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ABSTRACT
It has been suggested that the release of clathrates rather than

expansion of wetlands is the primary cause of the rapid increases
observed in the ice-core atmospheric methane record during the
Pleistocene. Because submarine sediment failures can involve as
much as 5000 Gt of sediment and have the capacity to release vast
quantities of methane hydrates, one of the major tests of the clath-
rate gun hypothesis is determining whether the periods of en-
hanced continental-slope failure and atmospheric methane corre-
late. To test the clathrate gun hypothesis, we have collated
published dates for submarine sediment failures in the North At-
lantic sector and correlated them with climatic change for the past
45 k.y. More than 70% by volume of continental-slope failures
during the past 45 k.y. was displaced in two periods, between 15
and 13 ka and between 11 and 8 ka. Both these intervals correlate
with rising sea level and peaks in the methane record during the
Bølling-Ållerød and Preboreal periods. These data support the
clathrate gun hypothesis for glacial-interglacial transitions. The
data do not, however, support the clathrate gun hypothesis for
glacial millennial-scale climate cycles, because the occurrence of
sediment failures correlates with Heinrich events, i.e., lows in sea
level and atmospheric methane. A secondary use of this data set is
the insight into the possible cause of continental-slope failures.
Glacial-period slope failures occur mainly in the low latitudes and
are associated with lowering sea level. This finding suggests that
reduced hydrostatic pressure and the associated destabilization of
gas hydrates may be the primary cause. The Bølling-Ållerød sed-
iment failures were predominantly low latitude, suggesting an early
tropical response to deglaciation, e.g., enhanced precipitation and
sediment load to the continental shelf or warming of intermediate
waters. In contrast, sediment failures during the Preboreal period
and the majority of the Holocene occurred in the high latitudes,
suggesting either isostatic rebound–related earthquake activity or
reduced hydrostatic pressure caused by isostatic rebound, causing
destabilization of gas hydrates.
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INTRODUCTION
Kennett et al. (2003), building on the ideas of Nisbet (1990) and

Haq (1998), have suggested that destabilization of marine and conti-
nental gas hydrates is the primary control on atmospheric methane
variation observed in the ice-core record during the Quaternary (Chap-
pellaz et al., 1993; Brook et al., 1999). They called this concept the
clathrate gun hypothesis to distinguish it from the more generally ac-
cepted wetland methane hypothesis, which suggests that expansion and
contraction of wetlands are the primary causes of methane variability
(e.g., Brook et al., 1999; Maslin and Burns, 2000). One crucial test of
the clathrate gun hypothesis is determination of the temporal sequence
of the continental-slope failures that are essential to the release of ma-
rine methane hydrates. This evaluation is necessary because only cat-
astrophic sediment failures can cause sufficient explosive release of

methane hydrates to overcome consumption, oxidation, and dissolution
within the sediments and the lower water column (e.g., Paull et al.,
2003), and so directly affect atmospheric methane. We have produced
the first temporal sequence of continental-slope failures for the past 45
k.y. This history allows us to test the clathrate gun hypothesis and to
investigate the most likely causes of these failures.

COLLATION OF DATA
In this study we collated 27 dated continental-slope failure de-

posits in the North Atlantic sector, including the Nordic Seas and the
Mediterranean Sea, for the past 45 k.y. (see Table 1; locations are
shown in Fig. 1). This region was chosen for two reasons: it is the
most intensively studied area with the most dated slides, and it is par-
ticularly susceptible to continental-slope failure owing to the proximity
of massive Quaternary ice sheets. Dating the occurrence of slope fail-
ure remains problematic, so we have attempted to estimate the reli-
ability of the dates for the occurrence of each deposit. We stress that
the age reliability index (Table 1) is not an attempt to grade the re-
search, but rather a measure of the difficulties encountered with dating
each individual deposit.

LINKING CONTINENTAL-SLOPE FAILURE TO CLIMATE
CHANGE

Figure 2 compares the number and total size of deposits in 1 k.y.
intervals for the past 45 k.y. with relative global sea-level change; the
interval of 1 k.y. was chosen to allow for analytical errors associated
with radiocarbon dating and conversion to calendar years. Figure 2
shows that there is a strong coincidence between the occurrences of
the slope failures and climatically induced changes in relative global
sea level over the past 45 k.y.

During the last glacial period, between 45 ka and 16 ka, there are
nine dated slope failures that correlate with Heinrich events (Fig. 2).
These slope failures occur in the middle to low latitudes (Fig. 3A) and
correlate with drops in sea level (Chappell et al., 1996). This correla-
tion suggests that the most likely explanation for slope failures during
the last glacial period is lowering sea level leading to reduced hydro-
static pressure and thus destabilized gas hydrate deposits (e.g., Haq,
1998; Maslin et al., 1998; Rothwell et al., 1998; Kennett et al., 2003).

Of the volume of displaced sediment represented in the entire data
set, 70% was produced during two short periods, 15–13 ka and 8–11
ka (Fig. 3). The first of these periods occurred during the Bølling-
Ållerød. It involves four major submarine slides and correlates with
the first increase in sea level associated with deglaciation. This 2000
yr peak includes the Canary Island debris flows, totaling 400 km3

(Masson et al., 1998), and Amazon debris flows, totaling 3500 km3

(Maslin et al., 1998). All these failures occurred in the low latitudes,
suggesting a rapid response to the onset of deglaciation at these lati-
tudes. Relevant climate changes that occurred in this period include
(1) increased deep- and intermediate-water temperature that may have
caused gas hydrate destabilization, as suggested for the Cape Fear slide
(Popenoe et al., 1991) and for the Santa Barbara Basin (Kennett et al.,
2003), and (2) an increased continental wetness that may have pro-
duced increased sediment deposition (Maslin et al., 1998). In addition,
shifting of the depocenters from the Amazon Fan onto the continental
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TABLE 1. OCCURRENCE AND DISTRIBUTION OF MASS-TRANSPORT DEPOSITS IN THE NORTH ATLANTIC REGION FOR THE PAST 45 k.y.

Name Location Type Age*
(yr B.P.)

Age rel.
index†

Volume
(km3)

Reference

Grand Banks Sohm Abyssal Plain turbidite 70 1 185 Piper and Asku (1987)
Canadian Abyssal Plain (CAP)

turbidite 1
Canadian Abyssal Plain turbidite 1300 4 80 Grantz et al. (1996)

CAP turbidite 2 Canadian Abyssal Plain turbidite 2400 4 80 Grantz et al. (1996)
CAP turbidite 3a Canadian Abyssal Plain turbidite 3100 4 240 Grantz et al. (1996)
Sirte margin Southeast Mediterranean turbidite 3500 1 165 Rebesco et al. (2000)
Trænadjupet Norwegian margin slide 4100 3 900 Laberg and Vorren (2000)
CAP turbidite 3b Canadian Abyssal Plain turbidite 6000 3 160 Grantz et al. (1996)
Storegga Norwegian margin submarine 8150 1 3500 Jansen et al. (1987), Evans et al. (1996),

slide Bouriak et al. (2000), Bryn et al. (2003)
Baltimore Canyon U.S. East Coast margin slide complex 8000–9000? 5 200 Embley and Jacobi (1986)
CAP turbidite 4 Canadian Abyssal Plain turbidite 8200 4 80 Grantz et al. (1996)
Andøya Norwegian margin slide 9000 5 485 Laberg et al. (2000)
Faeroe slide Northeast Faeroe margin slide 10,300 4 135 Van Weering et al. (1998)
Peach slide, event 4 Barra Fan, Scottish margin debris flow 10,500 4 135 Holmes et al. (1998), Kuntz et al. (2001)
BIG’95 Western Mediterranean debris flow 11,500 4 26 Lastras et al. (2002)
Western debris flow Amazon Fan debris flow 13,000 1 2000 Maslin et al. (1998)
Eastern debris flow Amazon Fan debris flow 14,500 3 1500 Maslin et al. (1998)
Madeira b turbidite Madeira Abyssal Plain turbidite 15,000 2 125 Weaver and Rothwell (1987)
Canary debris flow Canary Island margin debris flow 15,000 2 400 Masson et al. (1998)
Black Shell turbidite Hatteras Abyssal Plain turbidite 16,900 4 180 Elmore et al. (1979)
Cape Fear slide Blake Ridge slide 16,800 3 1400 Popenoe et al. (1991)
H13 turbidite Horseshoe Abyssal Plain turbidite 17,700 4 33 Lebreiro et al. (1997)
Peach slide, event 3 Barra Fan, Scottish margin debris flow 21,000 4 199 Holmes et al. (1998), Kuntz et al. (2001)
Balearic Abyssal Plain West Mediterranean turbidite 22,000 1 500 Rothwell et al. (1998)
Herodotus Basin Southeast Mediterranean turbidite 27,125 2 400 Reeder et al. (2000)
Deep eastern MTD Amazon Fan debris flow 35,000 2 610 Maslin et al. (1998)
Peach slide, event 2 Barra Fan, Scottish margin debris flow 36,500 4 673 Holmes et al. (1998), Kuntz et al. (2001)
Deep western MTD (unit R) Amazon Fan debris flow 43,500 2 630 Maslin et al. (1998)

*The age before present is in calendar years, and any radiocarbon dates have been converted by using Calib 4 (Stuiver and Reimer, 1993).
†The age reliability index is a broad qualitative estimate of the reliability of the age provided for each mass-transport deposit (MTD). We stress that this is not an attempt

to grade the research, but rather that it is a measure of the difficulties encountered with dating each individual deposit. The age reliability index is ranked as follows: 1 5
excellent, 2 5 good, 3 5 average, 4 5 below average, and 5 5 poor. For example, an ‘‘excellent’’ (1) indicates reliable and reproduced radiocarbon dates at least above
and below the deposit and in some cases within the deposit. In contrast, a ‘‘poor’’ (5) indicates either no radiocarbon dates and that ages were inferred by correlation to
adjacent dated sediment cores or that there has been significant erosion of sediments underlying the MTD.

Figure 1. Location of mass-transport deposits identified in Table 1, compared with modern-day seismic risk
and plate boundaries (Giardini, 1999).
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Figure 2. Total volume of mass transport or slide deposits (black
bars) and number of failures (small numbers next to bars) compared
with mean relative sea level (curve) for past 45 k.y. (McGuire et al.,
1997). Heinrich events (H1–H5) and Younger Dryas (YD) are shown
for comparison.

Figure 3. Total volumes of mass transport or slide deposits are com-
pared with (A) mean sea level (McGuire et al., 1997), (B) rate of sea-
level change (McGuire et al., 1997), and (C) atmospheric methane
(Brook et al., 1999). Note that in B, current predicted sea-level rise
over next century due to global warming has been plotted for com-
parison. Note that in C, shaded region indicates distinct Northern
Hemisphere methane source (Dällenbach et al., 2000). Plot of lati-
tude of each slide deposit (D) shows marked change from predom-
inantly low-latitude occurrences prior to ca. 14 ka to high-
latitude occurrences after 11 ka. BA—Bølling-Ållerød; PB—
Preboreal.

shelf has been suggested as a possible cause of the Amazon Fan debris
flows (Maslin et al., 1998).

The second of these periods of frequent slope failures occurred
during the Preboreal period. It includes seven recorded slope failures
and coincides with the maximum rate of sea-level rise that has occurred
in the past 45 k.y., to 15 m/k.y. (Fig. 3C). The largest events in this
period are the Storegga slide, 3500 km3 (e.g., Bryn et al., 2003), and
the Andøya failure, 485 km3 (Laberg et al., 2000). Most of the slope
failures during the Preboreal and Holocene are in the high latitudes,
suggesting a direct link to isostatic rebound caused by the retreat of
the Laurentian and Fennoscandian Ice Sheets. Isostatic rebound has two
major influences on slope stability. (1) Extensive isostatic rebound pro-
duces a shallowing of the continental shelf that reduces hydrostatic
pressure and may cause gas hydrates in the sediment to destabilize,
which in turn would cause the continental slope to fail. (2) Isostatic
rebound also produces significant related seismicity, and earthquakes
are known to cause submarine slope failures (Morner, 1991). For ex-
ample, Holocene landslides on land have also been linked to major
earthquakes in continental-shield areas previously covered by thick ice
sheets (Aylsworth et al., 2000). The correlation between Holocene
high-latitude continental-slope failures and regions of elevated intra-
plate seismic hazard (Giardini, 1999) is notable (Fig. 1). This corre-
lation implies that the largest threat to continental-slope stability in the
possible greenhouse future is melting of the ice-sheet margins and the
resultant isostatic rebound. There is evidence that these processes are
occurring in Antarctica (Kreemer and Holt, 2000) and Greenland (e.g.,
Thomas, 2001).

TESTING THE CLATHRATE GUN HYPOTHESIS
Kennett et al. (2003) suggested that the enhanced levels of at-

mospheric methane during Dansgaard-Oeschger interstadials were due
to the release of large quantities of methane hydrates. The temporal
sequence of large continental-slope failures in this study does not sup-
port the clathrate gun hypothesis because the slides occur during stadial
periods. This does not, however, rule out the possible influence of
intermediate water temperature on the stability of gas hydrate deposits
(Kennett et al., 2003).

Timing of large continental-slope failures supports the clathrate
gun hypothesis as envisaged by Kennett et al. (2003) for deglaciation.
For example, during the Bølling-Ållerød period, coinciding with a rise
of .200 ppbv in atmospheric methane, two massive slides occurred
on the Amazon Fan, both roughly the size of Jamaica. Maslin et al.
(1998) has shown that these slides originated within water depths at
which gas hydrates are most susceptible to disassociation (200–600 m

water depth). Moreover, at the time of these events, all species of
planktonic foraminifera across the Amazon Fan recorded a pronounced
22‰ spike in d13C values (Maslin et al., 1997), supporting the view
of a massive coeval release of methane hydrates, which are very de-
pleted in 13C. Depending on the assumed quantity of pore space oc-
cupied, each one of these slides has the capacity to release 5–20 Gt of
methane.
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The evidence for the coincidence of slides with elevated methane
levels during the Preboreal period is even better, because seven slides
occurred within this period, including the massive Storegga slide. The
suggestion that there was a significant release of methane due to
continental-slope failures in the North Atlantic sector during the
Bølling-Ållerød and Preboreal is also supported by the strong Northern
Hemisphere influence on the Inter-Polar methane gradient (Dällenbach
et al., 2000), shown in Figure 3. Further support comes from global
carbon isotope budgeting, which suggests that at least 30% of the rise
in atmospheric methane during the deglaciation can be attributed to
methane hydrates (Maslin and Thomas, 2003).
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