УДК 533.461:553.061.12

ХРОМИТОВАЯ МИНЕРАЛИЗАЦИЯ В ПОРОДАХ МАФИТ-УЛЬТРАМАФИТОВОГО МАССИВА ГАЛЬМОЭНАН, КОРЯКИЯ (РОССИЯ)

© 2004 г, Е. Г. Сидоров*, А. Б. Осипенко**, А. П. Козлов***, А. И. Костоянов****

* Институт вулканологии ДВО РАН 683006, Петропавловск-Камчатский, бульвар Пийпа, 9 ** Государственный геологический музей им. В.И. Вернадского РАН 103009, Москва, ул. Моховая, 11/2 ***3АО " Корякгеолдобыча" 688810, пос. Корф, Корякский АО, ул. Луговая, 18 ****Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского 199106, Санкт-Петербург, Средний просп., 74 Поступила в редакцию 10.09.2003 г.

Приводятся результаты исследования рудной и акцессорной хромитовой минерализации в породах зонального мафит-ультрамафитового массива Гальмоэнан, расположенного в южной части Олюторской зоны Корякского нагорья. По структурно-текстурным особенностям выделены шесть морфологических типов хромшпинелидов. Составы рудных и акцессорных хромшпинелидов, а также из хромшпинелидов, образующих срастания с МПГ и включения-узники в МПГ, варьируют в широком диапазоне и соответствуют непрерывному изоморфному ряду хромит - хромпикотит - феррихромит - хроммагнетит. Рудные хромшпинелиды характеризуются повышенными хромистостью и степенью окисления железа, при умеренной магнезиальности и титанистости, в то время как для акцессорных хромшпинелидов из дунитов типичны более высокие содержания TiO₂, *Σ*FeO и MnO при более низкой хромистости минералов. Составы хромитов из срастаний с МПГ близки к составам рудных хромшпинелидов. Рассчитанные параметры термодинамического режима формирования хромитовой минерализации свидетельствуют об условиях сравнительно низких температур процесса хромитообразования при относительно высоких значениях фугитивности кислорода. Изотопный состав Оѕ в МПГ из пород массива свидетельствует об их формировании в мантийном субстрате до его перемещения в верхние горизонты коры. Модельные Re-Os-датировки МПГ находятся в интервале 250-350 млн. лет, что близко к модельным Re-Os-возрастам МПГ из большинства зональных мафит-ультрамафитовых комплексов региона. Формирование коренной хромит-платинометальной минерализации массива Гальмоэнан происходило в два этапа - на раннемагматическом ЭПГ экстрагировались из первичных высокотемпературных мантийных расплавов, а на позднемагматическом осуществлялся перенос МПГ и формирование их локальных скоплений в хромититах.

ВВЕДЕНИЕ

Пространственная связь платинометального оруденения с рудными скоплениями хромшпинелидов была установлена в начале XIX в. в зональных клинопироксенит-дунитовых массивах Платиноносного пояса Урала, а впоследствии подтверждена исследованиями H.K. Высонкого. A.H. Заварицкого, А.Г. Бетехтина и многих других исследователей (подробный исторический обзор приводится в монографии О.К. Иванова (1997)). В настоящее время идея локальной и генетической связи платины и хрома доказана в большинстве положений и широко используется в качестве критерия при покоренной платинометальной минерализации иске массивах зонально-концентрического типа И скоплений минералов платиновой группы (МПГ) в россыпных проявлениях, для которых породы

Адрес для переписки: А.Б. Осипенко. E-mail: <u>alex@sgm.ni</u>

таких массивов являются коренным источником платиновой группы (ЭПГ) элементов (Геология..., 1994; Петрология..., 1994; Малич, 1999: Nixon et al., 1990; Slansky et al., 1991; Garuti et al., 1997; Johan et al., 2000 и др.). Интерес к массивам зонально-концентрического типа в Олюторской тектонической зоне Корякского нагорья заметно возрос в 80-90-х годах XX в. в связи с открытием уникальных россыпей платины, локализованных по периферии массива Гальмоэнан (Кутыев и др., 1991; Мелкомуков, Зайцев, 1999; Зайцев и др., 2001; Толстых и др., 2001; Корякско-Камчатский..., 2002; Мочалов и др., 2002). Детальные минералого-геохимические исследования пород массива Гальмоэнан, проведенные авторами, позволили коренной платиномевыявить несколько типов тальной минерализации, главным из которых является хромит-платинометальный (Козлов, 2000: Сидоров, 2000). В этой связи, несмотря на отсутствие промышленно значимых коренных проявлений хромитовых руд, не вызывает сомнения важность изучения различных аспектов хромитового оруденения в породах массива: закономернопространственной локализации, особенносстей тей морфологии и вещественного состава различных типов хромитовой минерализации, вопросов генетической связи платинометального и хромитового оруденения и др. В статье авторами рассматривается как рудная, так и акцессорная хромитовая минерализация в породах массива Гальмоэнан, обсуждаются петрогенетические аспекты формирования хромититов и дается оценка потенциальной хромитоносности массивов изученного типа. Последнее, в контексте связи хромитового и платинометального оруденения, также позволяет оценить перспективы массива на поиски коренных скоплений МПГ.

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ МАССИВА

Мафит-ультрамафитовый массив Гальмоэнан расположен на юго-западе Ватыно-Вывенкского сегмента Олюторской тектонической зоны, которая занимает южную часть Корякского нагорья (фиг. 1а, 1б) и представляет собой коллаж перемещенных окраинноморских и островодужных тераккретированных палеоазиатской рейнов, К окраине в эоцене (Богданов и др., 1982; Леднева и др., 2000 и др.). Большинство исследователей склонно считать, что массив, как и большинство других дунит-клинопироксенит-габбровых массивов в Олюторской зоне, по особенностям своего строения и состава слагающих его пород обнаруживает черты несомненного сходства с зонально-концентрическими массивами Платиноносного пояса Урала, юго-восточной Аляски, Британской Колумбии (Аникеева, 1976; Батанова и др., 1991; Батанова, Астраханцев, 1992; Козлов, 2000; Марков-2000; Корякско-Камчатский.... ский. Сидоров, 2002 и др.) и однотипен с ними. В то же время следует отметить, что некоторые геолого-петрологические и геохимические особенности мафитультрамафитовых массивов Олюторской зоны допускают и иную формационную типизацию этих образований (например, Леднева, 2001).

Массив Гальмоэнан (фиг. 1в) входит в состав крупного тектонического останца, находящегося во фронтальной части Ватыно-Лесновского надвига. останец сложен верхнемеловыми-палеоце-Этот окраинноморскими кремнисто-вулканоновыми островодужными вулканогенно-тергенными И толщами, аллохтонно залегающими ригенными флишоидных коньяк-эоценовых отложениях на Укэлаятского прогиба (Богданов и др., 1982; Леднева и др., 2000; Соловьев и др., 2001 и др.). При этом сам массив представлен серией самостоятельных тектонических пластин, состоящих ИЗ магматических пород ультраосновного и основного состава и занимающих наиболее высокое структурное положение в строении всего останца. В свою очередь пластины разбиты на отдельные блоки крутопадающими разломами северовосточного и субмеридионального простираний и пологими (10°-15°) надвигами северо-западной вергентности.

Наиболее крупная из пластин массива Гальмоэнан, вытянутая в северном направлении на 16 км при ширине от 2.5 до 4.0 км, сложена породами мафит-ультрамафитового комплекса: дунитами, верлитами, оливиновыми и магнетитовыми клинопироксенитами, клинопироксеновыми горнблендитами и габбро. На долю ультраосновных пород приходится более 90%. Около 70% общей площади массива занимают дуниты различных петроструктурных типов, которые обнаруживают отчетливые следы нескольких этапов высокотемпературных твердопластических деформаций (Батанова и др., 1991; Полянин и др., 2000). Дуниты слагают ядро, постепенно сменяясь к периферии массива клинопироксенитами и габброидами. Габброиды залегают в виде прерывистой цепочки мелких линзовидных тел (протяженностью не более 150-500 м) на границе ультрамафитов и вмещающих пород. Предполагается, что они никогда не образовывали сплошной оболочки и изначально слагали разобщенные тела. Аналогичную позицию занимают оливиновые клинопироксениты и клинопироксеновые горнблендиты, образующие тектонически обособленную пластину на северо-западе При кажущейся простоте разреза отмассива. фрагменты представлены разнообдельные его разными петрографическими типами и находятся в сложных генетических и структурных взаимоотношениях. Контакты между различными петрографическими типами пород массива и с породами рамы повсеместно тектонические и маркируются зонами милонитов и тектонических брекчий. Лишь габброиды предположительно имеют интрузивный контакт с вмещающими массив вулканогенно-осадочными образованиями (Батанова и др., 1991). Бескорневая природа массива полчеркивается развитием в южной части массива мономиктового серпентинитового меланжа (фиг. 1в). Породы массива секутся дайками, состав которых варьирует от клинопироксенитов до лейкогаббро и амфиболовых габбро.

В строении массива Гальмоэнан (также как и большинства других массивов зонально-концентрического типа) преобладают породы дунит-верлитклинопироксенит-габбровой ДВКГ серии, претерпевшие преобразование в процессе твердопластических и хрупких деформаций (Батанова и др., 1991; Козлов, 2000; Леднева и др., 2000; Марковский, Сидоров, 2000). В то же время в строении габброидной части массива принимают участие породы ряда других магматических серий (Сидоров и др., 2001; Осипенко и др., 2002), в основе выделения

Фит. 1. Тектоническая позиция и геологическое строение мафит-ультрамафитового массива Гальмоэнан. а - положение Олюторской тектонической зоны Корякского нагорья; б - расположение района исследования (показано стрелкой) в Олюторской тектонической зоне (заштриховано); в - схема геологического строения массива Гальмоэнан (по Батановой и др., 1991 с изменениями и дополнениями).

четвертичные аллювиальные отложения; 2 - терригенно-вулканогенные отложения корякской серии (К₂-Р₁); 3 - вулканогенно-кремнистые породы ватынской серии (К₂); 4—8 - породы массива Гальмоэнан: 4 - дуниты; 5 - верлиты;
6 - клинопироксениты; 7 - габброиды; 8 - серпентинитовый меланж; 9 - зоны ороговикования; 10 - границы: текто-нические - граница аллохтона (*a*), геологические (б); 11 - разрывные нарушения.

которых лежат главным образом геохимические характеристики различных типов базитов. Подробные сведения о геологическом строении массива, геохимических, петрографических и петроструктурных типах слагающих его пород, химическом составе основных породообразующих минералов приведены в работах (Батанова и др., 1991; Батанова, Астраханцев, 1992; Козлов, 2000; Сидоров и др., 2001; Корякско-Камчатский..., 2002; Осипенко и др., 2002; Batanova, Astrakhantsev, 1994 и др.).

В контексте рассматриваемых в статье вопросов особое внимание привлекает развитие в породах массива хромитовой минерализации. Ниже приводится подробное описание различных типов ее проявления.

ФОРМЫ ПРОЯВЛЕНИЯ ХРОМИТОВОЙ МИНЕРАЛИЗАЦИИ

Морфологические особенности проявления хромитовой минерализации в массиве Гальмоэнан во многом аналогичны установленным для зональных комплексов урало-аляскинского типа, локализованных в Платиноносном поясе Урала, на юго-восточной Аляске, Алданском щите, в Британской Колумбии и в других регионах (Петрология..., 1994; Иванов, 1997; Малич, 1999; Findlay, 1969; Murray, 1972; Himmelberg, Loney, 1995 и др.). морфологические типы выделений Основные представлены рудными и акцессорными разновидностями хромшпинелидов, а также хромитовыми включениями в зернах МПГ. Под акцессорным в данной работе понимается хромшпинелид, который присутствует в породе, но макроскопически не диагностируется. Его видимая разновидность представляет вкрапленный тип рудной хромитовой минерализации. В процентном отношении акцессорный хромит по распространенности резко подчинен и составляет первые доли процента породы, в то время как вкрапленный - первые проценты. В свою очередь как акцессорный, так и рудный типы хромитовой минерализации характеризуются несколькими морфологическими разновидностями. Всего в массиве Гальмоэнан выделены шесть разновидностей хромшпинелидов:

1. Акцессорный хромшпинелид в оливине, представленный субмикроскопическими выделениями ветвистой, дендритоподобной, пластинчатой, веретенообразной и игольчатой формы.

2. Акцессорный хромшпинелид, представленный мелкими идиоморфными и гипидиоморфными кристалликами (0.01-0.1 мм), обычно приуроченными к стыкам оливиновых зерен (фиг. 2а).

3. Рудный хромшпинелид вкрапленного или рассеяно-вкрапленного типа, располагающийся на стыках оливиновых зерен (фиг. 2б). В зависимости от размера зерен хромшпинелидов могут

быть выделены мелкозернистые (0.1-1 мм), среднезернистые (1-3 мм) и крупнозернистые (более 3 мм) разновидности. Вкрапленные разновидности хромшпинелидов также могут подразделяться на густо-, средне- и редковкрапленные. Для массива Гальмоэнан наиболее типичны средне- и разновидности рудной хромиредковкрапленные товой минерализации. Зерна хромшпинелидов, как правило, имеют гипидиоморфную форму, их содержание колеблется от долей процента ло первых процентов.

4. Шлировый и прожилково-вкрапленный рудный хромшпинелид, слагающий хромшпинелидоливиновые обособления, в которых содержания хромшпинелида варьирует от 20 до 70%, а размер зерен хромшпинелида, как правило, не превышает 1-2 мм (фиг. 2в, 2г).

5. Жильный рудный хромшпинелид из массивных и брекчиевых хромититов с размером зерен от долей миллиметра до нескольких миллиметров. В хромититах с пандиоморфнозернистой структурой узкие промежутки между зернами хромшпинелидов выполнены серпентином или оливином, в породах с гипидиоморфнозернистой структурой - оливином. Содержание хромшпинелида колеблется от 85 до 95%.

6. Включения мелких индивидов хромшпинелидов в МПГ, представленные идиоморфными кристалликами и их обломками размером от 20-30 мкм до десятых долей мм, сцементированные изоферроплатиновыми твердыми растворами (фиг. 2д), а также срастания мелких (до 40 мкм) кристаллов хромшпинелидов с МПГ.

Эти морфологические разновидности встречаются совместно и тесно связаны друг с другом постепенными переходами. Так, в частности, довольно часто не представляется возможным провести четкую границу между рудными хромититами и хромитсодержащими дунитами, так как акцессорная вкрапленность хромшпинелидов с увеличением их модального количества и размеров минералов переходит в рудную и наоборот.

Сегрегации рудных хромшпинелидов характеризуются исключительным многообразием текстурных особенностей при незначительной мощности и протяженности рудных тел (площадь распространения хромитовых проявлений очень редко превышает 30 м²). В зависимости от текстурных особенностей можно выделить основные типы рудных выделений: петельчато-жилообразные, шлировые, массивные, неравномерно-петельчатые, неравномерно-вкрапленные, прожилковые, струйчато-петельчатые, густовкрапленные, массивные с вклюраспространение чением дунита. Ограниченное среди хромититов имеют брекчиевые текстуры. Наибольший интерес в силу своей платиноносности представляют прожилково-вкрапленные и густовкрапленные хромитовые руды, пространст-

ХРОМИТОВАЯ МИНЕРАЛИЗАЦИЯ

Фиг. 2. Морфологические типы хромитовой минерализации в массиве Гальмоэнан. а - акцессорный; б - рудный густовкрапленный (а, б - хромшпинелид - черное; оливин - светлое, увел. 40); в - шлировый (масштабная линейка 20 см); г - прожилково-вкрапленный; д - включениея хромшпинелидов (темное) в изоферроплатиновой матрице (светлое) (снимок в обратно рассеянных электронах, масштабная линейка 100 мкм).

венно связанные главным образом с областями распространения дунитов порфирокластического типа, где локализация хромшпинелидов приурочена к интерстициям между порфирокластами оливинов и трещинам деформаций в них.

Жильные и шлировые обособления хромшпинелидов распределены во вмещающих породах крайне неравномерно. Жильные хромититы мощностью от долей до 3-4 см секут дуниты, гораздо реже они встречаются в оливиновых клинопироксенитах и верлитах. Шлировые сегрегации в дунитах также характеризуются небольшими размерами (как правило, 1-5 см в поперечнике, лишь иногда достигают десятков сантиметров).

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 46

Размеры зерен хромшпинелидов в жильных и шлировых выделениях варьируют в широких пределах, но обычно это - средне- и мелкозернистые разности. Контакты с вмещающими породами резкопостепенные - сплошные сегрегации сменяются хромитовой вкрапленностью.

Многообразие текстур хромититов отражает, прежде всего, специфику обстановки их формирования. Для рудных платиноносных хромититов характерны малоамплитудные сколовые, сдвиговые и разрывные дислокации, а также трещины растяжения и контракции. Выделяются несколько генераций трещин, связанных с этапами структурных деформаций пород дунитового ядра мас-

№ 3 2004

сива Гальмоэнан. Эти этапы динамометаморфических преобразований отражаются также в строении индивидуальных зерен хромшпинелидов в виде систем разноориентированных микротрещин, образовавшихся в различные временные интервалы и выполненных МПГ и слоистыми гидросиликатами (хлоритом, серпентином).

Своеобразие проявления рудной хромитовой минерализации в массиве Гальмоэнан связано с подиформнымым характером залегания значительного количества тел хромититов (образующих, как правило, линзообразные выделения в дунитах), что более характерно для тектонизированных мантийных ультрамафитов офиолитовых комплексов, а не для массивов зонально-концентрического типа, где хромитовые рудные скопления чаще всего относятся к стратиформному типу. Отмеченный факт находится в соответствии с предположением о твердофазном внедрении дунитового диапира массива Гальмоэнан (Батанова и др., 1991).

Зерна акцессорных хромшпинелидов в дунитах распределяются неравномерно. Они встречаются как в виде отдельных зерен, так и в агрегатных скоплениях, обособленных как по периферии, так и во внутренних частях средних и крупных индивидов оливина. Иногда зерна хромшпинелидов образуют цепочки и маломощные жилки. Размер отдельных зерен варьирует от долей миллиметра - до 2-3 мм. Форма зерен разнообразна: неправильная, округлая, почти квадратная эвгедральная, ромбовидная и др. В проходящем свете хромшпинелиды обычно окрашены в черный цвет вследствие их интенсивного замещения магнетитом, реже в центральных частях - темно-бурые.

В серпентинизированных разновидностях дунитов встречается магнетит, представленный тонкодисперсной вкрапленностью, мелкими зернами (размером до 0.1-0.3 мм) либо тонкими ветвящимися жилками. В этих же породах нередки случаи образования хром-магнетитовых кайм по периферии зерен первичных хромшпинелидов.

МЕТОДЫ ИССЛЕДОВАНИЯ

Химический состав минералов в исследуемых породах определялся на микроанализаторе "Сатеbax-micro", оборудованном энерго-дисперсионным спектрометром "Кеvex" в Институте вулканологии ДВО РАН, г. Петропавловск-Камчатский (аналитики - В.М. Чубаров, С.В. Москалева). Составы минералов измерялись в точке при ускоряющем напряжении - 20 кВ, токе зонда - 15 нА (для МПГ ток - 20-30 нА) и времени счета -10 с на каждой аналитической линии, а также с применением стандартных процедур коррекции и программ, учитывающих экспериментально рассчитанные коэффициенты наложения линий интерференции. В качестве стандартов использовались составы синтетических и природных минералов.

Анализ изотопного состава осмия осуществлялся в индивидуальных зернах МПГ с помощью масс-спектрометрии электроотрицательных ионов (NTI-MS) на модернизированном масс-спектрометре МИ-1320 (Костоянов, 1998). Погрешность измерения не превышала 0.3 отн. %. В произмерений осуществлялась нормировка пессе отношений, которая учитывала изобарные И масс-дискриминационные эффекты. Поправка на масс-фракционирование проводилась в соответствии с экспоненциальным характером зависимости изотопных эффектов от массы регистрируемых ионов. Как правило, в каждом опыте регист-250 масс-спектров. рировалось Результаты анализов МПГ из россыпных проявлений, локализованных по периферии массива Гальмоэнан, приведены в работе (Корякско-Камчатский..., 2002).

ХИМИЧЕСКИЙ СОСТАВ ХРОМШПИНЕЛИДОВ

В целом следует отметить, что составы проанализированных рудных и акцессорных хромшпинелидов, а также хромшпинелидов из включений в зернах МПГ достаточно близки между собой. По основным индикаторным химическим характеристикам (хромистость, магнезиальность, титанистость и др.) они также обнаруживают значительное сходство с хромшпинелидами больдругих зональных мафит-ультрамафишинства комплексов Корякского нагорья (Грановтовых ский. Гуляева, 1981; Батанова, Астраханцев, 1992; 2001; Корякско-Камчатский..., Лелнева. 2002; Kepezhinskas et al., 1993; Batanova, Astrakhantsev, 1994) и других районов мира (Павлов и др., 1979; Петрология..., 1994; Малич, 1999; Пушкарев, 2000; Himmelberg, Loney, 1995; Barnes, Roeder, 2001; Johan et al., 2000 и др.). Это находит свое отражение в близком расположении фигуративных точек и полей составов минералов на диаграммах (фиг. 3, 4). В то же время хромшпинелиды каждого из изученных морфологических типов характеризуются специфическими особенностями химизма.

Состав большинства рудных хромшпинелидов массива Гальмоэнан (табл. 1) позволяет отнести их к ферри- и субферрихромитам (по классификации Н.В. Павлова и др. (1979)). Хромшпинелиды из рудных сегрегаций характеризуются высокой хромистостью (Сг# = 0.65-0.83), умеренной магнезиальностью (Mg# = 0.35-0.68) и высокой степенью окисления железа (Fe3# = 0.17-0.29), а также сравнительно низкими содержаниями алюминия ($A1_2O_3 = 6.32$ -11.18 мас. %) (табл. 1). Это свидетельствует об их сходстве с рудными и акцессорными хромшпинелидами из ультрамафитов типичных зональных комплексов урало-аляскинского типа (Barnes, Roeder, 2001) (фиг. 3а-3в).

-	3-6		5-26		5-36		5-39		8-18		8-51		10-28		23-8		43-17	
Компо- ненты	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
TiO ₂	0.34	0.38	0.36	0.33	0.44	0.44	0.36	0.31	0.38	0.41	0.48	0.51	0.33	0.50	0.46	0.43	0.41	0.40
$A1_2O_3$	10.37	11.18	6.61	6.55	6.91	6.83	8.46	8.29	8.18	8.46	11.29	14.67	6.68	8.60	7.73	8.27	6.41	6.32
Cr_2O_3	46.59	44.87	48.57	48.56	48.51	48.38	50.11	49.57	48.25	48.97	44.38	40.92	44.58	44.52	43.22	44.05	43.90	45.97
FeO*	33.94	34.60	34.85	34.38	32.06	32.44	31.05	31.00	33.57	35.41	33.85	31,96	41.88	39.35	37.76	36.55	39.85	37.51
MnO	0.67	0.81	0.58	0.62	0.49	0.48	0.68	0.67	0.76	0.86	0.48	0.51	0.91	0.76	0.53	0.41	0.44	0.51
MgO	8.24	7.77	10.01	9.39	10.97	10.70	9.63	10.11	9.10	6.86	9.95	10.79	4.81	6.27	10.69	10.94	9.24	9.01
NiO	0.00	0.00	0.01	0.03	0.01	0.02	0.04	0.02	0.04	0.00	0.00	0.10	0.00	0.00	0.00	0.00	0.06	0.00
Сумма	100.15	99.61	100.99	99.86	99.39	99.29	100.33	99.97	100.28	100.97	100.43	99.46	99.19	100.00	100.39	100.65	100.31	99.72
Fe ₂ O ₃ **	22.82	23.09	27.25	26.10	25.44	25.56	21.59	22.49	24.22	22.67	24.96	23.75	28.99	27.09	32.14	30.65	32.82	29.91
FeO**	13.40	13.82	10.33	10.90	9.17	9.44	11.62	10.77	11.78	15.01	11.39	10.59	15.80	14.98	8.84	8.97	10.32	10.60
Al	3.154	3.413	1.999	2.010	2.107	2.089	2.572	2.521	2.492	2.597	3.370	4.336	2.115	2.660	2.318	2.468	1.950	1.933
Ti	0.066	0.074	0.070	0.065	0.086	0.086	0.070	0.060	0.074	0.080	0.092	0.096	0.067	0.099	0.088	0.082	0.080	0.078
Cr	9.501	9.186	9.847	9.995	9.921	9.922	10.214	10.107	9.859	10.082	8.883	8.111	9.464	9.234	8.691	8.817	8.955	9.428
Fe ³⁺	4.431	4.500	5.259	5.113	4.954	4.989	4.190	4.365	4.711	4.443	4.756	4.482	5.858	5.348	6.152	5.839	6.374	5.839
Fe ²⁺	2.895	2.997	2.218	2.375	1.985	2.051	2.509	2.325	2.548	3.273	2.415	2.222	3.551	3.290	1.883	1.902	2.229	2.302
Mn	0.147	0.178	0.126	0.137	0.107	0.106	0.149	0.147	0.167	0.190	0.103	0.108	0.207	0.169	0.114	0.088	0.096	0.112
Mg	3.172	3.003	3.831	3.648	4.235	4.142	3.706	3.891	3.510	2.666	3.760	4.037	1.928	2.455	4.058	4.134	3.558	3.604
Ni	0.000	0.000	0.002	0.006	0.002	0.004	0.008	0.004	0.008	0.000	0.000	0.020	0.000	0.000	0.000	0.000	0.012	0.000
Катионы	23.366	23.351	23.352	23.349	23.397	23.389	23.418	23.420	23.369	23.331	23.379	23.412	23.190	23.255	23.304	23.330	23.254	23.296
Cr#	0.75	0.73	0.83	0.83	0.83	0.83	0.80	0.80	0.80	0.80	0.72	0.65	0.82	0.78	0.79	0.78	0.82	0.83
Mg#	0.52	0.50	0.63	0.61	0.68	0.67	0.60	0.63	0.58	0.45	0.61	0.64	0.35	0.43	0.68	0.68	0.61	0.59
Fe3#	0.26	0.26	0.31	0.30	0.29	0.29	0.25	0.26	0.28	0.26	0.28	0.26	0.34	0.31	0.36	0.34	0.37	0.34

Таблица 1. Представительные составы хромшпинелидов из рудных хромититов массива Гальмоэнан (мас. %)

Примечание. Здесь и в табл. 2 и 3: * - все Fe в виде FeO; ** - Fe₂O₃ и FeO рассчитаны по стехиометрии; 3-6, 5-26 и т.д. - № пробы; ц - центр зерна, к - край зерна, пр - промежуточная зона. Cr# = Cr/(Cr + Al); Mg# = Mg/(Mg + Fe²⁺); Fe3# = Fe³ 7(Fe³⁺ + Cr + Al).

Фит. 3. Бинарные диаграммы для составов рудных и акцессорных хромшпинелидов из пород массива Гальмоэнан.

1-3 -составы хромшпинелидов массива Гальмоэнан из: 1 - хромититов, 2 - дунитов, 3 - срастаний с МПГ и включений в МПГ; 4-7 - поля составов хромшпинелидов из мафит-ультрамафитовых массивов различных типов: 4, 5 - зональных урало-аляскинского типа, 6 -альпинотипных, 7 - расслоенных интрузий норильского типа (4, 6, 7 - области попадания 90% составов хромшпинелидов этого типа по (Barnes, Roeder, 2001), 5 - 50% составов); 8-10 - тренды изменения составов хромшпинелидов из мафит-ультрамафитовых массивов различных типов: 8 - альпинотипных, 9 -зональных урало-аляскинского типа, 10 - расслоенных интрузий норильского типа (Barnes, Roeder, 2001).

Фиг. 4. Тройные диаграммы для составов рудных и акцессорных хромшпинелидов из пород массива Гальмоэнан. Условные обозначения см. на фиг. 3.

От хромшпинелидов из хромититов большинства расслоенных (стратиформных) интрузий норильтипа рудные хромшпинелиды массива ского Гальмоэнан отличаются повышенной хромистостью и гораздо более низкими содержаниями титана (TiO₂ = 0.31-0.46 мас. %) и закисного железа. При этом от хромшпинелидов подиформных хромититов и кумулятивных дунитов из офиолитовых комплексов изученные минералы отличаются более высокой степенью окисления железа и повышенной титанистостью (фиг. 3б-3в). В проанализированных рудных хромшпинелидах выявлено несколько типов слабо выраженной зональности: 1) хромистость и магнезиальность сопряженно снижаются от центра к краю зерен (табл. 1, анализы 1, 2), либо в этом же направлении незначительно снижается один из этих параметров при относительной стабильности другого (табл. 1, анализы 3, 4 и 9, 10); 2) снижению хромистости от центра к краю соответствует увеличение магнезиальности в этом же направлении (табл. 1, анализы 11-14); 3) увеличение хромистости от центра к краю сопровождается одновременным понижением магнезиальности (табл. 1, анализы 17-18). Преимущественно распространена зональность первого типа. В изученных хромшпинелидах уменьшению хромистости и магнезиальности в направлении периферии зерен, как правило, соответствует увеличение содержания закисного железа, алюминия и титана. Подобная закономерность наблюдается при понижении температуры и увеличении fo2 в процессе кристаллизации хромшпинелидов из магматического расплава.

Состав акцессорных хромшпинелидов из дунитов характеризуется в целом более низкими содержаниями хрома, несколько повышенными - титана, марганца и суммарного железа по сравнению с составами рудных хромшпинелидов (табл. 2, фиг. За-Зв). Практически все акцессорные хромобнаруживают слабую шпинелиды зональность типов, наиболее распространенным нескольких которых является обогащение периферийных ИЗ зон зерен титаном и закисным железом при сопутствующем уменьшении хромистости и магнезиальности (табл. 2, анализы 1-6). Такой тип зональности соответствует общему тренду изменения составов хромшпинелидов в зональных комплексах урало-аляскинского типа (Barnes, Roeder, 2001). При этом концентрации хрома и магния в центре зерен как акцессорных, так и рудных хромшпинелидов уменьшаются по мере уменьшения размера зерен минерала. Микрозонловые исследования показали, что магнезиальность оливина около хромшпинелидов также зависит от размеров зерен хромшпинелида и максизначений она достигает вблизи мальных крупнозернистых рудных обособлений. Эта зависимость свидетельствует едином механизме 0 формирования акцессорных и рудных хромшпинелидов в результате обменных субсолидусных твердофазных реакций. Возникновение хроммагнетитовых кайм и индивидуальных Ті-магнетитовых фаз в серпентинизированных дунитах также связано с субсолидусным преобразованием хромшпинелидов, при котором замещение хрома на железо в кристаллической структуре минералов происходит без участия растворов и приводит к метастабильной кристаллизации хроммагнетитовой фазы.

Ранее уже отмечалось (Козлов, 2000), что в породах массива Гальмоэнан характер вариаций химического состава хромшпинелидов различных

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 46

№ 3 2004

4*

	1-14		1-34		3-19		5-31		3-20		5-14		8-22		4-18		10-28	
Компо- ненты	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к	ц	к
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
TiO ₂	0.44	0.48	0.44	0.88	0.32	0.87	0.47	0.61	0.31	0.31	0.48	0.50	0.29	0.33	0.63	0.62	0.46	0.57
$A1_2O_3$	9.40	10.53	10.53	11.68	9.80	9.06	6.96	10.16	14.00	14.00	7.67	7.89	13.38	13.25	7.66	7.52	13.87	13.88
$C\Gamma_2O_3$	47.84	43.17	43.17	38.95	43.97	38.42	45.66	40.89	37.75	37.75	47.47	4-7.38	45.01	43.55	48.39	48.33	43.20	43.89
FeO*	34.76	38.34	38.34	40.86	37.92	45.05	39.72	41.21	39.69	39.69	34.74	35.40	32.57	34.42	36.16	37.76	34.10	33.33
МпО	0.65	0.75	0.75	0.93	0.68	0.56	0.81	0.99	0.50	0.50	0.61	0.58	0.73	0.89	0.96	0.92	0.90	1.03
MgO	7.18	6.72	6.72	6.41	7.51	5.61	6.55	5.97	7.52	7.52	8.13	8.03	7.87	6.93	5.70	4.77	7.70	6.86
Сумма	100.31	99.95	99.95	99.71	100.20	99.57	100.31	99.69	99.77	99.77	99.10	99.78	99.89	99.33	99.50	99.92	100.34	99.45
Fe ₂ O ₃ **	22.10	26.22	26.22	28.73	27.05	33.12	28.17	29.20	28.69	28.69	24.34	24.73	20.02	21.36	22.29	22.72	21.50	19.62
FeO**	14.87	14.75	14.75	15.01	13.58	15.25	14.37	14.93	13.88	13.88	12.84	13.15	14.56	15.20	16.11	17.32	14.76	15.67
Al	2.887	3.225	3.225	3.564	2.988	2.802	2.156	3.129	4.200	4.200	2.381	2.432	4.045	4.046	2.409	2.370	4.166	4.231
Ti	0.094	0.086	0.086	0.172	0.062	0.172	0.121	0.092	0.059	0.059	0.095	0.098	0.064	0.057	0.127	0.125	0.109	0.090
Cr	9.852	8.866	8.866	7.971	8.989	7.967	9.486	8.446	7.595	7.595	9.880	9.793	9.125	8.917	10.207	10.216	8.702	8.971
Fe ³⁺	4.333	5.126	5.126	5.598	5.265	6.538	5.572	5.742	5.494	5.494	4.823	4.866	3.864	4.164	4.475	4.572	4.122	3.818
Fe ²⁺	3.243	3.207	3.207	3.252	2.939	3.349	3.162	3.266	2.957	2.957	2.829	2.878	3.125	3.295	3.598	3.876	3.148	3.393
Mn	0.144	0.165	0.165	0.204	0.149	0.125	0.180	0.219	0.108	0.108	0.136	0.129	0.159	0.195	0.217	0.209	0.194	0.226
Mg	2.791	2.605	2.605	2.476	2.898	2.196	2.569	2.328	2.856	2.856	3.194	3.133	3.012	2.679	2.270	1.903	2.928	2.647
Катионы	23.344	23.280	23.280	23.237	23.290	23.149	23.246	23.222	23.269	23.269	23.338	23.329	23.394	23.353	23.303	23.271	23.369	23.376
Cr#	0.77	0.73	0.73	0.69	0.75	0.74	0.81	0.73	0.64	0.64	0.81	0.80	0.69	0.69	0.81	0.81	0.68	0.68
Mg#	0.46	0.45	0.45	0.43	0.50	0.40	0.45	0.42	0.49	0.49	0.53	0.52	0.49	0.45	0.39	0.33	0.48	0.44
Fe3#	0.25	0.30	0.30	0.33	0.31	0.38	0.32	0.33	0.32	0.32	0.28	0.28	0.23	0.24	0.26	0.27	0.24	0.22

Таблица 2. Представительные составы акцессорных хромшпинелидов из дунитов массива Гальмоэнан (мас. %)

типов отвечают морфологических типовому тренду изменения Сг → Fe³⁺ (при относительно небольшой изменчивости содержания А1), соответствующему переходу от субалюмоферрихромитов и субферрихромитов к субалюмохроммагнетитам и хроммагнетитам (фиг. 4). Такой тренд кардинально отличается от тренда, характерного для хромшпинелидов из офиолитовых комплексов – Cr → A1 (при относительно небольшой изменчивости содержаний Fe³⁺), и от тренда изменения химизма этих минералов в расслоенных интрузиях (Barnes, Roeder, 2001). В то же время он соответствует трендам изменения состава хромшпинелидов из пород зональных мафит-ультрамафитовых комплексов урало-аляскинского типа и щелочно-ультрамафитовых зональных комплексов алданского типа (Петрология..., 1994; Иванов, 1997; Малич, 1999 и др.), хотя следует отметить, что в ряде случаев локальные тренды изменения состава хромшпинелидов с общим не совпадают. Судя по всему, общий тренд изменения состава хромшпинелидов соответствует процессам, связанным со становлением массива, и фиксирует этап закрытия обменных реакций, в то время как локальные тренды отражают более поздние процессы метаморфического преобразования минералов.

Вариации составов хромшпинелидов связываются с различными причинами: кристаллизационной дифференциацией, региональным метаморфизмом, серпентинизацией, взаимодействием с остаточными расплавами, субсолидусными ионообменными замещениями (Базылев, 1995; Sack, Ghiorso, 1991; Kamenetsky et al., 2001 и др.). В случае массива Гальмоэнан региональный метаморфизм исключается, а локально развитая серпентинизация сопровождается лишь появлением тонких кайм и цепочек зерен вторичного магнетита, обедненного микроэлементами. Скорее всего изменения в химизме хромшпинелидов и акцессорного и рудного типов связаны с их последовательной кристаллизацией из эволюшионировавшего магматического расплава, реакционным взаимодействием с этим расплавом и последующим субсолидусным лиффузионным обменом компонентами между твердыми фазами. Общая направленность тренда изменения состава хромшпинелидов массива Гальмоэнан вызвана изоморфными замещениями Cr, Mg и Al на Fe²⁺, Fe³⁺ и Ті (фиг. 3, 4), т.е. в процессе кристаллизации от ранних ликвидусных к солидусным хромитам происходило постепенное возрастание количества магнетитового компонента за счет хромитового и шпинелевого при почти неизменном содержании титана и марганца. Заметное увеличение титанистости хромшпинелидов наблюдается лишь в клинопироксеновых оливинитах и оливиновых пироксенитах внешней оболочки дунитового ядра массива (Козлов, 2000).

Хромшпинелиды из включений в МПГ и из срастаний с зернами МПГ представлены идиоморфными кристаллами, обломками кристаллов и зернами неправильной формы размером до 0.3-0.5 мм, которые цементируются железо-платиновыми твердыми растворами (фиг. 2д). Составы хромшпинелидов варьируют в достаточно широком диапазоне (табл. 3), но при этом химический состав хромшпинелидов-узников в МПГ ближе к составу рудного хромшпинелида, особенно из массивных жильных разновидностей хромититов прожилково-вкрапленных хромитовых сегрега-И ции. Установлено, что кристаллы-включения хромшпинелидов в МПГ нередко имеют зональное строение. Фиксируются два типа зональноста: прямая, при которой ядра зерен содержат повышенные количества MgO, A1₂O₃, Cr₂O₃ и относительно обеднены FeO и TiO2, и слабо выраженная обратная, когда периферийная часть минерала-узника более магнезиальная и хромистая (табл. 3).

УСЛОВИЯ ФОРМИРОВАНИЯ ХРОМИТОВОЙ МИНЕРАЛИЗАЦИИ

Оценки температуры ионообменных субликвидусных - субсолидусных замещений, обусловивших разнообразие составов хромшпинелидов из дунитов и оливиновых клинопироксенитов массива Гальмоэнан, полученные с использованием геотермометра оливин-хромшпинелид (Fabries, 1979), составляют 850-1170°С. Однако эти данные, повидимому, не дают представления о реальных условиях кристаллизации магматемпературных тических образований массива. Температуры гомогенизации расплавных включений в оливинах из дунитов, а также термодинамические расчеты параметров равновесия газовой фазы в этих включениях показывают, что ликвидусные и солидусные температуры кристаллизации дунитов массива существенно выше - 1315 и 1180°С соответственно (Толмачева и др., 1999).

Наиболее высокие температуры, полученные с помощью геотермометра Ж. Фабри (Fabries, 1979), достигают 970—1170°С для равновесия оливинов из дунитов и сингенетичных им акцессорных хромшпинелидов. В то же время расчеты для тех же парных парагенезисов, проведенные с использованием геотермооксометра К. Бэлхауза и др. (Ballhous et al., 1991), дают существенно более низкие значения температур минералообразования - 660-820°С (лишь несколько значений достигают 900°С). Расчет значений fo2 при данных температурах указывает на уровень летучести кислорода, соответствующий (+1.0)—(-0.3) лог. ел относительно буфера FMQ. Оценки fo2 в дунитах

зональных массивов Платиноносного пояса Урала и юго-восточной Аляски (Пушкарев, 2000), в це-

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 46

№ 3 2004

Фит. 5. Диаграмма lg *fo*₂ - *T* для дунитов и хромититов из зональных мафит-ультрамафитовых массивов. Расчет проводился для равновесных сосуществующих пар оливин - хромшпинелид по методу (Ballhaus *et al*, 1991). Цифрами обозначены поля для пород: 1,2 -массива Гальмоэнан (1 - хромититы; 2 - дуниты), 3,4- Нижнетагильского массива (3 - дуниты; 4 - эпигенетические хромититы с МПГ), 5 - дуниты Уктусского массива, 6 - дуниты массива Кондер (3-6 -Пушкарев, 2000), 7- дуниты зональных комплексов Ю-В Аляски (Himmelberg, Loney, 1995).

лом, близки к редокс-параметрам формирования ультрамафитов массива Гальмоэнан (фиг. 5).

рудных хромититах массива Гальмоэнан субсолидусного равновесия температура опускается до 60О-700°С при одновременном росте окисленности системы. Полученные расчетные значения, по-видимому, являются температурами последнего равновесия оливина и хромшпинелида, которое соответствует заключительным стадиям перекристаллизации пород в магматических условиях. В свою очередь они хорошо согласуются с данными термометрических исследований расплавных включений в минералах из рудных хромитовых тел массива (Толмачева и др., 1999). Полученные оценки сопоставимы с расчетами температуры равновесия для парагенезиса оливин-хромшпинелид, выполненными для рудных хромитовых проявлений в зональных массивах Платиноносного пояса Урала и Алданского щита, согласно которым температура оливин-хромшпинелевого равновесия в хромититах Нижнетагильского массива составляет 800-900°С (Пушкарев, 2000), а для массива Кондер - 670-910°С (Петрология..., 1994; Малич, 1999). Такие аномально низкие значения температур хромитообразования могут быть обусловлены наложенными процессами - перекристаллизацией и "сбрасыванием" магнетита и хроммагнетита с образованием просечек в оливиновой матрице. Другая возможная причина

искажения - реально более высокое, чем стехиометрическое, содержание трехвалентного железа в хромшпинелидах, занижающее при расчетах истинную температуру кристаллизации хромититов (Вотяков и др., 1998; Пушкарев, 2000). Этот вывод подтверждают оценки температур распада акцессорных МПГ из генетически связанных с перекристаллизованными дунитами хромитовых жил.

Диапазон изменения fo2 для рудных хромититов массива Гальмоэнан (расчет проводился для равновесных сосуществующих пар оливин-хромшпинелид по методу (Ballhaus etal., 1991)) определяется значениями (+1.3) - (+3.5) лог. ед. относифаялит-магнетит-кварцевого тельно (FMO) бу-Это соответствует сильно окислительным depa. условиям, близким к обстановке гематит-магнетитового (НМ) буфера. Вместе с расчетными дантемпературным условиям равновесия ными по парагенезисов оливин-хромшпинелид лля полученные оценки свидетельствуют об эпигенетическом характере рудной хромитовой минерализации в породах массива Гальмоэнан. Редокс-условия формирования хромититов в зональных массивах Платиноносного пояса Урала (Пушкарев, 2000) в целом аналогичны параметрам, расдля рудных обособлений считанным массива Гальмоэнан (фиг. 5). В то же время на диаграмме

	Б-4-11		C-17			C 52	C 54		Л-235		Л-2.	36	П 253 Б	Γ 5 11	Г 5 10
Компо- ненты	ц	к	ц	np	К	C-32	C 34	ц	np	к	ц	К	JI-235	D-J-11	D-3-12
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
TiO ₂	0.50	0.48	0.42	0.43	0.40	0.43	0.34	0.60	0.58	0.60	0.62	0.60	0.59	0.34	0.48
A1 ₂ O ₃	8.17	7.94	9.71	9.76	8.99	8.05	8.32	6.55	6.49	6.66	6.27	6.39	7.85	6.23	5.96
$C\Gamma_2O_3$	43.79	43.61	47.59	47.32	47.05	45.47	45.14	41.21	41.72	41.50	41.29	42.62	42.29	52.06	48.43
FeO*	36.64	38.35	33.08	32.61	35.74	34.18	33.99	44.22	43.60	44.98	40.95	38.98	39.30	34.85	37.30
МпО	0.61	0.66	0.66	0.63	0.76	0.60	0.54	0.96	0.63.	0.70	0.47	0.46	0.48	0.98	1.11
MgO	10.84	8.64	9.38	9.34	6.24	11.67	12.62	5.55	6.04	5.43	10.15	10.48	8.75	6.03	5.91
NiO	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Сумма Fe ₂ O ₃ **	100.55 30.80	99.68 29.84	100.84 23.36	100.10 22.88	99.18 22.51	100.40 29.02	100.95 30.14	99.09 33.21	99.06 32.87	99.87 33.45	99.75 35.77	99.53 33.74	99.26 31.16	100.49 21.29	99.19 24.88
FeO**	8.92	11.50	12.06	12.02	15.48	8.07	6.87	14.34	14.02	14.88	8.77	8.62	11.27	15.70	14.91
Al	2.443	2.429	2.922	2.958	2.809	2.404	2.454	2.058	2.035	2.078	1.902	1.941	2.406	1.953	1.888
Ti	0.095	0.094	0.081	0.083	0.080	0.082	0.064	0.120	0.116	0.120	0.120	0.116	0.116	0.068	0.097
Cr	8.780	8.944	9.604	9.615	9.859	9.105	8.927	8.685	8.772	8.683	8.400	8.683	8.692	10.942	10.285
Fe ³⁺	5.880	5.826	4.487	4.427	4.491	5.532	5.674	6.662	6.580	6.662	6.927	6.543	6.096	4.259	5.030
Fe ²⁺	1.895	2.498	2.578	2.586	3.436	1.710	1.439	3.200	3.122	3.298	1.889	1.860	2.452	3.494	3.354
Mn	0.131	0.145	0.143	0.137	0.171	0.129	0.115	0.217	0.142	0.157	0.103	0.101	0.106	0.221	0.253
Mg	4.103	3.345	3.573	3.583	2.468	4.411	4.711	2.208	2.397	2.145	3.898	4.030	3.395	2.393	2.369
Ni	0.000	0.000	0.000	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Катионы	23.327	23.281	23.388	23.391	23.314	23.373	23.384	23.150	23.164	23.143	23.239	23.274	23.263	23.330	23.276
Cr#	0.78	0.79	0.77	0.76	0.78	0.79	0.78	0.81	0.81	0.81	0.82	0.82	0.78	0.85	0.84
Mg#	0.68	0.57	0.58	0.58	0.42	0.72	0.77	0.41	0.43	0.39	0.67	0.68	0.58	0.41	0.41
Fe3#	0.34	0.34	0.26	0.26	0.26	0.32	0.33	0.38	0.38	0.38	0.40	0.38	0.35	0.25	0.29

Таблица 3. Представительные составы хромшпинелидов из срастаний с МПГ и включений в МПГ массива Гальмоэнан (мас. %)

Примечание. Анализы 1-7 - из срастаний с МПГ; 8-15 - из включений в МПГ.

T-lg fo2 (фиг. 5) область значений для хромититов

массива Гальмоэнан образует компактное поле, не пересекающееся с полем рудных проявлений из зонального щелочно-ультраосновного массива Кондер (Петрология..., 1994), что свидетельствует о различных условиях формирования хромитового оруденения в этих массивах.

Согласно термодинамическим проведенным расчетам, порядок и условия формирования хромитовой минерализации в породах массива Гальмоэнан представляются следующим образом. Формирование хромшпинелидов началось с наиболее хромистых (>50 мас. % Сг₂О₃) и восстановленных (<10 мас. % Fe₂O₃) разностей и происходило, вероятнее всего, еще в промежуточной, наиболее глубинной, магматической камере при подъеме исходного высокомагнезиального расплава в верхние горизонты земной коры. При этом повышенная хромистость самых ранних хромшпинелидов может объяснена, согласно экспериментам быть (Каmenetsky et al, 2001), пониженной fo_2 в момент их

образования. По мере подъема магмы в верхние горизонты земной коры должны были кристаллизоваться интрателлурические - ликвидусные, достаточно магнезиальные (Mg# = 45-52), но менее хромистые (45-50 мас. % Cr_2O_3) субферрихромиты. По данным экспериментов и термодинамических расчетов (Sack, Ghiorso, 1991; Kamenetsky *et al.*, 2001), для этой стадии было характерно увеличение fo_2 до условий буфера FMQ при температуре

порядка 1300-1400°С. На последующих стадиях в результате концентрации субферрихромитовых выделений формировались густовкрапленные рудные хромитовые обособления, а при наличии зон проницаемости - жильные тела хромититов. Иx образованию предшествовала 80массовая (на 90%) кристаллизация дунитов и оливиновых клинопироксенитов в малоглубинной камере (глубина от поверхности - 1-2 км). Одновременно проформирование ликвидусных исходило хромшпинелидов (40-45 мас. % Сг2О3) и ядер солидусных феррихромитов (35-40 мас. % Сг2О3). Дальнейшая эволюция кристаллизующейся магмы была связана с возрастанием fo2 предположительно до условий буфера НМ при понижении температуры до 1100-700°С и с взаимодействием выделившиххромшпинелидов с остаточными расплавами. ся образование непрерывного Bce это обусловило ряда хромшпинелидов ОТ субферрихромита до хромсодержащего титаномагнетита.

КОРЕННАЯ ХРОМИТ-ПЛАТИНОМЕТАЛЬНАЯ МИНЕРАЛИЗАЦИЯ МАССИВА И ЕЕ МОДЕЛЬНЫЙ Re-Os-BO3PACT

Выше уже упоминалось, что хромитовое оруденение в массиве Гальмоэнан представляет значительный интерес в связи с развитием промышленно значимой малосульфидной платинометальной минерализации, генетически связанной с хромитами. структурно-геологической локализации Вопросы платинометального оруденения в породах массива и связанных с ним аллювиальных россыпях, геохимия ЭПГ для различных типов пород, морфология и минералогия МПГ детально рассмотрены в ряде публикаций (Кутыев и др., 1991; Мелкомуков, Зайцев, 1999; Козлов, 2000; Сидоров, 2000; Зайцев и др., 2001; Толстых и др., 2001; Корякско-Камчатский. .., 2002; Мочалов и др., 2002_{1.2} и др.). В связи с этим остановимся только на некоторых генетических аспектах формирования платинометальной минерализации в контексте ее связи с хромитообразованием. Отметим лишь, что преобладающим МПГ во всех рудных проявлениях является изоферроплатина (Pt₃Fe), которая xaрактеризуется изменчивым составом даже в пределах одного образца хромитов. Вариации содержаний Pt составляют 68-91 мас. %. В массивных и хромититах изоферроплатина жильных относительно "стерильна" от примесей, тогда как в прожилково-вкрапленных шлировых выделениях И хромититов в ней отмечается устойчивая примесь иридия до 2.2 мас. %. Минералы системы Os-Ir-Ru в массиве Гальмоэнан всегда находятся в виде включений в матрице Pt-Fe и не встречаются помимо нее. Аналогичные закономерности характерны для коренных проявлений МПГ в зональных мафит-ультрамафитовых массивах Урала и Аляски (Геология..., 1994). Среди минералов данной системы наиболее распространен самородный осмий. В срастаниях с хромшпинелидами, в каймах, трещинах и в виде включений отмечаются и другие МПГ: туламинит; холингвортит; ирарсит; сперрилит; лаурит; эрлихманит; кашинит, куперит, а также оксиды и гидроксиды Ir и Pt. Весьма характерно образование реакционных кайм замещения изоферроплатины тетроферроплатиной, туламинитом, сперрилитом.

Особое внимание было уделено нами вопросам идентификации источников рудного вещества и определению модельного Re-Os-возраста платинометальной минерализации в массиве Гальмоэнан. Похарактеризующая скольку величина, начальный изотопный состав осмия (¹⁸⁷Os/¹⁸⁸Os)₀, в большинстве проанализированных образцов соответствует мантийным значениям, то в данном случае можно предполагать хондритовую природу источника рудного вещества и расчет модельного Re-Os-возраста МПГ проводить по методике, описанной ра-

нее (Костоянов, 1998). Полученные модельные Re-Os-датировки МПГ располагаются в возрастном интервале 250-350 млн. лет, при этом большинство значений попадает в интервал 260-340 млн. лет. Модельные датировки МПГ из зональных мафит-ультрамафитовых массивов других регионов, полученные с применением той же методики, показывают, что в это же время происходило формирование МПГ массива Матыскен (290 млн. лет), а также МПГ из россыпей, связанных с зональными массивами Алданского щита - Кондер (340 млн. лет) и Инагли (360 млн. лет) (Корякско-Камчатский. .., 2002; Костоянов и др., 2003) (фиг. 6). Вполне допустимо, что данный временной интервал (300-360 млн. лет) отвечает некоему глобальному этапу эволюционных процессов в мантии Земли, в ходе которого осуществлялось интенсивное образование МПГ, ныне локализованных в зональных мафит-ультрамафитовых комплексах. В большинстве случаев полученные модельные Re-Os-датировки МПГ оказываются древнее, чем изотопный Rb-Sr-, Sm-Nd- и Re-Os-возраст вмещающих ΜΠΓ пород зональных мафит-ультрамафитовых массивов. В частности, для массивов Олюторской зоны Корякин в среднем он составляет 65-70 млн. лет (Зайцев и др., 2002; Ланда и др., 2002; Корякско-Камчатский....., 2002), а возрастные датировки пород (в том числе и хромититов) из зональмассивов щелочно-ультраосновных ных Апланского щита близки к 120 млн. лет (Пушкарев и др., 2002; Walker et al., 2002). Это дает основание предполагать, что внедрение мантийного вещества, обогащенного ЭПГ, в верхние горизонты коры происходило уже после формирования МПГ. Вероятно, эта особенность является спецификой генезиса платиноносных зональных мафит-ультрамафитовых комплексов.

Природу коренной хромит-платинометальной минерализации массива Гальмоэнан можно объяснить в рамках трех различных моделей формирования МПГ: 1) привнос МПГ вместе с частично расплавленным (или твердофазным) веществом 2) метасоматическое ультрамафитов; образование МПГ на позднемагматической стадии образования пород ядра массива; 3) кристаллизацию МПГ из расплава в промежуточной магматической камере in situ. Корректность применения той или иной модели определяется ее соответствием двум граничным условиям. Во-первых, по своей природе породы зональных мафит-ультрамафитовых комплексов являются чрезвычайно изотопногетерогенными образованиями, о чем свидетельствуют многочисленные результаты их датирования Sm-Nd-, Rb-Sr- и Re-Os-методами (Зайцев и др., 2002; Ланда и др., 2002; Пушкарев и др., 2002; Borg, Hattori, 1997; Walker et al., 2002 и др.). Во-вторых, начальный изотопный состав осмия в МПГ зомафит-ультрамафитовых нальных комплексов также не постоянен (фиг. 6). При этом пределы

Фит. 6. Вариации изотопного состава осмия в МПГ зональных мафит-ультрамафитовых массивов. Изотопный состав Оs в индивидуальных зернах МПГ из массивов: 1 - Инагли; 2 - Кондер (1,2- Пушкарев и др., 2002); 3 - Гальмоэнан; 4 - Матыскен (3, 4 - Корякско-Камчатский..., 2002). Пунктирной линией ограничена область вариаций отношения (¹⁸⁷Os/¹⁸⁸Os)₀ в современном хондритовом резервуаре (CHUR) (по *Yin et al.*, 1996).

вариации отношения (¹⁸⁷Os/¹⁸⁸Os)₀ в МПГ не совпадают с таковыми во вмещающих породах (Borg, Hattori, 1997). Более того, довольно часто модельный Re-Os-возраст МПГ оказывается древнее ультрамафитов. Приведенные возраста факты модели метасоматического противоречат форми-ΜΠΓ рования на позднемагматической стадии становления ультраосновных массивов, также модели магматической как И кристаллизации МПГ в интрузивной камере in situ. Учет влияния корового компонента на изменение возрастных датировок (от тех, что были получены при расчете модельного Re-Os-возраста по хондритовой модели) осуществлялся в рамках двухкомпонентной модели смешения и показал, что доля "корового" осмия в проанализированных зернах МПГ обычно невелика. В МПГ из массива Гальмоэнан она составила всего 1.8-6.2%. С учетом этого факта представляется, что происхождение платинометальной минерализации в зональных мафит-ультрамафитовых комплексах связано с полихронными процессами, включающими стадию мантийно-метасоматического формирования МПГ в мантийном субстрате и стадию магматической дифференциации этого субстрата при его перемещении на коровый уровень. Вероятно, на второй стадии происходит образование МПГ, которым свойственны более высокие, чем мантийные (хондритовые), отношения (¹⁸⁷Os/¹⁸⁸Os)₀ (фиг. 6). Обогащение радиогенным осмием в таких МПГ не связано с коровой контаминацией, а свидетельствует о том, что отно-

№ 3 2004

шение Re/Os в мантийных источниках ЭПГ может эволюционировать во времени. Полученные результаты изотопных исследований Os в МПГ из зональных мафит-ультрамафитовых комплексов свидетельствуют о том, что платинометальному рудогенезу в них присущи черты полигенности и полихронности.

Сделанный на основании изотопно-геохимических данных вывод о раннемагматической экстракции ЭПГ из мантийного высокотемпературного высокомагнезиального расплава, тем не менее, не объясняет всех особенностей локализации рудных проявлений МПГ в породах массива Галь-Ряд особенностей хромит-платиномемоэнан. тальной минерализации (более поздняя по отношению к хромшпинелиду кристаллизация МПГ, коррозия хромшпинелидов Pt-Fe-сплавами и т.д.) свидетельствуют о том, что окончательное формирование скоплений МПГ в породах массива Гальмоэнан происходило уже на позднемагматической стадии в условиях интенсивной флюидной проработки. Доказательством существенной poли летучих компонентов в процессе формирования МПГ-минерализации в породах массива Гальмоэнан могут служить находки гидроксилсодержащих силикатных минералов (серпентина и хлорита переменного состава), заключенных в изоферроплатиновую матрицу. Химический состав этих силикатных фаз характеризуется высоким солержанием хлора (до 14 мас. %) (Сидоров, 2000). В периферийной части зерен МПГ на границе с вмещающими хромшпинелидами, наряду с С1-содержащими силикатами, найдены рыхлые и пористые образования состава Pt(Cl, OH) и (Pt, Ni, Си, Fe)(S, OH, C1), а среди МПГ россыпи руч. Ледяного в северной части массива была обнаружена минеральная фаза состава PtCl (Сидоров, 2000; Толстых и др., 2001).

Таким образом, образование хромит-платинометальной минерализации в зональном мафит-ультрамафитовом массиве Гальмоэнан предположительно происходило в два этапа - раннемагматический и позднемагматический. Физико-химические условия протекания первого высокотемпературно-(более 1300°С) раннемагматического го этапа обусловили экстракцию ЭПГ из расплава, а позднемагматический этап (900°С и ниже) явился определяющим для транспортировки и формирования локальных скоплений МПГ. Фактором, определяющим локализацию этих скоплений, являются процессы высокотемпературных пластических деформаций, обусловившие перекристаллизацию пород дунитового ядра массива и формирование платиноносных хромитовых рудных тел, залегающих согласно ориентировке основных деформационных структур. Анализ полученных данных в совокупности с результатами предшествующих исследований позволяет сделать вывод о неразрывной связи формирования хромит-платинометального

оруденения с процессами эволюции массива, что предполагает наличие как структурно-тектонического, так и минералого-геохимического контроля оруденения в достаточно узком диапазоне термодинамических условий.

выводы

1. В породах массива Гальмоэнан развита хромитовая минерализация, типичная для зональных мафит-ультрамафитовых массивов урало-аляскинского типа. По структурно-текстурным особенностям выделены шесть морфологических типов хромитовой минерализации, большая часть которых связана взаимными переходами.

2. Составы рудных и акцессорных хромшпинелидов, а также из хромшпинелидов, образующих срастания с МПГ и включения-узники в МПГ, варыруют в широком диапазоне и соответствуют непрерывному изоморфному ряду хромит - хромпикотит - феррихромит - хроммагнетит. Рудные характеризуются хромшпинелиды повышенными хромистостью и степенью окисления железа, при умеренной магнезиальности и титанистости, в то время как для акцессорных хромшпинелидов из дунитов типичны более высокие содержания TiO₂, уFeO и MnO при более низкой хромистости минералов. Составы хромитов из срастаний с МПГ близки к составам рудных хромшпинелидов.

3. Структурное положение рудных хромититов массива и особенности их химизма находят свое объяснение в рамках модели дифференционной кристаллизации высокомагнезиального щелочного расплава в малоглубинной промежуточной магматической камере. Рассчитанные параметры термодинамического режима формирования хромитовой минерализации свидетельствуют об условиях сравнительно низких температур (660-820°С) процесса хромитообразования при относительно высоких значениях фугитивности кислорода ((+1.3) - (+3.5) лог.ед. относительно буфера FMQ).

4. Re-Os-изотопные характеристики ΜΠΓ ИЗ пород массива Гальмоэнан свидетельствуют об их формировании в мантийном субстрате до его перемещения в верхние горизонты коры. Формирование коренной хромит-платинометальной минерализации массива предположительно происходило в два этапа - на раннемагматическом ЭПГ экстрагировались из первичных высокотемпературных мантийных расплавов, а позднемагматический явился определяющим для транспортировки И формирования локальных скоплений МПГ. Модельные Re-Os-датировки МПГ соответствуют возрастному интервалу 250-350 млн. лет, которому отвечают и модельные Re-Os-возрасты МПГ из пород большинства других зональных мафит-ультрамафитовых комплексов региона.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 01-05-64951).

СПИСОК ЛИТЕРАТУРЫ

Аникеева Л.И. Базит-гипербазитовые комплексы Корякского нагорья // Магматизм Северо-Востока Азии. Магадан, 1976. Вып. 4. С. 59-62.

Базылев Б. А. Составы клинопироксена и шпинелида реститовых гипербазитов как индикаторы условий генерации и состава сопряженных первичных мантийных магм // Геохимия. 1995. № 7. С. 915-923.

Батанова В.Г., Астраханцев О.В. Тектоническая позиция и генезис зональных мафит-ультрамафитовых плутонов севера Олюторской зоны (Корякское нагорье) // Геотектоника. 1992. № 2. С. 87-103.

Батанова В.Г., Астраханцев О.В., Сидоров Е.Г. Дуниты Гальмоэнанского гипербазит-габбрового массива (Корякское нагорье) // Изв. АН СССР. Сер. геол. 1991. № 1. С. 24-35.

Богданов Н.А., Чехович В.Д., Сухов А.Н., Вишневская В.С. Тектоника Олюторской зоны // Очерки тектоники Корякского нагорья. М.: Наука, 1982. С. 189-217.

Вотяков С.Л., Чащухин И.С., Уймин С.Г., Быков В.Н. Окситермобарометрия хромитоносных ультрамафитов (на примере Урала). І. ЯГР-спектроскопия хромшпинелидов и проблемы оливин-хромшпинелевой геотермометрии // Геохимия. 1998. № 8. С. 791-802.

Геология и генезис месторождений платиновых металлов / Под ред. Лаверова Н.П., Дистлера В.В. М.: Наука, 1994.

Грановский А.Г., Гуляева Г.Я. Хромшпинелиды Ветвейской группы гипербазитовых массивов (Корякское нагорье) // Геология и геофизика. 1981. № 6. С. 56-67.

Зайцев В.П., Коляда А.А., Мелкомуков В.Н. Сейнав-Гальмоэнанский узел и его платиноносность // Петрология и металлогения базит-гипербазитовых комплексов Камчатки. М.: Научный Мир, 2001. С. 78-86.

Зайцев В.П., Ланда Э.А., Марковский Б.А., Беляцкий Б. В. О возрасте и изотопно-геохимических особенностях зональных дунит-клинопироксенит-габбровых массивов Корякского нагорья // Докл. АН. 2002. Т. 386. № 1.С. 78-81.

Иванов О.К. Концентрически-зональные ультрамафитовые массивы Урала. Екатеринбург: УГГА, 1997.

Козлов А.П. Гальмоэнанский базит-гипербазитовый массив, Корякия: геология, петрология, рудоносность: Автореф. дис. ... канд. геол.-мин. наук. М.: МГГА, 2000. 23 с.

Корякско-Камчатский регион - новая платиноносная провинция России / Под ред. Зайцева В.П. и др. СПб: Изд-во КФ ВСЕГЕИ, 2002.

Костоянов А.И. Модельный Re-Os возраст платиновых минералов // Геология руд. месторождений. 1998. Т. 40. № 6. С. 545-550.

Костоянов А.И., Иванов Д.Ю., Манойлов В.В. Полицикличность образования минералов платиновой группы из россыпных проявлений Урала и Тимана // Геохимия. 2003. № 6. С. 534-544. Кутыев Ф.Ш., Сидоров Е.Г., Резниченко В.С., Семёнов В.Л. Новые данные о платиноидах в зональных ультраосновных комплексах юга Корякского нагорья // Докл. АН СССР. 1991. Т. 317. № 6. С. 1458-1461.

Ланда Э.А., Марковский Б.А., Беляцкий Б.В., Сидоров Е.Г., Осипенко А.Б. Возраст и изотопные особенности альпинотипных, зональных и расслоенных мафит-ультрамафитовых комплексов Камчатки // Докл. АН. 2002. Т. 385. № 6. С. 812-815.

Леднева Г.В. Геохимия, условия и механизм формирования пород расслоенных дунит-клинопироксенитгаббровых серий (на примере массива Сейнав, Олюторская зона, Корякия) // Петрология и металлогения базит-гипербазитовых комплексов Камчатки. М.: Научный Мир, 2001. С. 31-63.

Леднева Г.В., Соловьев А.В., ГарверДж. Петрология и геодинамические аспекты формирования массивов гетерогенного ультрамафит-мафитового комплекса Олюторской зоны (Корякское нагорье) // Петрология. 2000. №5. С. 477-505.

Малич К.Н. Платиноиды клинопироксенит-дунитовых массивов Восточной Сибири. С-Пб.: Изд-во КФ ВСЕГЕИ, 1999.

Марковский Б.А., Сидоров Е.Г. Парагенез дунит-клинопироксенитовых и пироксенит-габброидных комплексов Корякско-Камчатского платиноносного пояса // Магматизм и метаморфизм Северо-Востока. Магадан, 2000. С. 193-194.

Мелкомуков В.Н., Зайцев В.П. Платиноносные россыпи Сейнав-Гальмоэнанского узла (Корякско-Камчатская провинция) // Платина России. М.: ГЕОС, 1999. Т. III. Кн. 1.С 143-152.

Мочалов А.Г., Зайцев В.П., Перцев А.Н., Власов Е.А. Минералогия и генезис "шлиховой платины" россыпных месторождений южной части Корякского нагорья (Россия) // Геология руд. месторождений. 2002₁ Т. 44. №3. С. 188-212.

Мочалов А.Г., Зайцев В.П., Ю.В.Назимова, Перцев А.Н., Вильданова Е.Ю. Вариации состава "шлиховой платины" россыпных месторождений южной части Корякского нагорья (Россия) // Геология руд. месторождений. 2002₂. Т. 44. № 6. С. 486-498.

Осипенко А.Б., Сидоров Е.Г., Козлов А.П., Ланда Э. А., Леднева Г.В., Марковский Б.А. Геохимия магматических серий Гальмоэнанского базит-гипербазитового массива, Корякия // Тихоокеанская геология. 2002. № 4. С. 79-90.

Павлов Н.В., Григорьева И.И., Гришина Н.В. Образование и генетические типы хромитовых месторождений геосинклинальных областей // Условия образования магматических рудных месторождений. М.: Наука, 1979. С. 65-79.

Петрология и платиноносность кольцевых щелочноультраосновных комплексов. М.: Наука, 1994.

Полянин В.С., Ведерников Н.Н., Полянина Т.А., Козлов А.П. Геологическое строение и история формирования Гальмоэнанского мафит-ультрамафитового массива // Отечественная геология. 2000. № 1. С. 44-52.

Пушкарев Е.В. Платиноносные дуниты Урала: новые данные // Магматические и метаморфические образования Урала и их металлогения. Екатеринбург: ИгиГ УрО РАН, 2000. С. 53-79.

Пушкарев Ю.Д., Костоянов А.И., Орлова М.П., Богомолов Е.С. Особенности Rb-Sr, Sm-Nd, Pb-Pb, Re-Os и К-Ar изотопных систем в Кондерском массиве: мантийный субстрат, обогащенный платиноидами // Региональная геология и металлогения. 2002. № 16. С. 80-91.

Сидоров Е.Г. Особенности условий образований минералов платиновой группы Гальмоэнанского массива // Петрология и металлогения базит-гипербазитовых комплексов Камчатки: Тез. докл. научной сессии ВМО. Петропавловск-Камчатский, 2000. С. 119-122. Сидоров Е.Г., Козлов А.П., Ланда Э.А., Осипенко А.Б., Марковский Б.А. Петрогеохимические особенности пород Гальмоэнанского базит-гипербазитового массива, Корякии // Петрология и металлогения базит-гипербазитовых комплексов Камчатки. М.: Научный Мир, 2001. С. 14-30.

Соловьев А.В., Брэндон М.Т., Гарвер Дж.И., Шапиро М.Н. Кинематика Ватыно-Лесновского надвига (Южная Корякия) // Геотектоника. 2001. № 6. С. 56-74. Толмачева Е.В., Ланда Э.А., Марковский Б.А., Сидоров Е.Г. Термобарогеохимические особенности оливинов из дунитов зональных массивов Камчатско-Корякского региона // IX Междунар. конф. по термобарогеохимии: Тез. докл. Александров: ВНИИСИМС, 1999. С. 52-54.

Толстых Н.Д., Сидоров Е.Г., Видик СВ., Козлов А.П., Вилъданова Е.Ю. Минералого-геохимические особенности минералов платиновой группы россыпного месторождения р. Левтыринываям // Петрология и металлогения базит-гипербазитовых комплексов Камчатки. М.:Научный Мир, 2001. С. 94-114.

Ballhaus C., *Berry R.F., Green D.H.* High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation stateof the upper mantle // Contrib. Mineral. Petrol. 1991. V. 107. P. 27-50. *Barnes S.J., Roeder P.L.* The range of spinel compositions in terrestrial mafic and ultramafic rocks // J. Petrology. 2001. V. 42. P. 2279-2302.

Batanova V.G., Astrakhantsev O.V. Island-arc mafic-ultramafic plutonic complexes of North Kamchatka // Circum-Pacific Ophiolites. Utrecht, The Netherlands: VSP Publishers, 1994. Pt. D. P. 129-143.

Borg G., Hattori K. Evolution of PGE-mineralization of the Nishni Tagil ultramafic complex, Ural genetic constraints from Os-isotope and SEM studies // Mineral deposits. Rotterdam, 1997. P. 395-398.

Fabries J. Spinel-olivine geothermometry in peridotites from ultramafic complexes // Contrib. Mineral. Petrol. 1979. V. 69. P. 329-336.

Findlay D.C. Origin of the Tulameen ultramafic-gabbro complex, southern British Columbia // Canad. J. Earth Sci. 1969. V. 6. P. 399-425.

Garuti G., Fershtater G., Bea F., Montero P., Pushkarev E.V., Zaccarini F. Platinum-group elements as petrological indicators in mafic-ultramafic complexes of the central and southern Urals: preliminary results // Tectonophysics. 1997. V. 276. P. 181-194.

Himmelberg G.R., Eoney R. Characteristics and pedogenesis of alaskan-type ultramafic-mafic intrusions, Southeastern Alaska // U.S. Geol. Surv. Prof. Papers. 1995. V. 1564. 92 p.

Johan Z., Slansky E., Kelly DA. Platinum nuggets from the Kompiam area, Enga Province, Papua New Guinea: evidence for an Alaskan-type complex // Mineral. Petrol. 2000. V. 68. P. 159-176.

Kamenetsky V.S., Crawford A.J., Meffre S. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks // J. Petrol. 2001. V. 42. P. 655-671.

Kepezhinskas P.K., Taylor R.N., Tanaka H. Geochemistry of plutonic spinels from the North Kamchatka arc: comparisons with spinels from other tectonic settings // Mineral. Magazine. 1993. V. 57. P. 575-589.

Murray C.G. Zoned ultramafic complexes of the Alaskan type: feeder pipes of andesitic volcanoes // Geol. Soc. Am. Mem. 1972. V. 132. P. 313-335.

Nixon G.T., Cabri L.J., Laflamme J.H.G. Platinum-group-element mineralization in lode and placer deposits associated with the Tulameen Alaskan-type complex, British Columbia // Canad. Mineralogist. 1990. V. 28. P. 503-535.

Sack R.O., Ghiorso M.S. Chromian spinels as a petrogenetic indicators: thermodynamic and petrological applications // Amer. Mineralogist. 1991. V. 76. P. 827-847.

Slansky E., Johan Z., Ohnenstetter M., Barron L.M., Suppel D. Platinum mineralization in the Alaskan-type intrusive complexes near Fifield, N.S.W., Australia. Part 2. Platinum-group minerals in placer deposits at Fifield // Mineral. Petrol. 1991. V. 43. P. 161-180.

Walker R.J., Prichard H.M., Ishiwatari A., Pimentel M. The osmium isotopic composition of convecting upper mantle deduced from ophiolite chromites // Geochim. et Cosmochim. Acta. 2002. V. 66. P. 329-345.

Yin Q., Jagoutz E., Palm H., Wanke H. NUR- a possible proxy for CHUR reference for Re-Os system derived from ¹⁸⁷Os/¹⁸⁸Os ratio of the Allende CAI // Abstr. Lunar. Plan. Sci. Conf. XXVII. Texas, 1996. Pt. 3. P. 1475-1476.