe(III)aq component directly, and these are important 
avenues for future research.

We wish to stress that comparison of the isotopic effects in biologic and abiologic systems 
will be most meaningful if experimental conditions are identical, where the only difference 
is the presence or absence of bacteria. The wide variety of buffers, growth media, and others 
conditions that are involved in biological experiments raise the possibility that spurious results 
may be obtained if these factors are not carefully controlled. Because speciation may exert 
a strong control on Fe isotope fractionations (Schauble et al. 2001), even small differences 
across experimental studies may be signifi cant.

ISOTOPIC VARIATIONS PRODUCED DURING
BIOGEOCHEMICAL CYCLING OF IRON

The kinetic and equilibrium Fe isotope fractionations associated with DIR and anaerobic 
APIO are summarized in Table 3. In this section, we use the Fe isotope fractionation factors 
determined for biologic systems to investigate the isotopic variations that may be produced 
during biogeochemical cycling of Fe. We discuss below two settings in which Fe cycling may 
occur. The fi rst is redox cycling of Fe in a low-carbonate surface environment that involves 
oxidation of Fe(II) and reduction of Fe(III), such as might be found in a hydrothermal or hot 
spring pool. The second involves diagenetic reactions, with or without super-saturation of 
carbonate ion, where reductive dissolution of ferric oxide/hydroxide produces magnetite ± Fe 
carbonate.
Redox cycling of Fe by bacteria

Modern iron-depositing hot springs that are fed by Fe(II)-rich waters have been 
invoked as analogs to environments where active metal cycling most likely occurred in the 
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Precambrian (e.g., Pierson et al. 1999; Pierson and Parenteau 2000), which eventually may 
have been preserved as iron deposits (e.g., Wade et al. 1999). Oxidation of Fe(II) in the upper 
layers of microbial communities may occur abiotically through interaction of Fe(II) with an 
oxygenated atmosphere, or through biologic activity. For example, Fe(II) may be oxidized 
through locally increased oxygen contents generated by cyanobacteria in the upper photic 
region of a microbial community. Alternatively, phototrophic Fe(II) oxidation may occur in 
the absence of oxygen by purple and green bacteria, and this is illustrated in Figure 16. Finally, 
reductive dissolution of ferric oxide/hydroxide precipitates may occur at the sediment-water 
interface at the bottom of hot springs by DIR (Fig. 16), completing the Fe redox cycle (e.g., 
Nealson and Stahl 1997). To illustrate the isotopic variations that may be produced in such a 
model, we defi ne the following fl uxes:

 JFe(II)-Ext = J2IE (23)

the external fl ux of Fe(II) into the system;

 JFe(III)-ppt = J3O (24)

the fl ux of Fe precipitated from the Fe(II) pool as ferric oxyhydroxides, produced by Fe(II)-
oxidizing bacteria; 

 JFe(II)-Bio = J2IB (25)

the fl ux of Fe returned to the main pool as Fe(II), generated by Fe(III)-reducing bacteria.
We further constrain the system to have no Fe loss. In addition, we defi ne the following:

 ∆32 = δ56FeFerric Oxide ppt − δ56FeFe(II) = +1.5‰ (26)

which is the Fe isotope fractionation factor between ferric oxide/hydroxide precipitate and 
Fe(II) in the pool, produced by Fe(II)-oxidizing bacteria.

We defi ne the δ56Fe of the Fe(II) that is input into the pool at any time as:
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Figure 16. Conceptual model for biological redox cycling in a hot spring environment. Infl ux of external 
aqueous Fe(II) [JFe(II)-Ext] may refl ect hydrothermal fl uids or other sources of Fe(II)aq. Oxidation of Fe(II)aq is 
envisioned to occur by Fe(II)-oxidizing phototrophs in anaerobic conditions, but could also occur through 
interaction of Fe(II)aq with an oxygen-rich atmosphere. Oxidation of Fe(II) produces a fl ux of ferric 
oxide/hydroxide precipitates [JFe(III) ppt] that settle to the lower, anaerobic sections of the pool. These ferric 
precipitates are in turn partially reduced by DIR bacteria, returning a fl ux of Fe(II)aq to the pool [JFe(II)-Bio].
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Following the mass-fl ux equations developed for open-system magma chambers by DePaolo 
(1981), we will defi ne a fl ux ratio of Fe(II) into the pool relative to Fe(III) out of the pool as:
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We will restrict r to values less than unity, which is necessary to accumulate an Fe deposit. 
Solution of the time derivatives, expressed as F (fraction of liquid remaining in the pool), 
following the approach of DePaolo (1981), but cast in terms of fl uxes, produces:
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where δ56FeI
POOL is the initial δ56Fe value of the pool (set equal to δ56Fe2IE).

An end-member case would be precipitation of ferric oxyhydroxide by photosynthetic 
Fe(II)-oxidizing bacteria through simple Rayleigh fractionation, with no external Fe(II) fl ux 
or return of Fe(II) to the pool from Fe(III)-reducing bacterial activity, which will produce 
extreme Fe isotope compositions, but only in the latest fl uids and precipitates (Fig. 17). In 
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Figure 17. Predicted Fe isotope variations produced by redox cycling of Fe due to APIO and DIR by 
bacteria, as envisioned from Fig. 16. The initial δ56Fe of the pool, as well as that of the infl ux of Fe(II)aq 
[JFe(II)-Ext] is assumed to be zero. Solid lines show the δ56Fe values for ferric oxide/oxyhydroxide deposits as 
a function of solidifi cation of the pool as an iron deposit is formed, and dashed lines show the δ56Fe values 
for Fe(II)aq. Depending upon the relative fl uxes of external Fe(II)aq [JFe(II)-Ext], return of Fe(II) to the pool by 
DIR [JFe(II)-Bio], and precipitation of ferric oxide/oxyhydroxides by APIO [JFe(III) ppt], a wide range of δ56Fe 
values can be produced.
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the case of a modest return of Fe(II) to the pool from Fe(III)-reducing bacteria, as well as a 
continued modest infl ux of external Fe(II) (J2E:J2B:J3O of 1:1:5), the δ56Fe values of the pool and 
ferric oxide/hydroxide precipitates decrease slightly more rapidly than in the Rayleigh model. 
In the case where there is a very high fl ux of external Fe(II) into the pool (J2E:J2B:J3O of 3:1:5), 
the δ56Fe values of the pool and the resulting ferric oxide deposit initially drop, but then level 
off to a pseudo steady-state condition after about 40% of the pool has been solidifi ed. 

The most dramatic shifts in Fe isotope compositions are predicted for cases where there 
is a large return of Fe(II) from DIR bacterial activity, but small external Fe(II) fl ux (i.e., J2E:
J2B:J3O of 1:3:5), where, after ~40–50% solidifi cation of the pool, δ56Fe values of the ferric 
oxyhydroxide precipitate will drop 4–5‰. The calculations in Figure 17 illustrate that a wide 
range in Fe isotope compositions may be expected in the relatively simple system Fe(II)aq-
Fe(III)aq-ferric oxide/hydroxide if extensive re-processing of Fe occurs, despite the fact that 
the Fe isotope fractionation factor used in the model is very similar for APIO and DIR (Table 
3). Experimental verifi cation of the predicted variations in δ56Fe values during biological 
redox cycling of Fe in a system of Fe(II)-oxidizing and Fe(III)-reducing bacteria would 
be useful in predicting Fe isotope fractionations expected for modern or ancient microbial 
communities.

The large range in δ56Fe values that are predicted for a ferric oxide/hydroxide deposit from 
the above model refl ects incomplete reduction of ferric oxide/hydroxide precipitates by DIR 
bacteria. Although experimental studies of DIR using poorly crystalline HFO and rich growth 
media commonly run to completion, such conditions may be unrepresentative of natural 
conditions (e.g., Glasauer et al. 2003). Natural environments will generally involve more 
crystalline ferric oxide/hydroxide minerals and be poorer in nutrients, resulting in incomplete 
dissolution by DIR bacteria. In contrast, natural Fe(III)-bearing clay minerals may have very 
high surface areas, and, in fact, may be equally reactive as poorly crystalline ferric hydroxides 
(e.g., Kostka et al. 1999a). An important, yet largely unexplored, component to preservation 
of the large range in δ56Fe values predicted in Figure 17 is the degree of isotopic exchange 
between oxide/hydroxide precipitates and aqueous Fe, which will be an important factor in 
determining the extent to which the predicted Fe isotope variations will be preserved in the 
rock record. Initial results investigating isotopic exchange between Fe(III)aq and ferrihydrite 
suggest that exchange is limited to surface Fe atoms (Poulson et al. 2003); for all but the 
smallest ferric hydroxide particles, these results suggest that little “back exchange” occurs 
between aqueous Fe and solid ferric hydroxide.
Isotopic variations in marine settings

The occurrence of isotopic and morphologic evidence for bacterial activity in marine 
sedimentary rocks makes such sequences a logical target for Fe isotope studies as a tracer 
for bacterial metabolism. One of the largest repositories of Fe that was sequestered from the 
oceans lies in Archean and Proterozoic Banded Iron Formations (BIFs). The ultimate source 
of Fe in BIFs is generally thought to be Mid-Ocean Ridge (MOR) hydrothermal fl uids, based 
largely on REE and Nd isotope data and the assumption that REE and Fe sources would be 
similar (e.g., Klein and Beukes 1989; Beukes and Klein 1990; Bau and Dulski 1996). Possible 
relations between BIF formation and biologic activity have been discussed for many decades 
(e.g., Harder 1919; Barghoorn 1981; Baur et al. 1985; LaBerge et al. 1987; Nealson and Myers 
1990; Schopf 1992; Skinner 1993; Aisen 1994; Brown et al. 1995; Konhauser et al. 2002). 
Iron isotope fractionations produced during APIO and DIR may be used to evaluate the role 
bacteria may have played in BIF genesis.

Many exposed BIF sequences have been subjected to deep weathering and metamorphism, 
where hematite and goethite are, for the most part, secondary alteration products (e.g., Beukes 
and Klein 1992). In a few cases, however, primary hematite is found as fi nely disseminated 
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grains in carbonate- and chert-facies BIFs from fresh drill cores (e.g., Beukes et al. 1990). The 
δ56Fe values of primary hematite from the Kuruman Iron Formation in South Africa varies 
from −0.7 to +0.8‰ (Johnson et al. 2003), which is signifi cantly more variable than the near-
zero values expected for ferric oxide/hydroxides derived from terrestrial weathering processes 
(Chapter 10A; Beard and Johnson 2004). The δ56Fe values measured for primary hematite in 
BIFs may be explained through complete oxidation of MOR Fe(II)aq hydrothermal sources 
(δ56Fe < 0), incomplete oxidation of Fe(II)aq during anaerobic photosynthesis (δ56Fe>0), or 
might refl ect incomplete abiotic oxidation if atmospheric oxygen contents were high (δ56Fe>0) 
(Fig. 18) (Johnson et al. 2003; Croal et al. 2004). As noted by Croal et al. (2004), distinction 
between abiotic oxidation and anaerobic photosynthetic oxidation may not be possible based 
on Fe isotope compositions alone and likely requires independent knowledge of ambient 
atmospheric oxygen contents.

Although the majority of attention in discussions on the origins of BIFs has been on the 
oxide facies, siderite facies rocks are equally important in many BIF sequences. Reaction 
of Fe(II)aq and dissolved carbonate with hematite to form siderite and magnetite has been 
hypothesized to be an important diagenetic process in marine basins during formation of some 
BIFs if sulfate contents were low (e.g., Klein and Beukes 1989; Beukes et al. 1990; Kaufman 
1996; Sumner 1997). In Figure 18 we assume that Fe(II)aq was derived either from MOR 
sources or DIR, or a combination of the two, which reacted with ferric oxide precipitates to 
form magnetite or dissolved carbonate to produce siderite.

Under oxic conditions, primary ferric oxides derived from weathering will have δ56Fe 
values near zero (Chapter 10A; Beard and Johnson 2004), and we will assume this isotope 
composition for simplicity. If the majority of Fe(II)aq was derived through DIR, the δ56Fe value 
of Fe(II)aq is taken as ~ −1.3‰ (Beard et al. 1999, 2003a), assuming equilibrium conditions; 
lower δ56Fe values would be expected if kinetic conditions prevailed (Johnson et al. 2004a). 
In the case where the Fe(II)aq reservoir is largely produced by DIR, and when there is excess 
Fe(II)aq, the δ56Fe values for magnetite, siderite, and “ankerite” would be approximately 
0.0, −1.3, and −2.2‰, respectively, using the equilibrium Fe isotope fractionation factors 
summarized in Table 3 (Fig. 18). If Fe(II)aq sources were dominated by hydrothermal fl uids 
that were associated with MOR activity, and we assume this source had a δ56Fe value of 
~ −0.5‰ as measured today (Sharma et al. 2001; Beard et al. 2003b), the predicted δ56Fe 
values for magnetite, siderite, and “ankerite” would be slightly higher, at ~ +0.8, −0.5, and 
−1.4‰, respectively (Fig. 18), again assuming excess Fe(II)aq. These ranges in δ56Fe values for 
magnetite, siderite, and ankerite indeed span those measured in BIFs (Johnson et al. 2003). If 
ambient Fe(II)aq contents were low, and diagenetic reactions ran to completion, the fi nal δ56Fe 
values for magnetite and Fe carbonates will refl ect the relative proportions of Fe sources, and 
will likely lie much closer to the δ56Fe values of primary ferric oxide/hydroxides. That the 
δ56Fe values for the Fe(II)-bearing minerals in BIFs do not lie near zero suggests that they 
formed in the presence of substantial quantities of Fe(II)aq, and do not simply refl ect “closed-
system” redox processing that ran to completion.

The wide range in δ56Fe values for magnetite relative to those of siderite that are observed 
in BIFs may refl ect mixing between two different sources of Fe (Johnson et al. 2004a). Based 
on the isotopic fractionations listed in Table 3, magnetite that has the highest δ56Fe values, and 
accompanying large ∆Magnetite-Siderite fractionations between adjacent bands, appears to be well 
explained by Fe(II)aq sources derived from MOR hydrothermal sources (Fig. 19), assuming a 
∆Fe(II)-Magnetite fractionation of −1.3‰. Assuming that the δ56Fe value for MOR sources of Fe(II)aq 
was the same during formation of BIFs in the late Archean to early Proterozoic as it is today, 
magnetite that has moderate to low δ56Fe values, from near zero to negative values, seems to 
require different sources for Fe(II)aq. Johnson et al. (2004a) argued that the source for very low 
δ56Fe values was mostly likely Fe(II)aq which was produced by DIR of ferric oxides (Fig. 19). 
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Magnetite that has δ56Fe values near zero might refl ect formation during slow (equilibrium) 
reduction rates, whereas the lowest δ56Fe values might refl ect rapid Fe(III) reduction and 
kinetic isotope fractionation (Fig. 19), or multiple reduction cycles. The correlation between 
∆Magnetite-Siderite and δ56Fe of magnetite observed in BIFs therefore probably refl ects changes in 
the δ56Fe values of aqueous Fe(II) involved in magnetite formation, refl ecting a spectrum 
between abiotic MOR sources and biologic sources (Fig. 19). Based on the data at hand, 
magnetite that has negative δ56Fe values appears to be an Fe isotope fi ngerprint for biological 
processing of Fe that is recorded in the ancient rock record.

The contrast in δ56Fe values for Fe carbonates and magnetite from adjacent bands in 
BIFs can be explained through formation from a common fl uid in cases where the δ56Fe 
value of magnetite is positive; in these cases, the major source for Fe(II)aq for both siderite 
and magnetite appears to be MOR hydrothermal sources. For magnetite that has δ56Fe 
values ≤ 0‰, however, layers of adjacent magnetite and siderite would not to be in isotopic 
equilibrium, where magnetite appears to be related to DIR. The relatively constant δ56Fe values 
for siderite from BIFs studied to date suggests that most precipitated from MOR sources of 
Fe(II)aq. Although DIR may produce siderite, the Fe isotope data obtained on siderite-facies 
BIFs so far suggests that DIR bacteria were not involved. A possible explanation would be that 
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precipitation of ferric oxides/hydroxides in the upper water column was minimal during times 
of siderite formation, which would depress DIR activity.

Identifi cation of signifi cant masses of magnetite-rich BIF layers that formed in equilibrium 
with a low-δ56Fe, Fe(II)-rich fl uid would have important implications for the sizes of various 
aqueous Fe reservoirs in the oceans if they were relatively anoxic. The long residence time 
of Fe in an anoxic water mass would make it resistant to changes in δ56Fe values (Johnson et 
al. 2003) from, for example, a MOR hydrothermal source (δ56Fe ≥ −0.5‰) to one dominated 
by DIR (δ56Fe ≤ −1.3‰). If the low δ56Fe values for Fe(II)aq inferred from the low-δ56Fe 
magnetite in BIFs (Fig. 19) refl ect those of the open ocean, the biomass required to overwhelm 
the MOR sources must have been tremendous. Such a scenario, however, is inconsistent with 
the relative homogeneity in δ56Fe values for interbedded siderite-rich layers in BIFs. Large 
changes in δ56Fe values for ambient Fe(II)aq over the timescales involved in deposition of 
alternating cm-thick magnetite- and siderite-rich layers is very unlikely if the residence time 
of Fe was long. Instead, the most plausible explanation may be that the δ56Fe values for 
siderite-rich layers do indeed refl ect those of the open ocean water masses, dominated by a 

Figure 19. Iron isotope fractionations between magnetite and Fe carbonates from adjacent bands in 
Banded Iron Formations (Johnson et al. 2004a), compared to Fe(II)aq sources and Fe pathways inferred 
from the Fe isotope fractionations given in Table 3. δ56FeMt values are as measured, and the scales for 
δ56FeFe(II)aq values (top) are based on the equilibrium ∆Fe(II)aq-Magnetite fractionation of −1.3‰, or −2.3‰ for 
kinetic fractionations (Table 3). These results suggest that magnetite which has moderately positive δ56Fe 
values probably formed in equilibrium with MOR hydrothermal sources for Fe(II)aq. In contrast, the lower 
inferred δ56Fe values for Fe(II)aq for magnetite that has δ56Fe ≤ 0‰ would apparently require production 
of Fe(II)aq through DIR, using the fractionation factors determined by Johnson et al. (2004a), where the 
lowest values would be expected to have the largest contribution from kinetic isotope fractionation, or 
refl ect biologic cycling of Fe. The solid line is a mixing line based on changing δ56Fe values for Fe(II)aq, 
a constant ∆Fe(II)aq-Magnetite fractionation of −1.3‰, and a constant δ56Fe value for siderite of −0.5‰ (the 
average of that in BIFs; Johnson et al. 2003). The model assumes that isotopic equilibrium is maintained 
between Fe(II)aq and magnetite, but not between adjacent siderite and magnetite bands. Regression of the 
measured ∆Magnetite-Siderite–δ56FeMt relations produces a slope that is identical to that of the illustrated mixing 
line, suggesting that the measured variations refl ects precipitation of magnetite from variable sources of 
Fe(II)aq, scattering between an MOR (high δ56Fe) and a biogenic (low δ56Fe) component. Adapted from 
Johnson et al. (2004a).
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MOR hydrothermal component, but that the very low δ56Fe values inferred for Fe(II)aq from 
low δ56Fe magnetite refl ect interstitial pore waters and/or bottom waters that were closely 
associated with DIR bacteria, and not those of the open oceans. A substantial biomass of DIR 
bacteria is still required to process the very large inventory of Fe that is sequestered in BIFs as 
low-δ56Fe magnetite, although not so extensive as that which would be required to lower the 
δ56Fe values of the open oceans if the oceans were rich in Fe(II)aq.

CONCLUSIONS

A signifi cant proportion of the Fe isotope literature has focused on use of Fe isotopes as a 
“biosignature” for life, and the mechanisms by which Fe isotope variations may be produced in 
biologic systems has been the focus of this chapter. At fi rst glance, an Fe isotope biosignature 
would seem to require isotopic fractionations that can only be produced by biology, which 
a substantial body of data clearly show is not the case. Although there is no question that 
metabolic processing of Fe produces isotopic fractionation (Beard et al. 1999, 2003a; Croal 
et al. 2004; Johnson et al. 2004a), it is also true that similar Fe isotope fractionations may be 
produced by abiologic processes (Anbar et al. 2000; Bullen et al. 2001; Johnson et al. 2002; 
Roe et al. 2003; Welch et al. 2003; Icopini et al. 2004). A rapidly growing set of experimental 
studies in abiologic and biologic systems allows us to place some constraints on the issue, and 
identify future directions of research that are needed.

Experimental studies of abiologic Fe isotope fractionation that seem most applicable to 
natural systems include fractionations between Fe(III)aq and Fe(II)aq, [FeIII(H2O)6]3+–hematite, 
[FeII(H2O)6]2+–siderite, oxidation of Fe(II)aq to ferrihydrite, and sorption of Fe(II) to ferric 
hydroxides (Table 3). Additional studies such as those involving concentrated HCl solutions 
and ion-exchange chromatography (e.g., Anbar et al. 2000; Matthews et al. 2001; Roe et al. 
2003), while providing insight into the effects of different bonding environments, have less 
applicability to natural systems. For example, the octahedral Fe(III) chloro complexes are 
expected to be lower in 56Fe/54Fe ratios by 5 to 10‰ as compared to the hexaquo Fe(III) 
complex at room temperature (Schauble et al. 2001; Anbar et al. 2004), highlighting the fact 
that the isotopic compositions of very acidic, high-Cl− fl uids which essentially only exist in 
the laboratory will be markedly different than those found in virtually all natural environments 
that may support life.

The equilibrium isotopic fractionation between [FeIII(H2O)6]3+ and [FeII(H2O)6]2+ of +2.9‰ 
at room temperature (Table 3), which appears to be constant over a range of Cl− contents, 
provides a benchmark with which to compare isotopic fractionations during redox cycling 
of Fe. Although the measured isotopic contrast between ferric oxide/hydroxide substrate and 
Fe(II)aq during DIR is approximately half that measured between Fe(III)aq and Fe(II)aq (Table 3), 
the uncertainty in calculating the isotopic compositions of the soluble Fe(III) component based 
on mass-balance modeling discussed in this chapter makes it diffi cult at present to compare 
the isotopic fractionations observed during DIR with an “equivalent” abiologic system. There 
is little doubt that many DIR bacteria are capable of producing soluble reservoirs of Fe(III), 
but this component has yet to be analyzed directly so that it may be compared to the isotopic 
compositions of Fe(II)aq that is produced. An important goal for future work will be isolation 
of the soluble Fe(III) component, identifi cation of the ligands that are bound to it, and direct 
isotopic analysis.

The observation that DIR produces Fe(II)aq that has low δ56Fe values might be taken as a 
biosignature for this type of Fe metabolism. Complicating factors, however, include the effects 
of intermediate Fe(II) species, including sorbed Fe(II) and poorly defi ned NMNC Fe(II) 
solids. Although the evidence at hand suggests that the effects of these intermediate species 
in determining the δ56Fe values for Fe(II)aq are signifi cant during rapid Fe(III) reduction rates 
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when kinetic effects are most likely, these issues require further study before we may fully 
understand their role in determining the Fe isotope fractionations that are produced by DIR 
in natural systems. Because the rates of Fe(III) reduction are expected to be generally far 
slower in nature than in most experiments, due, for example, to the greater crystallinity of 
ferric oxide/hydroxides and limited nutrients in natural systems, it seems likely that Fe isotope 
fractionations will tend to refl ect equilibrium conditions in nature. As such, the low δ56Fe 
values for Fe(II)aq that have been determined in experiments that involve very slow rates of 
DIR using crystalline substrates seem to be the most analogous to those expected in natural 
systems. An important, though completely unexplored avenue of research, is DIR involving 
Fe(III)-bearing clay minerals.

For mineral end products of DIR that are most likely to be preserved in the rock record, 
such as siderite and magnetite, if their δ56Fe values are low, this may refl ect precipitation 
from Fe(II)-bearing fl uids that have the low-δ56Fe fi ngerprint of DIR. It is not yet clear if the 
small (~0.5‰) difference in the Fe(II)aq-siderite fractionation factor in abiologic and biologic 
experiments (Table 3) is signifi cant, but their gross similarity suggests that siderite which has 
low δ56Fe values probably precipitated from Fe(II)-bearing fl uids of equal or slightly higher 
56Fe/54Fe ratios; such low δ56Fe values would appear to be best explained by DIR. A critical 
issue, however, remains the isotopic effect of cation substitution, which commonly occurs in 
natural Fe carbonates and may substantially affect the fl uid-mineral Fe isotope fractionation 
factors. The case for a DIR fi ngerprint in low-δ56Fe magnetite appears stronger, where the 56Fe/
54Fe ratios for Fe(II)aq in equilibrium with magnetite would be ~ 1.3‰ lower, again consistent 
with Fe(II)aq that was produced by DIR.

The confi dence with which Fe(II)aq that has δ56Fe values ≤ −1.3‰ is a biosignature for 
DIR may be evaluated through abiotic reductive dissolution experiments of ferric oxide/
hydroxides (e.g., Cornell and Schwertmann 1996; Larsen and Postma 2001), which has not yet 
been pursued in terms of possible Fe isotope fractionations. Could it be that the mixed Fe(III)-
Fe(II) surface complexes that are likely to be present during abiotic reduction of ferrihydrite, 
goethite, or hematite (e.g., Hering and Stumm 1990) may produce an apparent Fe isotope 
fractionation between Fe(II)aq and ferric substrate that is similar to that observed during DIR? 
Although rapid sorption of Fe(II) to ferric oxide/hydroxide substrates produces low δ56Fe 
values for the remaining aqueous Fe(II), the isotopic effects under equilibrium conditions are 
inferred to be less extreme. It is possible, however, that sorbed Fe(III) may have relatively 
high δ56Fe values, even under equilibrium conditions, and this is a potential means to produce 
Fe(II)aq that has low δ56Fe values. As demonstrated by the mass-balance calculations discussed 
in this chapter, a sorbed ≡[Fe(II), Fe(III)] phase would have to form a signifi cant proportion 
of the exchangeable pool of Fe for it to infl uence the Fe isotope compositions of Fe(II)aq. Such 
detailed experimental studies, including assessment of isotopic mass balance and exchange 
kinetics, have only just begun.

APIO produces ferric hydroxide precipitates that have relatively high δ56Fe values, but 
similar effects may be observed during moderately rapid abiotic oxidation of Fe(II)aq. Although 
the pathways involved in APIO are less complicated than those associated with DIR, direct 
measurement of intermediate species such as soluble or Fe(III)aq has not been done, raising 
the possibility that isotopic fractionation between Fe(III)aq and ferric hydroxide may be a 
signifi cant contribution to the overall measured fractionation. The problem may be addressed 
through experiments aimed at determining the Fe(III)aq-ferric hydroxide fractionation factor 
under equilibrium and kinetic conditions, including a range of precipitation rates. It is 
therefore unclear at present if ferric oxides that have positive δ56Fe values in the rock record 
refl ect APIO or abiotic oxidation of Fe(II)aq by high oxygen contents, or, perhaps, UV photo-
oxidation. In addition, only one of the pathways in which Fe(II) is oxidized by biological 
processing has been explored in experiments, and experimental studies of other oxidative 
pathways such as chemolithotrophic oxidation or nitrate reduction would be valuable.
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A useful thought experiment might be to pose the question that if abiotic reductive 
dissolution of ferric oxides/hydroxides and abiotic oxidation of Fe(II) to ferric oxide/hydroxide 
precipitates are eventually shown to produce similar overall Fe isotope fractionations as DIR 
and APIO, respectively, would Fe isotopes be useful as a biosignature at all? We do not know 
if the preceding hypothesis is correct, of course, but the implications of such a question bear 
on future directions Fe isotope geochemistry may take. If redox cycling of Fe involves ferric 
oxides/hydroxides, a mechanism for oxidation of the primary “lithologic” sources of Fe(II) is 
required. In the absence of UV photo-oxidation as a major process for oxidizing Fe, we are 
left with APIO, or increases in ambient O2 contents due to photosynthesis where H2O is the 
electron donor; either of these later cases would indicate that Fe isotopes either directly or 
indirectly indicate the presence of life, although the isotopic compositions may not distinguish 
between possible metabolic processes. Assuming a mechanism for producing ferric Fe oxides/
hydroxides, reduction in the absence of biology would seem to require a redox-stratifi ed 
environment, where, for example, Fe(II)aq in anaerobic environments reacted with ferric oxide/
hydroxides that formed under oxidizing conditions. One possibility for production of reducing 
environments is through sulfi de emanation from MOR vents, but the very low solubility of 
sulfi de minerals suggests that large quantities of Fe(II)aq are unlikely to exist in sulfi de-rich 
environments (e.g., Canfi eld et al. 1992). It may be that formation of redox stratifi cations on 
a planetary body, which should produce signifi cant Fe isotope fractionations, are most likely 
to be produced by life. In summary, evaluation of the usefulness of Fe isotopes in tracing 
biological processing requires detailed consideration of the processes and environments in 
which biological cycling of Fe is likely to occur. Simple comparisons of the range in Fe 
isotope compositions produced by biological and abiological processes (e.g., Rouxel et al. 
2003, 2004) may have limited usefulness in this regard.

A clear avenue of future research is to explore the S-Fe redox couple in biologic 
systems. Bacterial sulfate reduction and DIR may be spatially decoupled, dependent upon 
the distribution of poorly crystalline ferric hydroxides and sulfate (e.g., Canfi eld et al. 1993; 
Thamdrup and Canfi eld 1996), or may be closely associated in low-sulfate environments. 
Production of H2S from bacterial sulfate reduction may quickly react with Fe(II)aq to form 
iron sulfi des (e.g., Sørensen and Jeørgensen 1987; Thamdrup et al. 1994). In addition to these 
reactions, Fe(III) reduction may be coupled to oxidation of reduced S (e.g., Thamdrup and 
Canfi eld 1996), where the net result is that S and Fe may be cycled extensively before they fi nd 
themselves in the inventory of sedimentary rocks (e.g., Canfi eld et al. 1993). Investigation of 
both S and Fe isotope fractionations produced during biochemical cycling of these elements 
will be an important future avenue of research that will bear on our understanding of the 
isotopic variations of these elements in both modern and ancient environments.
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