УДК 552.33(470.21)

ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЭВОЛЮЦИИ ЩЕЛОЧНО-УЛЬТРАОСНОВНЫХ СЕРИЙ ПАЛЕОЗОЙСКИХ МАССИВОВ ФЕННОСКАНДИНАВСКОГО ЩИТА

© 2013 г. А. А. Арзамасцев, Л. В. Арзамасцева

Институт геологии и геохронологии докембрия РАН наб. Макарова, д. 2, Санкт-Петербург, 199034, Россия; e-mail: arzamas@ipgg.ru Поступила в редакцию 20.03.2012 г. Получена после доработки 25.06.2012 г.

С целью изучения трендов эволюции щелочно-ультраосновной серии Кольской провинции изучено распределение редкоземельных элементов в породах и минералах ряда оливинит-клинопироксенит-мелилитолит-мельтейгит-ийолит-нефелиновый сиенит. Содержания REE, а также других микроэлементов получены для оливина, мелилита, клинопироксена, нефелина, апатита, перовскита, титанита, магнетита. Установлено, что распределение большинства элементов в породах Ковдорского, Африкандского, Вуориярвинского и др. массивов отличается от такового в щелочно-ультраосновной серии Хибин и контролируется кристаллизацией перовскита. Показано, что для первичных оливин-меланефелинитовых расплавов серии малых щелочно-ультраосновных массивов характерна ранняя кристаллизация перовскита, являющегося главным концентратором REE, Nb, Та, Th, U. Осаждение перовскита совместно с оливином и клинопироксеном привело к обеднению редкими землями остаточной магмы и образованию деплетированных в отношении лантаноидов и высокозарядных элементов ийолитовых и нефелин-сиенитовых дериватов. В отличие от этого, формирование пород щелочно-ультраосновной серии Хибин было осложнено подмешиванием к первичной оливин-меланефелинитовой магме небольших порций фонолитового расплава, что привело к изменению порядка кристаллизации REE-содержащих титанатов и титаносиликатов и накоплению большинства некогерентных элементов в поздних порциях расплава. В результате хибинские ийолиты имеют наиболее высокие концентрации REE, содержащиеся в высокоредкоземельном апатите и титаните.

DOI: 10.7868/S0869590313020027

введение

В северо-восточной части Фенноскандинавского щита с палеозойским этапом тектономагматической активизации связано образование многофазных щелочных массивов, традиционно относимых к двум сериям: щелочно-ультраосновных пород с карбонатитами (массивы Ковдор, Турий Мыс, Вуориярви, Африканда, Себльявр и др.) и агпаитовых нефелиновых сиенитов, представленных крупнейшими плутонами Хибин и Ловозера. В последних также присутствуют значительные объемы щелочно-ультраосновных пород (Галахов, 1975, Арзамасцев и др., 1998). Имеющиеся изотопные датировки свидетельствуют об одновозрастности всех палеозойских щелочных массивов провинции и единых мантийных источниках родоначальных магм (Kramm et al., 1993; Kramm, Kogarko, 1994). Важной особенностью щелочных пород региона являются огромные концентрации редкоземельных элементов, Y, Sr, Zr, Hf, Nb, Ta, и Th, которые входят в состав апатита, титанита, перовскита и других акцессориев, либо, если их концентрация в расплавах была достаточно высока, образуют самостоятельные минералы, такие как лопарит, пирохлор и эвдиалит, месторождения

которых являются основой горнорудной базы региона.

Геологические данные и экспериментальные исследования показывают, что формирование щелочно-ультраосновных пород в карбонатитовых комплексах обусловлено процессами фракционной кристаллизации нефелинитовых расплавов с образованием на ранних стадиях оливиновых и клинопироксеновых кумулатов и комплементарных им мелилитолитов, фоидолитов и нефелиновых сиенитов (Кухаренко и др., 1965; Dawson et al., 1995; Nielsen et al., 1997; Ivanikov et al., 1998; Verhulst et al., 2000; Арзамасцев и др., 2001). Согласно имеющимся характеристикам о поведении некогерентных элементов в магматическом процессе можно предполагать, что такие элементы, как Sr, Zr, Hf, Nb, Ta, Th и REE, будут накапливаться в ходе кристаллизации магм в конечных дериватах щелочно-ультраосновной серии, однако в большинстве щелочно-ультраосновных интрузий конечпродукты кристаллизации существенно ные обеднены REE, Nb, Ta, Sr и P.

Задачей настоящей статьи является изучение поведения элементов-примесей в щелочных ультрамафитовых сериях, и, в частности, иссле-

дование причин различного распределения редкоземельных элементов в ультрамафитах карбонатитовых интрузий и Хибинского массива. Исследования базируются на минералогических и геохимических данных, полученных по представительным образцам Ковдорского, Вуориярвинского, Турьемысского, Салмагорского, Африкандского массивов, интрузий Лесной и Озерной Вараки, а также Хибинского комплекса. Полученные данные позволили выявить факторы, определяющие различное распределение REE в щелочных ультраосновных сериях и оценить роль акцессорных фаз – концентраторов REE – перовскита, апатита и титанита.

ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ ИНТРУЗИЙ

В интракратонном магматизме в северо-восточной части Балтийского щита, продолжавшемся в течение 40-50 млн. лет, могут быть выделены три стадии. В инициальную стадию (405–380 млн. лет), совпадавшую с заключительной фазой каледонской орогении, произошло заложение Хибинской, Ловозерской и Контозерской кальдер, что сопровождалось излиянием субщелочных вулканитов и внедрением интрузий ультрабазитов и нефелиновых сиенитов. В течение главного периода магматической активности (380-360 млн. лет) образовались многофазные комплексы Хибин и Ловозера и интрузии щелочно-ультраосновных пород с карбонатитами (рис. 1). В заключительную стадию были сформированы рои даек и трубок взрыва щелочных пикритов, меланефелинитов, мелилититов, кимберлитов (Арзамасцев и др., 2009).

Щелочно-ультраосновные серии в составе карбонатитовых интрузий (ЩУК)

Щелочно-ультраосновные серии представлены в интрузиях, имеющих многозональное строение, отражающее следующую последовательность внедрения пород серии: (1) оливинит, (2) пироксенит, (3) мелилитовые породы (турьяит, мелилитолит, окаит), (4) якупирангит-мельтейгит, (5) ийолит, (6) нефелиновый/канкринитовый сиенит, (7) карбонатиты и фоскориты. Установленная по геологическим наблюдениям последовательность внедрения пород во всех интрузиях региона отвечает той, которая наблюдается в щелочно-ультраосновных интрузиях мира (Le Bas, 1987; Nielsen, 1987; Woolley, 1987; Kogarko et al., 1995). Полный набор пород представлен в Ковдорском, Вуориярвинском и Турьемысском массивах (рис. 1), в остальных интрузиях на современном эрозионном срезе вскрыты лишь отдельные группы пород. В большинстве интрузий оливиниты и клинопироксениты формируют центральные части интрузий, мелилитовые породы и фоидолиты располагаются в периферических зонах массивов. Нефелиновые и канкринитовые сиениты образуют самостоятельные сателлиты вблизи интрузий (например, Малый Ковдор), либо присутствуют в виде жил в щелочных ультрамафитах (Африканда, Озерная Варака). Штокообразные тела карбонатитов, окруженные сетью карбонатитовых жил, обычно располагаются в центральных частях интрузий, но могут быть смещены относительно геометрических центров кольцевых тел щелочных ультрамафитов. С интрузиями щелочных ультраосновных пород пространственно ассоциируются тела оливиновых мельтейгит-порфиров, дайки и трубки взрыва щелочных пикритов, оливиновых меланефелинитов, нефелинитов, мелилититов.

Шелочно-ультраосновные интрузивные серии в комплексах агпаитовых сиенитов (ШУХ)

Несмотря на то, что Хибинский и Ловозерский комплексы на современном эрозионном срезе сложены преимущественно агпаитовыми сиенитами, данные геофизических работ, подтвержденные результатами бурения, позволили выявить в составе Хибинского и Ловозерского плутонов полную серию пород, типичных для щелочно-ультраосновных массивов провинции: перидотиты, пироксениты, мелилитолиты, мельтейгиты, ийолиты, карбонатиты (Галахов, 1975; Карбонатиты Хибин, 1984; Арзамасцев и др., 1998). Согласно нашим данным (Арзамасцев и др., 1998), породы щелочно-ультраосновной серии занимают не менее 30% объема Хибинского и 25% Ловозерского плутонов в пределах доступного для гравиметрических работ уровня 12.5 км. В Хибинском комплексе могут быть выделены по крайней мере три фазы внедрения расплавов щелочно-ультраосновной серии, разделенные по времени этапами внедрения нефелин-сиенитовых магм (рис. 1). Перидотиты, пироксениты и мелилитолиты относятся к самой ранней фазе формирования массива, предшествовавшей интрузиям агпаитовых сиенитов. Кольцевая интрузия мельтейгитов-ийолитов сформировалась после становления нефелиновых сиенитов периферической части плутона, но предшествовала образованию нефелиновых сиенитов центральной части Хибин. Завершают хибинскую щелочно-ультраосновную серию карбонатиты, прорывающие нефелиновые сиениты центрально-

Рис. 1. Схема размещения палеозойских щелочных интрузий (а) и строение Хибинского (б), Ковдорского и Вуориярвинского массивов (в).

Интрузии (залитые кружки): 1 – Хибины, 2 – Ловозеро, 3 – Ковдор, 4 – Африканда, 5 – Озерная Варака, 6 – Лесная Варака, 7 – Салмагора, 8 – Турий Мыс, 9 – Вуориярви, 10 – Салланлатва. Схемы массивов по данным (Терновой, 1977; Кодаrko et al., 1995; Афанасьев, 2011 и МГРЭ ПГО "Севзапгеология").

ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЭВОЛЮЦИИ

го ядра массива и содержащие ксенолиты пироксенитов, ийолитов и мельтейгитов.

В Ловозерском массиве щелочные ультрамафиты присутствуют преимущественно в его северовосточной части, где эрозионным срезом вскрыты крупные блоки и ксенолиты перидотитов и мелилитолитов, залегающих среди нефелиновых сиенитов, что свидетельствует об их формировании на самом раннем этапе становления комплекса. Ниже, на глубине свыше 2 км, фиксируется положительная гравитационная аномалия, сочленяющаяся с расположенным в непосредственной близости щелочно-ультраосновным массивом Курга (Арзамасцев и др., 1998). Фоидолиты не имеют широкого распространения в массиве: на их присутствие указывают отдельные ксенолиты ийолитов и мельтейгитов среди нефелиновых сиенитов, встреченные в керне ряда скважин.

МЕТОДЫ И ОБРАЗЦЫ ДЛЯ ИССЛЕДОВАНИЯ

Минеральный состав отдельных изученных образцов из керна скважин и обнажений интрузий Хибин и щелочно-ультраосновных массивов приведен в табл. 1. Анализ петрогенных элементов в образцах пород выполнен в Геологическом институте КНЦ РАН по стандартной методике, анализ микроэлементов выполнен в лаборатории университета Гранада методом индуктивно-связанной плазмы с масс-спектрометрическим окончанием (ICP-MS). Детали аналитических процедур описаны в работе (Арзамасцев и др., 2006).

Методом LA-ICP-MS проанализированы валовые пробы пород, минеральные фракции, а также отдельные зерна перовскита, апатита, титанита, клинопироксена, мелилита, оливина, нефелина и магнетита в полированных шлифах. Подготовка образцов минеральных фаз для определения микроэлементов с целью отбора материала без инородных включений контролировалась микроскопически с помощью сканирующего электронного микроскопа. Выделение минералов проведено с использованием магнитного сепаратора и тяжелых жидкостей. На заключительной стадии проводили многократную ручную дочистку 8-10 мг навески до чистоты 99.9 об. %. Концентрации микроэлементов в навесках определены методом ICP-MS по указанной выше процедуре.

Локальный микроанализ отдельных зерен проводили в прозрачно-полированных шлифах нормальной толщины методом LA-ICP-MS (Университет Гранады, Испания). Аналитические процедуры описаны в работе (Арзамасцев и др., 2009). LA-ICP-MS определения проводили в комбинации с микрозондовым анализом минералов на главные элементы, выполненным в шлифах в тех же аналитических точках. Микрозондовый анализ проведен в Геологическом институте Кольского научного центра РАН на приборе Cameca MS-46 с использованием природных и синтетических стандартов. Ускоряющее напряжение для всех элементов, кроме Sr и Zr – 20 кB, при токе зонда 15 нA, для Sr и Zr, соответственно – 30 кB и 30 нA, диаметр зонда – 1.5–3 мкм. Для концентраций 10, 1 и 0.25 мас. % погрешности определения составили 1, 2.5, и 5% отн. соответственно.

ПЕТРОГРАФИЧЕСКИЕ ОСОБЕННОСТИ ПОРОД И РАСПРЕДЕЛЕНИЕ REE-COДЕРЖАЩИХ МИНЕРАЛЬНЫХ ФАЗ

Ультраосновные породы. Оливиниты и пироксениты представляют собой адкумулаты и мезокумулаты; кумулусные фазы представлены оливином и клинопироксеном, интеркумулус сложен рудными фазами, флогопитом, шпинелью, нефелином (табл. 1). Единственными первичными минералами - концентраторами редкоземельных элементов являются перовскит и апатит. В оливинитах перовскит присутствует спорадически как интеркумулусная фаза в виде мелких округлых зерен. В пироксенитах перовскит является ранней кумулусной фазой и его содержания достигают 40 об. % в породах Вуориярви, 19-31 об. % в Африканде и 11-16 об. % в Салмагорском массиве (Кухаренко и др., 1965; Korobeinikov et al., 1998). Апатит в ультраосновных породах имеет меньшее распространение: в оливинитах его содержание не превышает 0.2 об. %, пироксениты обычно содержат до 3 об. % апатита. Исключение составляют пироксениты Вуориярви и Африканды, в которых содержание апатита достигает 8 об. % (Кухаренко и др., 1965; Chakhmouradian et al., 2004; Karchevsky, Moutte, 2004). Помимо перовскита и апатита в пироксенитах спорадически встречается титанит, который образует вторичные выделения, частично замещающие перовскит и магнетит.

Ультраосновные породы в Хибинском и Ловозерском массивах представлены перидотитами и пироксенитами, сходными по структуре и составу с ультрабазитами Ковдора и других карбонатитовых массивов провинции. Пироксен, обнаруживающий характерные черты кумулусной фазы, бывает частично замещен рихтеритом и/или флогопитом. REE-содержащий акцессории представлены апатитом и титанитом (соответственно до 6 и 2 об. %, табл.1). Перовскит во всех ультраосновных породах Хибин является редким акцессорием.

Мелилитовые породы образуют в Ковдорском и других щелочно-ультраосновных массивах самостоятельные интрузивные тела. В соответствии с классификацией (Le Bas, Streckeisen, 1991) они представлены оливиновыми, оливин-пироксеновыми, нефелин-пироксеновыми мелилитолитами. В Хибинах и Ловозере мелилитовые породы обнаружены в виде ксенолитов. Мелилит совместно с флогопитом образует крупные ойкокристы, включающие клинопироксен и нефелин. REE-содержащие фазы, представленные перовскитом, апа-

ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЭВОЛЮЦИИ

Номер образца	Массив	Минерал	Ol	Срх	Mel	Ne	Mic	Prv	Ар	Ttn	Mag	Прочие
4/400	KVD	Оливинит	92	_	_	_	_	<1	-	_	8	Spl 1
Z-6	LSV	Оливинит	95	_	_	_	_	<1	_	_	5	_
SL-23	SLM	Оливинит	87	1	_	_	1	<1	_	_	10	Spl 1
AFR-1	AFR	Пироксенит	10	60	_	_	_	13	<1	_	15	_
AFR-5	AFR	Пироксенит	_	70	_	_	_	8	17	1	5	
AFR-6	AFR	Пироксенит	_	70	_	14	_	5	3	_	_	Grt 8
25-AFR	AFR	Пироксенит	_	90	_	_	_	2	5	1	1	Cal 1
SL-24	SLM	Пироксенит	_	75	5	5	3	5	1	_	6	
93/192	VUO	Пироксенит	_	70	_	_	2	10	<1	_	18	
282/224	VUO	Пироксенит	_	84	_	_	_	12	1	_	10	
282/251	VUO	Пироксенит	_	66	_	5	_	10	1	_	18	
227/43	KVD	Мелилитолит	_	5	57	5	20	1	<1	_	12	
252/100	KVD	Мелилитолит	_	3	56	3	33	<1	<1	_	3	
P07-24	AFR	Фоилолит с мелилитом	_	60	10	15	5	1	3	1	5	
P07-25	AFR	Мельтейгит	_	75	_	10	5	1	3	2	5	
257/208	VUO	Мельтейгит	_	65	_	30	_	_	2	1	1	
7/394	KVD	Мельтейгит	_	65	_	20	8	_	<1	_	7	
7/348	KVD	Мельтейгит	_	65	_	10	10	<1	2	3	4	Amph 5
5/740	KVD	Мельтейгит	_	77	_	5	7	_	3	3	5	<u>-</u>
7/92.8	KVD	Мельтейгит	_	69	_	20	1	<1	5	3	1	
27/65	KVD	Мельтейгит	5	70	_	10	5	<1	4	_	5	
8-0V	OZV	Мельтейгит	_	71	_	5	5	<1	8	5	5	
5/610	KVD	Ийолит	_	37	_	55	3	_	2	_	3	
7/30	KVD	Ийолит	_	58	_	35	_	_	2	1	_	Cal 5
25/15	SUN	Ийолит	_	50	_	44	1	_	2	_	2	Cal 1
25/110	SLN	Ийолит	_	35	_	45	2	_	10	_	_	Cal 8
31/200	SLIV	Ийолит	_	45	_	40	2	_	1	2	5	Cal 5
26/151	SLN	Ийолит	_	37	_	52	1	_	3	2	4	Cal 1
MK-10	KVD	Гиолип Сиенит нефелиновый	_	20	_	35	10	_	1	3	1	$E_{sn} = 30$
7 12	O7V	Сиенит конкр		10		53*	2		1	5	1	$F_{sp} = 30$ Cal 5
L^{-12}	KHI KHI	Сиспит капкр. Перилотит	60	20	_	55	10	_1	1	_	6	<i>Tsp</i> 50, Cui 5
A 1044	кш	Перидотит	40	20		5	20	N 1	1		1	
A-1044 A 1036	кш	Пироксецит	40	57	_	3	15		_1	1	5	1mnh 18
Δ_1087	кні	Пироксенит		67		5	15		6	2	5	Ampn 10
Δ_1038	кні	Пироксенит	3	39		2	30		1	1	10	Amph 14
1010/1050	кні	Мелилитопит	_	5	50		20	_1	2	1	25	Grt 1
1010/1055	кш	Мелилитолит		5	20 45		20	<1	~1		15	Mtc = 10 Sp/3
1010/1103	кш	Мелилиполип Мелитейгит	_	65	+Ј	23	20	N 1	2	3	7	<i>Mic</i> 10, <i>Spi</i> 3
466/552	кні	Мельтейгит		60		18	10		2	5	5	Fsn <1
1110/270	кш	Мельтейгит		66		11	10		5	7	8	I Sp < 1 Esp 3
1010/1186	кш	Ийолит	_	24	_	20	30	1	3	3	10	Fsp 3
1072/530	кш	Ийолит	_	50	_	20 36	50	1	1	9	2	Fsp 2
455/402	KHI	Ийолит		45		45	2		1	2	1	F_{sn} 2
1636/701	KHI	Ийолит	_	21		т.) 55	2 2		2	2	2	$I Sp \Delta$ Esp 14
1152/83	KHI	Ийолит		33	_	47	1		1	5	2	$F_{sn} = 10$
11.74/0.7												1 4 107 111

Таблица 1. Минеральный состав образцов щелочно-ультраосновных пород (об. %)

Примечание. Минеральный состав определен методом подсчета в шлифах по 1000 точкам. Здесь и далее в таблицах: КVD – Ковдор, LSV – Лесная Варака, SLM – Салмагора, AFR – Африканда, VUO – Вуориярви, OZV – Озерная Варака, SLN – Салланлатва, КНІ – Хибины. Ol – оливин, Cpx – клинопироксен, Mel – мелилит, Mic – слюда, Ne – нефелин, Prv – перовскит, Ap – апатит, Mag – магнетит, Mtc – монтичеллит, Spl – шпинель, Ttn – титанит, Grt – Са-Ті гранат, Cal – кальцит, Fsp – K-Na полевой шпат, Amph – амфибол. Прочерк – минерал не обнаружен. * В образце Z-12 – нефелин + канкринит.

титом и, реже, титанитом, имеют ограниченное распространение.

Фоидолиты широко распространены как в составе щелочно-ультраосновных интрузий, так и в хибинской щелочно-ультраосновной серии. Они представлены орто- и мезокумулатами, в которых нефелин меняет свой габитус от ксеноморфных до идиоморфных выделений по мере увеличения лейкократовости породы. Клинопироксен образует зональные выделения, однако его состав в породах двух серий различен. В фоидолитах Ковдора и других щелочно-ультраосновных массивов пироксен представлен диопсидом, слагающем ядерные части зерен, края зерен сложены эгирин-авгитом. Пироксены ийолит-мельтейгитов Хибин характеризуются большей щелочностью и представлены выделениями, состоящими из эгирин-авгита, окруженного каймами эгирина. Соответственно, поздний амфибол, развивавшийся по клинопироксену, в фоидолитах Ковдора и Вуориярви представлен преимущественно паргаситом, а в хибинских ийолитах-мельтейгитах – рихтеритом либо магнезиокатафоритом.

Распределение REE-содержащих акцессориев в фоидолитах из карбонатитовых массивов и из Хибин различно. В мельтейгитах и ийолитах Ковдора, Вуориярви, Турьего Мыса перовскит ранней генерации является характерной акцессорной фазой наряду с апатитом и титанитом. Нередко наблюдается замещение перовскита титанитом. Среднее содержание титанита в ийолитах составляет 1-3 об. %. Содержание апатита в фоидолитах достигает максимума в наиболее меланократовых разновидностях и составляет 5 об. % (Арзамасцева, Арзамасцев, 1996). В хибинских фоидолитах, помимо акцессориев позднемагматической стадии, апатит и титанит являются широко распространенными первичными минеральными фазами концентраторами REE. Как апатит, так и титанит концентрируются преимущественно в меланократовых разновидностях фоидолитов, где их содержание достигает 5 и 9 об. % соответственно. Особенностью хибинских фоидолитов является отсутствие в них первичного перовскита.

Нефелиновые и канкринитовые сиениты в щелочно-ультраосновных массивах не обнаруживают признаков ранней кристаллизации лейкократовых фаз — нефелина и К-Na полевого шпата. Удлиненные выделения клинопироксена зональны, причем ядра, сложенные диопсидом, обнаруживают отчетливый идиоморфизм, а окружающие их каймы эгирин-авгита часто ксеноморфны по отношению к нефелину. REE-содержащие акцессории представлены титанитом и апатитом.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Геохимические особенности пород

Петрогенные элементы. Представительные анализы пород щелочно-ультраосновных серий в карбонатитовых массивах (ЩУК) и комплексах агпаитовых сиенитов (ЩУХ) приведены в табл. 2 и 3. Тренды изменения составов обеих серий, построенные по всей совокупности накопленных петрохимических данных (рис. 2), показывают, что в ультраосновной части он обусловлен фракционной кристаллизацией оливина и клинопироксена, клинопироксена и мелилита, фоидолитовый тренд контролируется фракционированием клинопироксена и нефелина. Снижение магнезиальности пород в этом ряду от Mg# = 0.90 в оливинитах до 0.56 в нефелиновых сиенитах серии ЩУК коррелируется с вариациями содержаний Ni, Cr, Co, V и Sc (табл. 2, 4).

Сравнительный анализ состава пород ЩУК и ШУХ обнаруживает следующие различия в содержаниях петрогенных элементов. Фоидолиты Хибин характеризуются относительно более низкой магнезиальностью, а также более высокими значениями SiO₂ и щелочей (рис. 2). Так, по результатам расчета средневзвешенного состава, содержания этих элементов составляют в хибинских фоидолитах (мас. %) SiO₂ = 43.62, Na₂O = 9.40, K₂O = 3.59, в фоидолитах ЩУК $SiO_2 = 41.64$, $Na_2O = 8.10$, $K_2O = 2.73$. Высокие содержания кремнезема и шелочей проявляются в модальном составе хибинских фоидолитов: характерным второстепенным минералом ийолитов является K-Na полевой шпат, содержания которого достигают 10 об. %. Среди прочих особенностей пород обеих серий следует отметить более высокое содержание в хибинских породах фтора, а также различия в характере распределения TiO_2 и P_2O_5 . Так, если в серии ШУК максимальные содержания TiO₂ отмечены в пироксенитах, содержащих в среднем 8-13 мас. % MgO, то в хибинских породах максимум концентрации TiO₂ установлен в мельтейгите, содержашем 5-8 мас. % MgO.

Элементы-примеси. Валовые концентрации крупноионных литофильных компонентов (LILE) в ряду дифференциатов обеих щелочно-ультраосновных серий контролируются их вхождением в такие фазы, как апатит (Sr), мелилит (Sr) и полевые шпаты (Rb, Li, Cs, Sr, Ba). Соответственно, если концентрации Rb, Li и Cs последовательно возрастают, достигая максимальных значений в нефелиновых сиенитах, то максимум концентрации Sr наблюдается в мелилитовых породах, кристаллизация которых происходила на начальных этапах формирования серии (рис. 3а). Небольшое повышение содержания Sr в фоидолитах связано с кристаллизацией апатита, коэффициент распределения Sr для которого превышает 2 (Brassinnes et al., 2005; Арзамасцев и др., 2009). В хибинской щелочно-ультраосновной серии, на фоне более высокого среднего содержания Sr в породах, повышенная концентрация Sr отмечена в мелилитолитах. В мельтейгитах Хибин содержания Sr также достигают максимальных значений, что связано с кумуляцией апатита в клинопироксеновых слоях в про-

	OLV	OLV	OLV	PRX	PRX	PRX	PRX	PRX	PRX	PRX	MEL	MEL	MLG
Компо- ненты	KVD	LSV	SLM	AFR	AFR	AFR	VUO	VUO	VUO	SLM	KVD	KVD	KVD
	4/400	Z-6	SL-23	AFR-1	AFR-5	AFR-6	93/192	282/224	282/251	SL-24	227/43	252/100	7/394
SiO ₂	37.81	38.74	38.58	13.88	37.68	32.17	43.21	34.24	26.97	39.33	41.25	41.10	44.10
TiO ₂	0.24	0.35	0.52	22.30	1.69	7.19	4.14	12.28	8.63	3.86	0.79	0.47	1.26
Al_2O_3	1.20	0.38	0.96	0.41	3.36	7.41	3.88	3.63	4.02	7.05	10.90	8.02	10.15
Fe ₂ O ₃	1.48	3.74	4.90	18.59	4.48	10.95	7.15	8.85	19.09	6.90	3.74	2.68	4.37
FeO	9.01	11.22	6.07	11.10	4.81	9.41	4.36	5.76	12.71	9.12	4.38	3.22	6.19
MnO	0.20	0.23	0.24	0.23	0.13	0.22	0.14	0.18	0.34	0.21	0.10	0.09	0.15
MgO	44.05	43.30	39.67	15.72	8.81	9.18	12.60	11.07	9.69	8.41	10.10	9.90	10.27
CaO	4.17	0.69	3.38	14.18	28.87	15.95	22.48	21.56	15.70	20.98	19.60	26.40	14.47
Na ₂ O	0.10	0.03	0.08	0.09	0.82	1.55	0.50	0.43	0.37	1.68	4.65	3.78	4.56
K ₂ O	0.05	0.03	0.51	0.06	0.06	1.29	0.21	0.52	0.52	0.37	2.10	1.35	2.54
P_2O_5	0.03	0.04	0.04	0.01	8.05	1.01	0.19	0.19	0.16	0.38	0.05	0.07	0.12
CO ₂	0.24	0.16	0.10	0.79	0.20	0.27	0.36	0.26	0.28	0.30	0.28	0.40	0.21
S _{tot}	0.08	0.02	0.05	n.a.	0.21	0.25	n.a.	n.a.	0.02	n.a.	n.a.	n.a.	n.a.
F	0.01	0.01	0.01	n.a.	0.40	0.07	0.03	0.04	0.03	0.02	0.06	0.05	0.07
H ₂ O	0.72	0.50	3.96	1.82	0.47	3.07	0.44	0.56	0.55	1.33	1.42	1.86	0.88
Сумма	99.39	99.44	99.07	99.18	100.04	99.99	99.69	99.57	99.08	99.94	99.42	99.39	99.34
Mg#	0.90	0.87	0.92	0.37	0.77	0.64	0.84	0.59	0.36	0.62	0.80	0.85	0.75
	MLG	MLG	MLG	MLG	IJL	IJL	IJL	IJL	IJL	IJL	NFS	NFS	AVER*
Компо- ненты	KVD	KVD	KVD	OZV	SLN	SLN	SLN	SLN	KVD	KVD	OZV	KVD	
	7/348	27/65	5/740	8-OV	31/200	25/110	25/15	26/151	5/610	7/30	Z-12	MK-10	
SiO ₂	48.24	42.92	38.35	45.40	41.49	35.93	41.93	41.25	44.56	44.44	55.79	51.83	37.20
TiO ₂	0.22	1.92	1.29	0.85	1.29	0.43	0.73	0.78	0.13	0.34	0.44	0.82	2.68
Al_2O_3	1.24	7.20	4.01	3.87	14.31	19.03	15.94	16.20	19.56	12.50	19.07	16.52	7.20
Fe ₂ O ₃	2.46	4.56	8.78	3.55	5.96	1.42	4.48	6.57	1.17	0.22	1.66	2.18	8.96
FeO	3.43	7.92	12.36	6.76	4.51	2.47	6.71	4.67	2.01	7.43	1.72	4.70	6.18
MnO	0.17	0.14	0.21	0.24	0.16	0.06	0.17	0.13	0.10	0.18	0.05	0.12	0.25
MgO	14.76	11.86	14.41	8.97	5.34	4.77	5.35	5.62	5.66	5.26	0.61	3.38	12.62
CaO	22.50	17.40	14.68	22.67	12.93	13.44	11.16	11.30	9.52	14.74	2.39	4.44	17.11
Na ₂ O	1.43	2.67	0.46	2.52	7.88	11.44	8.53	8.77	9.94	7.29	11.35	8.58	2.97
K ₂ O	0.77	0.64	2.02	0.34	2.82	3.04	2.84	2.99	4.04	2.69	2.43	3.64	1.87
P_2O_5	1.76	0.20	0.08	3.41	1.89	5.36	0.76	0.67	0.79	1.00	0.21	0.54	1.20
CO ₂	1.73	0.80	0.68	0.26	0.43	1.19	n.a.	0.59	0.81	1.10	1.89	0.44	1.76
S _{tot}	n.a.	n.a.	0.01	0.01	0.10	0.30	0.04	0.05	0.01	n.a.	n.a.	0.10	n.a.
F	0.18	0.06	0.07	0.20	0.06	0.27	0.04	0.03	0.06	0.05	0.03	0.10	n.a.
H ₂ O	0.89	1.29	2.18	0.62	0.66	1.34	0.85	0.41	1.15	0.81	1.65	1.86	n.a.
Сумма	99.78	99.58	99.59	99.67	99.83	100.49	99.53	100.03	99.51	98.05	99.29	99.25	100.00
Mg#	0.88	0.73	0.68	0.70	0.49	0.69	0.59	0.68	0.83	0.56	0.25	0.56	0.61

Таблица 2. Химический состав пород (мас. %) щелочно-ультраосновных с карбонатитами массивов Кольской провинции

Примечание. Здесь и далее в таблицах: п.а. – не анализировалось, п.d. – не обнаружено, Mg# = Mg/(Mg + Fe²⁺). OLV – оливинит, PRD – перидотит, PRX – пироксенит, MEL – мелилитовая порода, MLG – мельтейгит, IJL – ийолит, NFS – нефелиновый сиенит. AVER* – средневзвешенный состав щелочно-ультраосновной серии Кольской провинции, по (Арзамасцев и др., 2001).

Рис. 2. Вариации состава петрогенных элементов на диаграммах MgO-оксид (мас. %) в щелочно-ультраосновных породах серий ЩУК (незалитые кружки) и ЩУХ (залитые кружки).

Составлено по собственным материалам и данным (Кухаренко и др., 1965, 1971; Галахов, Батраков, 1970; Терновой, 1977; Булах, Иваников, 1984).

цессе формирования расслоенного фоидолитового комплекса.

Породы двух серий характеризуются близкими средними содержаниями таких высокозарядных элементов (HFSE), как Nb (160–180 г/т), Та (10–

15 г/т), Th (12–18 г/т), U (2.5–2.7 г/т) (табл. 4, 5). Вместе с тем распределение HFSE в породах серий существенно отличается. В породах ЩУК максимальные содержания Nb и Ta установлены в пироксенитах, что связано с массовой кристаллиза-

	IIL	1152/83	46.07	2.28	17.84	5.17	2.90	0.29	1.79	3.94	11.58	5.20	0.37	0.08	n.a.	0.26	1.23	99.00	0.29
	IJL	1636/721	43.67	1.61	21.03	4.53	3.95	0.22	1.54	4.63	13.21	3.42	1.00	0.15	0.04	0.21	0.70	99.91	0.25
	IJL	455/402	44.81	1.97	17.44	5.31	3.19	0.21	3.94	7.91	10.74	3.78	0.22	0.07	n.a.	0.07	0.48	100.14	0.69
	IJL	1072/530	43.48	2.67	18.85	4.88	3.17	0.16	3.35	7.70	10.58	4.45	0.65	0.31	n.a.	0.09	0.20	100.54	0.65
	IJL	010/1186	39.52	7.25	9.17	8.00	7.00	0.28	7.01	11.74	4.56	2.36	1.25	0.32	0.19	0.32	0.48	99.45	0.64
	MLG	466/552 1	44.00	4.60	3.64	11.72	7.70	0.33	8.32	13.41	4.02	1.46	0.27	0.05	n.a.	0.36	1.08	100.96	0.66
	MLG	455/345	37.56	7.73	3.38	11.60	11.81	0.61	7.17	14.68	3.30	0.81	0.99	0.05	n.a.	0.20	0.33	100.22	0.52
	MLG	1119/279	41.24	6.42	4.87	9.23	8.22	0.48	5.74	13.61	4.93	1.73	1.88	n.a.	0.30	0.43	0.72	99.80	0.38
	MEL	1010/1165	29.98	2.84	3.58	10.51	5.18	0.29	16.58	28.46	0.67	0.04	0.37	0.35	0.02	0.16	0.46	99.49	0.85
	MEL	1010/1059	28.01	6.01	6.12	15.57	5.83	0.26	9.20	23.43	1.35	0.86	0.77	0.49	0.04	0.58	1.53	100.05	0.74
	PRX	A-1038	41.37	4.18	7.37	8.90	5.22	0.23	13.38	9.09	3.18	3.60	0.36	0.32	0.04	0.91	1.32	99.47	0.82
	PRX	A-1087	37.53	2.90	11.09	5.90	4.04	0.17	6.49	18.40	5.69	1.78	2.97	0.96	0.40	0.14	1.27	99.73	0.74
•	PRX	A-1036	41.60	4.91	5.92	4.33	11.25	0.23	11.67	11.20	3.47	2.11	0.38	0.23	0.12	09.0	1.52	99.54	0.65
	PRD	1010/1052	38.26	3.51	4.29	10.31	5.25	0.28	19.93	12.60	0.65	2.06	0.42	0.38	0.16	1.06	0.68	99.84	0.87
ľ	PRD	A-1044	43.62	3.41	5.21	5.41	7.06	0.19	17.85	9.36	2.26	2.91	0.36	0.14	0.03	0.45	1.01	99.27	0.82
	-olimoX	ненты	SiO ₂	0 ²	Al ₂ O ₃	Fe ₂ O ₃	FeO	MnO	MgO	CaO	Na_2O	K_2O	P_2O_5	CO_2	$\mathbf{S}_{\mathrm{tot}}$	Ĺ	H_2O	Сумма	Mg#

Таблица 3. Химический состав пород (мас. %) щелочно-ультраосновной серии Хибинского массива

ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЭВОЛЮЦИИ

285

Рис. 3. Распределение элементов-примесей в рядах дифференциатов щелочно-ультраосновных серий карбонатитовых массивов (ЩУК) (а) и Хибин (ЩУХ) (б).

Приведены средние значения, в скобках – количество анализов.

цией перовскита, в то время как во всех породах хибинской щелочно-ультраосновной серии (за исключением ранних оливиновых кумулатов) концентрации указанных элементов, а также Zr и Hf варьируют незначительно (рис. 36). Следует также отметить, что главную роль в балансе Zr и Hf, учитывая высокое модальное содержание, играл клинопироксен, концентрация Zr в котором составляет 400–500 г/т в ранних дифференциатах и увеличивается до 2500 г/т в конечных членах серий (табл. 6).

Нормализованные к хондриту графики распределения редкоземельных элементов в породах обеих серий, представлены на рис. 4. Помимо данных для конкретных образцов, на всех графиках нанесено распределение REE в средневзвешенном составе ультраосновных щелочных пород Кольской провинции (Арзамасцев, Митрофанов, 2009).

Все породы серии ЩУК характеризуются отсутствием европиевой аномалии и обогащены легкими REE по отношению к тяжелым REE (рис. 4а–4в). Наиболее низкие суммарные концентрации REE, а также значения коэффициента ((La/Yb)_N = 11.7–17.4) установлены в оливинитах массивов Ковдор, Лесная Варака и Салмагора. В отличие от этого, пироксениты большинства массивов, содержащие перовскит и, в меньшей степени, апатит, обогащены REE относительно среднего состава щелочно-ультраосновных пород. Эти породы имеют более крутые графики распределения, характеризующиеся значениями (La/Yb)_N = = 59–521. В более эволюционированных дериватах, представленных мелилитолитами, фоидолитами и нефелиновыми/канкринитовыми сиенитами, установлены более низкие концентрации, по сравнению со средним составом щелочно-ультраосновных пород провинции.

В щелочно-ультраосновных породах Хибин наблюдается иной характер распределения REE (рис. 4г-4е). Концентрации легких REE в не содержащих перовскита перидотитах и пироксенитах составляет 0.5-0.7 от средних значений для щелочно-ультраосновной серии, а концентрации средних и тяжелых REE в 2 раза превышают эти значения. Спектры REE характеризуются низкими значениями параметра (La/Yb)_N, варьирующего в пределах 31.4-53.4. Как и в пироксенитах, содержания REE в мелилитовых породах Хибин находятся в пределах средних значений, установленных для щелочно-ультраосновных пород. С другой стороны, наиболее поздние дифференциаты серии (ийолит и мельтейгит) обогащены REE по отношению к среднему составу шелочно-ультраосновных пород провинции. В частности, в мельтейгите расслоенного комплекса Хибин, содержащем до 8 об. % титанита и 5 об. % апатита, концентрации REE в 2 × 10³ превышают хондритовые значения. Таким образом, в породах щелочноультраосновной серии Хибин наблюдается последовательное обогащение REE поздних дериватов.

286

Рис. 4. Графики распределения редкоземельных элементов в щелочно-ультраосновных породах серий ЩУК (а–в) и ЩУХ (г–е).

Жирной линией на всех графиках показано распределение REE в средневзвешенном составе щелочно-ультраосновной серии по (Арзамасцев, Митрофанов, 2009). Нормализовано по (Anders, Grevesse, 1989).

Распределение элементов-примесей в минералах

Оливин и магнетит. Для анализа содержаний микроэлементов в монофракциях были отобраны наиболее чистые зерна оливина из оливинитов Ковдора и Лесной Вараки, имеющие состав *Fo*₈₂₋₉₁

(табл. 7). Тем не менее это не исключало присутствие микровключений магнетита, равномерно распределенных во всей массе кристаллов оливина. Сканирующая электронная микроскопия показала наличие тончайших каемок перовскита, об-

Таблица	4. Содержан	пеодим эин	IEMEHTOB (L/	undon a (T)		U-yubi pavu		ароонатита	אמערעוםר		דיווזמטקוו מ	ии	
	OLV	OLV	OLV	PRX	PRX	PRX	PRX	PRX	PRX	PRX	MEL	MEL	MLG
Компон	CHThe KVD	LSV	SLM	AFR	AFR	AFR	VUO	VUO	VUO	SLM	KVD	KVD	KVD
	4/400	9-Z (SL-23	AFR-1	AFR-5	AFR-6	93/192	282/224	282/251	SL-24	227/43	252/100	7/394
Li	n.d.	2.58	3.32	2.11	n.d.	4.80	n.d.	0.81	1.86	6.22	n.d.	n.d.	n.d.
Rb	4.53	0.94	18.7	1.54	5.05	25.0	10.4	18.9	11.69	11.7	47.3	35.8	9.69
Cs	n.d.	0.08	0.29	0.05	n.d.	0.11	n.d.	0.24	0.19	0.14	0.36	0.20	0.61
Be	0.18	0.26	0.86	0.47	2.37	6.20	1.73	1.29	1.12	7.03	8.42	9.19	1.81
Sr	74.5	7.67	160	766	1525	1313	399	677	369	1103	1998	3050	358
Ba	21.1	12.3	152	30.7	20.6	25.7	151	297	222	801	1011	951	401
Sc	7.82	7.09	8.80	31.3	14.9	14.4	79.0	89.5	43.0	46.2	12.6	2.34	28.5
>	20.8	20.8	58.3	190	177	210	142	202	375	355	73.1	41.6	171
Cr	1462	2124	2725	27.3	23.2	10.2	30.3	116	171	38.6	3.96	5.07	1083
Co	112	168	93.9	96.4	35.8	69.0	35.8	46.1	85.1	52.4	36.7	35.1	49.6
Ni	1480	1432	1961	54.5	40.6	29.7	59.8	75.3	148	54.5	145	85.4	321
Cu	18.1	7.58	25.8	49.9	314	216	34.5	58.1	33.8	415	17.6	26.1	162
Zn	70.0	79.9	85.9	201	34.2	108	48.3	144	208	148	183	219	79.8
Ga	3.84	1.91	2.68	27.5	12.9	28.1	16.9	26.5	31.7	18.3	15.9	15.9	14.8
Y	1.49	0.69	2.38	49.3	6.99	25.9	27.9	78.5	36.3	29.4	3.18	3.76	6.20
qN	8.64	3.00	10.3	1412	31.6	379	208	818	561	238.3	12.7	10.8	18.8
Та	0.41	0.38	0.44	132	1.89	41.7	20.4	42.2	48.5	13.7	0.86	0.73	0.46
Zr	21.0	6.31	80.9	111	419	472	456	450	482	425	98.5	25.8	113
Hf	0.55	n.d.	1.93	4.75	12.9	5.72	18.0	15.9	17.3	11.9	2.88	0.68	2.99
Sn	2.18	0.78	n.d.	7.38	4.96	5.21	6.37	7.79	11.0	7.37	2.71	1.83	3.43
Pb	0.98	0.71	0.48	5.43	13.0	5.93	1.65	3.16	1.48	4.15	2.50	3.53	5.05
Ŋ	0.29	n.d.	0.43	16.2	1.53	6.19	3.28	14.5	6.54	5.38	0.22	0.24	0.45
Th	0.95	0.29	0.48	201	7.36	72.7	15.9	87.3	43.0	12.2	0.81	0.88	1.07
П	5.16	0.95	5.39	1724	354	475	224	1046	513	172	28.5	42.6	21.2
ပီ ET:	11.1	1.66	10.1	4827	551	1037	502	2800	1343	368	52.9	76.2	50.0
PO D	1.24	0.17	1.13	359	53.0	111	57.5	256	144	43.2	5.71	8.08	6.09
р Z ЛС	3.37	0.55	4.08	1131	189	386	222	888	516	142	19.9	27.4	22.1
NJO Sm	09.0	0.11	0.70	124	31.1	44.2	35.5	125	70.0	20.2	2.69	3.74	3.57
En En	0.23	0.02	0.21	29.4	9.23	10.1	9.26	33.1	17.7	5.36	0.52	0.84	0.95
۲ Gq	0.32	0.08	0.65	78.9	24.8	23.2	24.1	86.9	47.3	13.8	1.62	2.06	2.28
Ър	0.05	0.02	0.09	8.57	3.18	2.31	2.70	10.1	5.35	1.74	0.16	0.22	0.28
л О 121	0.32	0.09	0.47	24.3	16.0	8.19	10.9	32.1	17.6	7.64	0.71	0.90	1.42
Ho	0.06	0.02	0.10	2.96	2.74	1.10	1.52	4.52	2.26	1.23	0.13	0.14	0.26
ч Er	0.19	0.05	0.26	4.72	5.92	2.14	2.65	7.55	3.76	2.70	0.28	0.32	0.63
Tm ⊵ 3	0.03	0.01	0.04	0.43	0.67	0.25	0.31	0.75	0.36	0.36	0.04	0.04	0.10
Yb	0.21	0.06	0.24	2.23	3.50	1.48	1.67	3.65	1.80	2.03	0.25	0.23	0.67
п Т 20	0.03	0.01	0.04	0.23	0.49	0.21	0.23	0.41	0.21	0.27	0.04	0.03	0.12
$(La/Yb)_{i}$	v 17.4	11.7	15.7	521	71.1	226	94.2	193	192	59.6	81.9	128	22.3

АРЗАМАСЦЕВ, АРЗАМАСЦЕВА

	AVER*			13.5	49.3	0.64	n.a.	2094	1116	24.8	104	293	42.5	243	n.a.	n.a.	n.a.	33.6	95.8	5.50	347	7.65	n.a.	n.a.	2.15	8.51	131	249	27.4	96.9	14.4	3.60	10.2	1.26	6.02	1.05	2.42	0.32	1.83	0.26	48.4
	NFS	KVD	MK-10	43.4	131	0.94	4.27	1039	1101	10.7	124	55.4	18.9	31.9	58.4	102	20.8	12.5	52.8	2.87	155	3.73	3.30	13.3	1.68	8.56	52.1	88.7	8.40	27.3	3.99	0.78	2.84	0.39	2.16	0.44	1.26	0.19	1.22	0.18	30.0
	NFS	OZV	Z-12	4.36	20.0	2.91	4.53	967	956	1.11	66.6	12.4	3.38	1.99	4.60	18.0	17.4	1.96	135	10.2	146	2.53	4.87	1.53	0.72	0.75	12.8	30.0	3.66	12.8	1.77	0.49	1.34	0.17	0.68	0.10	0.20	0.03	0.17	0.03	51.2
	IIL	KVD	7/30	n.d.	63.7	0.01	10.0	730	163	11.6	175	76.0	23.0	30.8	23.4	96.0	30.7	7.21	65.3	3.99	283	4.79	3.19	2.53	1.54	17.2	55.4	118	13.1	46.0	5.94	1.45	3.47	0.37	1.48	0.27	0.71	0.10	0.72	0.12	54.3
	IJL	KVD	5/610	n.d.	54.6	0.04	6.52	281	129	22.3	85.4	5.16	7.55	7.55	9.05	22.7	20.1	4.66	20.4	2.16	264	5.41	3.12	1.27	0.50	7.02	32.0	70.2	7.93	28.7	4.22	1.12	2.69	0.30	1.32	0.20	0.42	0.06	0.50	0.08	45.0
	IJL	SLN	26/151	n.d.	52.9	n.d.	1.72	388	67.1	13.5	94.9	19.6	33.1	18.2	118	58.5	19.5	6.33	16.3	0.81	55.4	1.80	2.69	3.39	0.44	2.33	22.6	44.1	4.99	18.3	3.12	0.91	2.33	0.28	1.38	0.25	0.57	0.08	0.54	0.10	29.5
	IJL	SLN	25/15	n.d.	50.1	0.04	1.78	359	76.2	8.01	101	13.3	31.6	19.4	62.6	59.4	18.3	6.25	16.3	0.54	58.2	1.71	2.43	2.69	0.49	1.86	21.6	40.0	4.42	15.5	2.55	0.80	2.06	0.25	1.31	0.25	0.58	0.09	0.60	0.11	25.4
	IJL	SLN	25/110	2.92	42.7	0.24	2.40	879	87.9	2.89	46.7	15.3	11.8	7.73	65.0	10.4	18.0	26.7	18.6	1.52	74.4	2.07	3.91	10.6	1.03	10.3	113	216	23.7	86.3	12.7	3.63	10.9	1.39	6.01	1.11	2.50	0.32	1.71	0.23	44.6
	IJL	SLN	31/200	3.71	46.7	0.30	2.90	561	88.6	4.75	175	46.0	31.6	16.7	135	70.7	21.7	19.3	48.0	5.53	182	4.36	3.70	1.97	0.40	4.36	38.6	83.1	9.86	38.2	6.65	2.01	6.02	0.87	4.84	0.84	2.03	0.30	1.77	0.30	14.7
	MLG	OZV	8-OV	4.20	7.91	0.12	2.56	1106	31.6	11.9	200	59.1	32.5	24.4	12.0	75.1	10.6	20.5	29.0	2.05	164	3.55	2.42	1.59	0.83	12.2	169	315	34.1	116	15.1	3.60	11.1	1.28	5.26	0.82	1.87	0.25	1.50	0.25	76.2
	MLG	KVD	5/740	n.d.	63.0	0.75	1.90	298	937	13.5	190	30.4	69.1	231	28.2	194	16.5	3.51	32.4	2.80	210	2.59	4.99	1.73	0.83	2.30	8.25	18.5	2.32	8.14	1.58	0.36	1.02	0.14	0.77	0.14	0.40	0.07	0.42	0.08	13.9
	MLG	KVD	27/65	5.21	15.5	n.d.	1.29	429	210	49.7	294	409	53.7	130	205	61.9	13.1	10.6	16.1	0.73	82.8	3.24	3.54	4.13	0.38	1.31	18.5	36.2	4.19	16.1	2.92	0.97	2.52	0.37	2.07	0.40	0.99	0.15	0.93	0.14	14.0
ончание	MLG	KVD	7/348	n.d.	23.4	0.12	2.62	563	103	97.5	191	51.1	12.9	21.5	12.3	44.1	5.27	10.3	18.5	0.93	190	4.78	3.93	2.14	0.50	3.80	42.5	99.6	12.2	47.7	7.30	1.99	5.15	0.59	2.59	0.41	0.90	0.13	0.93	0.14	32.0
л Таблица 4. Ок	ПЕ	Компоненты	<u>.</u> ло	E.	Кb	CS	Be	Sr.	Ba	Sc	>	Cr Cr	ပိ 013	Ni	Cu	Zn	Ga	Y	Nb	Та	Zr	Hf	Sn	Pb	U	Th	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	(La/Yb) _N

ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЭВОЛЮЦИИ

Ta6.	ища 5.	Содер	жание ми	мәлем	ehtob (r/)	г) в пород	ах щелочно	-yльтраосн	новной се	рии Хиби	AHCKOFO N	лассива		н		
Ko	-011M	PKD	PKD	РКХ	РКХ	РКХ	MEL	MEL	MLG	MLG	MLG	IJГ	IJГ	IJГ	IJL	IJL
не	HTbI	A-1044	1010/1052	A-1036	A-1087	A-1038	1010/1059	1010/1165	1119/279	455/345	466/552	1010/1186	1072/530	455/402	1636/721	1152/83
E		36.6	8.0	46.1	2.6	84.3	6.00	7.50	32.4	12.2	28.4	22.3	28.5	7.90	14.5	44.2
Rb		115.4	138.4	112.7	23.9	207.8	58.5	1.10	51.8	15.9	37.7	86.0	23.4	34.4	71.3	97.6
Cs		1.30	2.60	1.52	0.32	2.20	0.79	0.03	0.55	0.32	0.22	0.60	3.62	0.19	0.78	0.95
Be		0.99	2.54	7.39	4.68	5.46	5.61	3.17	7.36	3.02	3.34	4.25	6.53	5.73	5.70	15.3
Sr		893	1126	995	748	1485	5933	5390	6168	2544	3237	2194	1313	1352	4974	3280
Ba		558	1364	432	187	521	1063	49.4	1166	168	1114	852	357	335	49.2	2609
Sc		21.4	23.9	28.2	19.0	21.1	42.0	24.0	23.3	26.5	22.3	20.0	2.50	19.5	2.67	5.50
>		213	506	251	242	265	298	83.1	547	673	739	428	1.80	276	322	208
Cr		1131	1277	800	22.7	724	158	1061	92.7	112	39.1	135	72.8	51.4	38.9	83.4
Co		80.7	98.0	66.1	27.7	62.5	83.8	102	49.8	65.1	75.6	45.9	2.6	16.0	10.9	14.8
ïŻ		915	1018	428	37.8	568	278	994	77.2	104	61.9	134	37.4	29.1	5.61	64.3
Cu		65.2	963	39.4	237	26.1	194	34	285	534	628	455	10.3	18.0	21.0	83.2
Zn		157	190	305	131	226	277	159	247	429	143	325	80.8	105	102	200
Ga		12.2	12.4	28.2	21.1	24.2	33.4	9.2	20.0	14.3	12.8	24.6	32.3	32.9	37.0	38.2
Υ		19.7	27.7	30.4	45.9	33.6	30.5	18.3	76.8	63.0	36.0	86.6	41.8	24.1	21.4	56.7
Νb		39.0	73.4	104	154	94.8	312	157	304	261	169	371	215	110	101	387
Та		2.55	5.41	7.64	6.83	5.75	23.3	15.1	17.8	31.2	16.4	28.0	15.8	7.98	5.59	11.2
Zr		220	345	481	429	453	480	173	1168	812	814	744	929	565	564	2131
Ηf		5.94	8.74	10.3	12.2	11.1	12.5	4.59	23.4	19.8	24.8	18.0	25.3	12.9	11.5	32.3
Sn		0.34	1.96	2.73	3.10	2.01	5.92	1.40	7.53	5.00	4.19	5.40	8.12	2.17	11.5	6.31
Pb		n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	6.42	n.a.	0.78	n.a.	8.21	n.a.	5.79	11.9
D		0.41	1.56	1.76	3.05	1.86	4.45	2.97	4.44	0.85	0.20	1.57	3.68	1.08	1.45	8.51
Th		2.67	5.04	9.09	6.10	7.22	27.9	19.2	16.9	3.99	0.85	23.4	23.2	3.19	5.30	19.6
La		62.0	85.6	102	143	102	251	128	330	222	108	380	119	69.4	204	116
о ПЕ		138	176	223	255	216	465	270	652	441	250	747	238	150	332	200
Ъ ГРО		16.5	20.3	26.4	28.1	24.8	49.2	28.9	66.8	50.8	30.7	88.9	27.3	16.6	30.3	19.7
р Z		68.4	79.9	105	112	99.0	173	103	235	190	116	323	97.6	62.2	96.1	67.3
ло С		11.6	13.7	18.0	22.0	16.7	23.3	13.3	35.0	30.4	19.9	49.5	16.8	10.4	12.0	11.1
Е N		3.29	3.92	5.08	7.11	4.70	6.18	3.47	10.2	8.97	5.77	14.3	1.68	3.04	3.24	3.40
Eq F		8.47	10.8	13.2	20.6	12.0	13.8	7.50	29.4	22.8	13.8	33.1	11.2	7.63	9.36	10.5
q То		1.03	1.39	1.65	2.82	1.64	1.66	0.90	3.98	3.08	1.93	4.37	1.73	1.05	1.20	1.68
ĥ м 2		4.99	6.42	7.57	12.23	7.71	7.85	4.20	17.9	14.6	9.08	21.0	9.44	5.26	4.88	9.23
0Н 1		0.81	1.04	1.22	1.88	1.34	1.18	0.69	3.09	2.46	1.61	3.42	1.97	0.93	0.86	2.01
۲ Er		1.85	2.45	2.63	4.03	3.04	2.67	1.64	6.94	5.61	3.62	7.83	5.31	2.37	1.97	5.63
Jm ∳		0.21	0.28	0.31	0.44	0.37	0.29	0.20	0.93	0.66	0.49	0.86	0.81	0.32	0.29	0.86
Yb		1.21	1.54	1.82	2.40	2.19	1.66	1.20	5.17	4.06	3.23	4.80	4.71	2.20	1.95	5.05
р 20		0.17	0.21	0.27	0.32	0.30	0.22	0.18	0.74	0.59	0.55	0.60	0.70	0.34	0.34	0.71
(La/	$Y_{b})_{N}$	36.0	39.1	39.3	42.0	32.8	106.8	75.2	48.1	38.5	23.6	55.7	17.8	22.2	70.4	15.4

АРЗАМАСЦЕВ, АРЗАМАСЦЕВА

	PRX	MEL	IJL	NFS	MLG	IJL	IJL
Компоненты	VUO	KVD	KVD	KVD	КНІ	КНІ	KHI
-	282/224*	252/100*	7/30*	MK-11*	455/345*	455/239*	301/500
Li	0.25	0.32	1.65	22.1	2.87	7.37	1.54
Be	1.30	1.04	8.38	3.02	3.77	4.83	4.55
Sc	103	38.1	23.3	6.54	36.8	16.7	6.17
V	53.5	51.3	504	652	467	757	651
Cr	5.60	1.31	117	55.1	73.8	69.5	0.42
Co	19.3	18.3	31.3	15.8	28.7	29.5	34.5
Ni	27.9	38.0	63.7	12.1	22.8	31.3	9.75
Cu	3.82	0.26	1.87	23.1	2.71	3.57	10.8
Zn	26.5	18.3	211	92.3	106	130	n.d.
Ga	8.03	3.81	8.91	10.8	6.47	8.39	6.58
Rb	n.d.	0.01	1.25	1.46	0.17	1.92	2.52
Sr	345	217	255	178	2016	1637	2289
Y	5.33	4.85	3.18	9.33	17.3	17.0	17.6
Zr	491	380	583	1417	755	2587	958
Nb	0.42	0.69	0.38	7.56	1.40	4.80	5.44
Cs	n.d.	n.d.	0.04	0.01	0.01	0.02	0.16
Ba	0.10	0.12	0.33	15.54	4.73	12.1	6.31
La	5.02	4.26	5.13	10.96	30.0	23.7	36.6
Ce	10.7	9.89	15.2	23.6	69.9	50.0	84.9
Pr	1.46	1.52	2.29	2.96	8.70	6.13	10.0
Nd	7.20	7.26	10.5	12.5	38.0	26.0	38.0
Sm	1.78	1.71	1.93	2.58	7.12	4.89	6.45
Eu	0.64	0.55	0.52	0.71	2.04	1.56	1.95
Gd	1.67	1.48	1.12	1.97	5.14	3.77	4.88
Tb	0.23	0.21	0.12	0.32	0.71	0.55	0.66
Dy	1.22	1.03	0.63	1.90	3.78	3.22	3.67
Но	0.20	0.19	0.12	0.40	0.70	0.71	0.71
Er	0.42	0.51	0.38	1.38	2.02	2.52	1.99
Tm	0.06	0.07	0.09	0.32	0.34	0.56	0.36
Yb	0.47	0.66	0.94	3.90	3.13	6.14	3.39
Lu	0.08	0.14	0.22	0.92	0.57	1.19	0.66
Hf	18.3	7.90	9.84	43.14	19.0	38.8	24.9
Та	0.06	0.09	0.01	0.26	0.06	0.15	0.34
Pb	0.12	0.11	0.45	1.10	0.14	0.38	1.03
Th	n.d.	0.04	0.07	0.76	0.03	0.21	0.75
U	n.d.	0.01	0.02	0.07	0.03	0.10	0.02

Таблица 6. Содержание микроэлементов (г/т) в клинопироксене из пород щелочно-ультраосновных серий Кольской провинции

Примечание. Здесь и далее в табл. * отмечены образцы, проанализированные методом LA-ICP-MS.

таолица	widotoo												
		10	10	10	10	Mag	Mag	Mag	Mag	Mag	Mag	Mag	Mag
Контор	0	ILV	OLV	OLV	OLV	OLV	OLV	MEL	MEL	OLV	PRX	MLG	IJL
NUMIIU	ICHIDI K	VD	KVD	KVD	LSV	KVD	KVD	KVD	KVD	LSV	VUO	KHI	KHI
	4/4	400*	4/400	4/898	Z-6	4/400	4/400*	252/100	252/100*	2-6	282/224	455/345	455/239
Sc	2	.99	n.d.	n.d.	n.d.	22.7	21.4	n.d.	12.4	15.0	14.7	n.d.	n.d.
>	0).28	1.40	0.42	0.57	146	123	735	1559	302	809	260	594
Cr	10	0.7	3.00	4.55	17.6	20300	13454	118	25.0	47780	398	55.5	78.7
Co	75	5.4	77.1	102	151	238	143	182	349	288	200	20.2	27.8
Ni	704		917	1439	1267	3045	1912	206	777	1962	309	15.0	22.1
Cu	37	7.6	3.91	5.15	1.24	13.1	5.04	58.6	0.36	31.5	29.5	16.7	0.07
\mathbf{Zn}	46	6.4	n.d.	n.d.	n.d.	291	297	7.48	763	346	662	386	747
\mathbf{Sr}	84	ł.0	92.5	5.32	1.22	38.6	1.55	56.2	0.11	4.08	2.00	2.90	0.56
Υ	11	6.1	7.05	1.73	0.51	1.88	n.d.	7.09	n.d.	0.22	0.04	0.03	0.07
Zr	5	2.22	1.69	2.70	0.50	46.8	23.0	76.1	102	18.3	19.6	1.12	0.50
Νb	3	3.65	7.77	8.27	3.42	5.12	0.03	22.1	n.d.	1.64	0.57	3.63	11.2
La	5	5.63	19.9	17.3	2.29	8.12	0.06	24.0	n.d.	1.22	0.26	0.12	0.11
Ce	11	8.1	33.0	29.8	3.85	12.8	0.02	53.7	n.d.	2.25	0.45	0.16	0.24
Pr	1	1.37	3.34	3.21	0.42	1.43	n.d.	5.69	n.d.	0.23	0.04	0.02	0.03
р N П	5	5.88	11.5	9.44	1.31	4.28	n.d.	20.3	0.04	0.57	0.21	0.10	0.20
ш S ЕТР		0.03	1.87	1.20	0.07	09.0	n.d.	2.87	0.01	0.15	0.04	0.03	0.06
Eu	0).24	0.33	0.19	n.d.	n.d.	n.d.	0.84	n.d.	n.d.	0.01	0.01	0.02
в Эги	1	1.03	1.19	0.73	0.10	0.35	0.02	1.93	n.d.	0.05	0.05	0.06	0.04
Р L Я	0).18	0.18	0.08	0.02	0.06	n.d.	0.27	n.d.	0.01	n.d.	n.d.	0.01
л О том	1	.60	0.98	0.31	0.06	0.34	n.d.	1.09	n.d.	n.d.	0.02	0.02	0.02
0H	0).38	0.19	0.02	0.01	0.05	n.d.	0.18	n.d.	n.d.	0.01	n.d.	n.d.
۲ Er	-	1.42	0.48	0.02	n.d.	0.09	n.d.	0.39	n.d.	n.d.	n.d.	n.d.	0.01
Tm 5	0).18	0.07	n.d.	n.d.	0.01	n.d.	0.04	n.d.	n.d.	n.d.	n.d.	n.d.
۹۲ ر	-	1.64	0.51	n.d.	n.d.	0.03	n.d.	0.18	n.d.	n.d.	0.01	0.05	n.d.
Tn C13	0).20	0.09	n.d.	n.d.	n.d.	n.d.	0.02	n.d.	n.d.	n.d.	n.d.	n.d.

АРЗАМАСЦЕВ, АРЗАМАСЦЕВА

рамляющих первичные выделения включенного в оливин хромита. С другой стороны, наблюдающаяся положительная корреляция содержаний в оливине Nb и Ta с REE указывает на присутствие микровключений перовскита, поэтому мы предполагаем, что значительная доля редких земель в оливине сосредоточена не в самом минерале, а в содержащихся в нем микровключениях. Все проанализированные образцы оливина обнаруживают отрицательную аномалию Eu, которая наблюдается и в сосуществующем с оливином магнетите (рис. 5а). Наиболее высокая степень окисленности Eu (Eu/Eu* ~ 0.08) установлена в оливините Лесной Вараки, который в значительном количестве содержат магнетит.

Клинопироксен. В породах ультраосновной щелочной серии в ранних кумулатах клинопироксен представлен диопсидом состава $Di_{80}Hd_{15}Ac_5$, в фоидолитах и нефелиновых сиенитах присутствуют зональные выделения, варьирующие по составу от авгита $Di_{55}Hd_{40}Ac_5$ до эгирин-авгита $Di_{50}Hd_{30}Ac_{20}$. Как показали исследования состава пироксена методом лазерной абляции (Арзамасцев и др., 2009), клинопироксен обеих серий характеризуется присутствием Sc, V, Cr, Ni, Zn, Ga в количествах, не превышающих 100 г/т. Клинопироксен Хибин отличают высокие содержания Sr, почти на порядок превышающие таковые в аналогах из серии ЩУК (табл. 6). В распределении большинства микроэлементов, и в частности REE, по зонам кристаллов не обнаруживается существенных вариаций. На графиках (рис. 5б) кривые распределения REE имеют характерную форму, обусловленную в разной степени выраженным минимумом для Dy, Ho и Er и более высокими относительными отношениями для тяжелых REE. Клинопироксены из хибинской серии в целом характеризуются более высокими концентрациями REE относительно таковых в серии ЩУК.

Мелилит. Согласно данным микрозондового анализа, мелилит из пород Ковдорского массива имеет состав (мол. %): Мд-акерманит 49-70, Fe-акерманит 5-11, Na-мелилит 36-40. В сравнении с ранее опубликованными данными по составам мелилита в породах разных провинций (Eby, 1975; Rass, 1982; Bell et al., 1996), проанализированные мелилиты имеют более высокое отношение Mg/Fe, что свойственно безнефелиновым разновидностям щелочных ультрамафитов (Pacc, 1986; Mitchell, 1996а). В целом для мелилита характерно высокое содержание Sr, что связано с изоморфным замещением $Sr^{2+} \rightarrow Ca^{2+}$. В отличие от мелилита Хибин, содержания Sr в котором превышают 7000 г/т (Арзамасцева, Арзамасцев, 1996), образцы ковдорского мелилита не обнаруживают существенного обогащения Sr (табл. 8). В сравнении с опубликованными немногочисленными определениями REE в мелилитах разных провинций (Onuma et al., 1981; Mitchell, 2001), ковдорские образцы имеют несколько пониженные суммар-

ПЕТРОЛОГИЯ том 21 № 3 2013

Рис. 5. Графики распределения редкоземельных элементов в породообразующих минералах щелочно-ультраосновных пород. Нормализовано по (Anders, Grevesse, 1989).

ные содержания REE и характеризуются прямолинейными графиками распределения с относительно высоким (La/Yb)_N отношением (178–203) (рис. 5в).

АРЗАМАСЦЕВ, АРЗАМАСЦЕВА

Таблица 8. Содержание микроэлементов (г/т) в мелилите и нефелине из пород щелочно-ультраосновных серий Кольской провинции

	MEL	MEL	MEL	NEPH	NEPH	NEPH	NEPH	NEPH
Variation	MEL	MEL	MEL	MLG	IJL	NFS	IJL	MLG
компоненты	KVD	KVD	KVD	TUR	KVD	KVD	KHI	KHI
	252/100*	252/140*	227/43*	A00-26*	7/30*	MK-11*	455/239*	455/345*
Li	0.43	0.88	n.d.	7.73	1.07	20.43	1.20	0.44
Be	15.4	9.30	19.5	1.11	5.00	1.53	3.30	4.13
Sc	0.50	0.67	n.d.	0.92	0.56	0.73	0.51	0.38
V	0.67	0.70	0.76	1.75	0.84	0.48	1.31	0.59
Cr	0.44	0.29	n.d.	1.63	0.41	1.47	47.1	26.0
Со	26.5	23.9	21.3	2.96	0.10	0.11	0.52	0.72
Ni	2.73	3.37	4.47	3.19	0.39	1.36	0.17	0.52
Cu	2.72	2.30	3.20	38.9	8.18	33.25	8.51	8.58
Zn	306	233	93.81	7.17	5.27	7.52	23.5	36.6
Ga	17.7	17.0	15.8	10.9	44.9	19.6	36.1	43.8
Rb	1.34	0.01	7.03	35.9	95.7	40.3	88.2	59.2
Sr	4256	4175	3689	354	23.1	72.8	46.3	28.6
Y	2.70	3.24	3.54	0.40	0.07	0.43	0.91	0.13
Zr	0.22	0.03	0.93	12.2	3.04	8.46	14.0	3.31
Nb	0.10	n.d.	0.13	1.03	0.22	1.65	4.27	0.46
Cs	n.d.	n.d.	n.d.	0.13	0.39	0.18	0.50	0.09
Ba	12.0	2.65	7.22	27.0	9.81	40.2	66.8	13.6
La	42.4	47.0	39.2	0.88	0.18	2.63	1.78	0.28
Ce	70.1	69.7	70.2	1.53	0.25	3.65	2.96	0.55
Pr	7.62	7.17	7.48	0.13	0.03	0.34	0.27	0.06
Nd	29.3	27.6	25.2	0.47	0.10	1.17	1.19	0.28
Sm	3.60	3.56	3.48	0.08	0.01	0.17	0.21	0.03
Eu	0.77	0.91	0.67	0.02	0.01	0.05	0.06	0.01
Gd	1.95	2.03	1.82	0.06	0.02	0.15	0.11	0.02
Tb	0.18	0.19	0.19	0.01	n.d.	0.02	0.02	n.d.
Dy	0.70	0.81	0.95	0.07	n.d.	0.08	0.14	0.02
Но	0.10	0.12	0.15	0.02	n.d.	0.01	0.03	n.d.
Er	0.19	0.21	0.24	0.04	0.01	0.04	0.10	n.d.
Tm	0.02	0.02	0.03	0.01	n.d.	0.01	0.02	n.d.
Yb	0.09	0.11	0.16	0.04	0.02	0.04	0.10	n.d.
Lu	0.01	0.01	0.02	0.01	n.d.	n.d.	0.02	0.01
Hf	0.02	0.01	0.03	0.30	0.06	0.19	0.27	0.11
Та	0.01	n.d.	0.01	0.04	n.d.	0.04	0.10	0.02
Pb	3.24	2.96	2.66	13.81	0.30	0.59	2.05	0.16
Th	0.28	0.01	0.29	0.16	0.05	0.16	0.89	0.05
U	n.d.	n.d.	n.d.	0.15	0.02	0.11	0.30	0.05

Нефелин. Состав нефелина в породах щелочно-ультраосновных интрузий варьирует $Ne_{77.8-82.5}Ks_{9.6-18.9}Qtz_{1.4-3.2}$ до $Ne_{78.6-81.6}Ks_{15.2-20.1}Qtz_{1.4-3.2}$ соответственно в фоидолитах и нефелиновых сиенитах. Нефелин из фоидолитов Хибин имеет более высокое содержание кальсилитового компонента и кремнезема ($Ne_{68.4-72.8}Ks_{21.5-26.1}Qtz_{4.8-7.4}$). Вследствие высокого содержания Fe₂O₃ в матрице нефелина, все кристаллы нефелина наполнены микролитами эгирина, образованными в результате распада твердого раствора. Содержание большинства элементов-примесей во всех разновидностях нефелина, включая и REE, варьирует от низкого до очень низкого (табл. 8). Исключение составляют Rb, Ga, Sr, Ba, концентрации которых обычно варьируют в пределах 10-100 г/т. Хондрит-нормализованные графики распределения REE прямолинейны (рис. 5в), в нефелинах из ийолитов ЩУК и ЩУХ серий Еи-аномалия почти не выражена (Eu/Eu* варьирует в пределах 0.69-1.60).

Перовскит. В щелочно-ультраосновных породах провинции известны две генерации перовскита. Принадлежность перовскитов первой генерации к раннемагматической стадии кристаллизации щелочных ультрабазитов, в частности, для пород Ковдорского (Veksler et al., 1998), а также Гулинского массивов в Сибири (Kogarko et al., 1991) доказана присутствием в них расплавных включений, по составу отвечающих захваченным порциям первичного расплава. Поздний перовскит, присутствующий преимущественно в мелилитолитах и фоидолитах, образует каймы вокруг выделений перовскита I генерации и магнетита. Согласно данным (Mitchell, 1996b; Chakmouradian, Mitchell, 1997), если перовскиты ранней генерации приближаются по составу к идеальной формуле CaTiO₃, то поздние выделения перовскита обнаруживают лопаритовый тренд, связанный с обогащением Na, легкими REE, Nb и Th. Эта же закономерность была установлена И.Т. Расс (Расс, Лапутина, 1995; Расс, 2004) для зональных зерен перовскита из пород Турьего мыса, Гули и Кугда. В сравнении с перовскитами из других карбонатитовых комплексов мира, исследованные разновидности близки по содержанию REE перовскитам из фоидолитов Олдоиньо Ленгаи (Dawson et al., 1994) и кимберлитов (Mitchell, Reed, 1988), однако последние характеризуются более высокими (La/Yb)_N отношениями. Среди изученных перовскитов ранней генерации (перовскиты I) (табл. 9) наиболее низкие содержания REE, Nb, Ta, Y, U, Th и Sr установлены в пироксенитах Вуориярви. В перовскитах II генерации, представленных образцами из мелилитоли-TOB Ковдора и ийолитов Озерной Вараки, концентрации перечисленных выше элементов в 2-10 раз превышают таковые в раннемагматических перовскитах. В целом все перовскиты резко обогащены легкими REE ((La/Yb)_N = 207-518) (рис. 6а).

ПЕТРОЛОГИЯ том 21 № 3 2013

Рис. 6. Графики распределения редкоземельных элементов в перовските, апатите и титаните щелочно-ультраосновных пород.

Нормализовано по (Anders, Grevesse, 1989).

АРЗАМАСЦЕВ, АРЗАМАСЦЕВА

Таблица 9.	Содержание микроэлементов	(г/т) в перовските	из пород щелочно	-ультраосновной сери	и Кольской
провинции	I				

]	Теровскит	I			Перов	скит II	
V	PRX	PRX	PRX	PRX	PRX	MEL	MEL	MLG	MLG
компоненты	AFR	AFR	VUO	VUO	VUO	KVD	KVD	AFR	OZV
	AFR-1	25-AFR*	205/297	282/224*	282/251	252/100	252/140*	P07-25*	8-OV
Sr	1796	2982	392	1761	545	2168	2078	2832	3545
Ba	12.5	4.02	2.64	50.9	2.58	75.2	85.9	3.45	8.30
Sc	9.12	0.28	4.48	9.99	4.59	n.d.	1.69	n.d.	n.d.
V	91.1	52.1	34.7	179	37.7	173	112	n.d.	173
Cr	12.6	n.d.	9.82	29.2	13.2	16.1	2.76	n.d.	6.50
Co	4.67	0.66	0.81	15.7	0.89	n.d.	0.23	n.d.	n.d.
Ni	8.67	1.45	4.15	25.3	3.56	1.36	0.44	n.d.	0.33
Cu	96.4	80.8	61.5	81.4	35.1	164	37.3	n.d.	1027
Ga	40.8	11.2	14.5	4.74	23.5	78.5	1.57	n.d.	111
Y	111	190	64.4	294	98.6	350	302	252	203
Nb	2915	7051	159	3506	560	4060	10005	9711	8569
Та	234	293	25.5	256	53.7	190	99.1	401	551
Zr	213	166	69.7	457	122	573	1447	179	142
Hf	8.98	5.03	2.18	13.9	4.19	16.7	49.3	4.04	4.54
Pb	12.37	20.6	4.51	11.1	4.72	30.1	20.0	14.8	63.8
U	34.7	92.1	10.3	58.0	19.2	41.5	225	126	137
Th	456	549	130	405	129	961	147	210	2557
La	3510	7506	880	5632	1629	6587	9851	4180	10700
Ce	9255	14620	2301	10644	4274	14822	18677	9780	22177
Pr	803	1429	277	960	460	1645	1887	1118	2210
Nd	2570	4719	1039	3764	1621	5644	6884	4102	6719
Sm	277	549	137	550	211	672	709	550	677
Eu	66.9	143	35.0	139	54.6	162	167	142	159
Gd	178.2	282	91.7	305	142	328	331	295	299
Tb	18.8	27.7	9.55	31.7	15.4	35.9	34.0	29.9	31.1
Dy	53.2	105	28.8	123	46.2	140	137	119	111
Но	6.52	13.5	3.92	16.6	6.17	21.1	19.0	15.9	14.3
Er	10.5	21.9	6.11	29.8	10.0	36.2	35.8	27.8	24.0
Tm	0.99	1.69	0.61	2.62	0.90	3.89	3.29	2.33	2.60
Yb	4.89	7.52	2.73	11.6	4.40	19.83	15.5	11.3	13.9
Lu	0.52	0.62	0.31	1.14	0.45	2.49	1.32	0.94	1.88
(La/Yb) _N	483	706	217	341	250	224	449	260	518

Апатит. Помимо Ca, P и F, апатит всех изученных пород содержат значительные количества Sr, Y и REE (табл. 10), причем наиболее высокие концентрации этих элементов наблюдаются в поздней генерации минерала. Апатиты пироксенитов и фоидолитов Ковдора, Африканды, Салланлатвы и Хибин обнаруживают значительные вариации как валовых содержаний REE, так и отношения (La/Yb)_N которое варьирует в пределах 57–278. Хондрит-нормализованные графики распределения REE (рис. 6б) апатитов субпараллельны и в целом коррелируются с содержаниями REE во вмещающих их породах. Описанная ранее положительная аномалия Eu (Кравченко и др., 1979) не выявлена ни в одном из образцов. Сравнение с составами апатитов из других щелочных провинций

Таблица	10. Содержа	ние микроз	лементов ((г/т) в апат	ите из порс	оньоголи до	-ультраост	новных сері	ий Кольскс	и провини	ции		
ПFT	PRX	PRX	MLG	MLG	MLG	IJL	IJL	IJL	IJL	NFS	MLG	III	IJL
Компо ненты	- AFR	AFR	AFR	AFR	OZV	KVD	KVD	SLN	SLN	KVD	KHI	KHI	KHI
огия	AFR-5	25-AFR*	P07-24*	P07-25*	8-OV	7/30*	7/92.8*	31/200*	25/110*	MK-11*	455/345*	455/239*	1636/874
S.	1273	5846	5430	5933	9358	5472	5005	1997	3202	8793	44553	54759	27612
≻ Эм 2	50.0	131	97.0	108	178	102	149	54.9	86.1	273	321	362	134
Zr.	0.92	5.37	9.09	8.90	8.06	0.71	3.11	0.78	0.47	2.85	1.74	5.15	4.12
JH	0.12	0.42	0.31	0.30	0.70	0.11	0.38	0.13	0.15	0.20	0.01	0.12	0.22
q N 3	1.34	3.47	0.91	0.63	13.85	0.29	2.39	4.42	4.62	0.07	0.07	5.30	9.27
е Е 2013	0.06	0.56	0.05	0.05	3.86	n.d.	0.33	0.12	0.16	0.04	n.d.	0.04	0.24
Ba	3.4	17.5	13.1	22.5	49.7	30.3	21.3	13.7	22.7	68.9	1151.7	768	289
\mathbf{Pb}	1.73	3.38	2.62	1.74	10.11	5.80	10.45	2.33	2.83	2.53	2.30	2.46	1.55
Тh	3.23	32.47	29.99	39.14	199.44	109	339.35	9.24	26.2	29.8	27.1	45.5	4.32
Ŋ	0.88	5.61	4.58	5.31	11.29	26.0	22.05	0.83	3.26	1.93	2.22	2.72	0.74
La	320	1573	1794	1539	2625	1048	1417	221	515	2048	4882	4768	1798
Ce	499	2023	2979	2548	4423	1874	3068	438	984	2804	7011	6226	2740
\mathbf{Pr}	49.1	175	308	258	425	174	350	49.9	108	274	535	461	239
Nd	169	554	1042	842	1315	686	1247	184	379	1037	1679	1631	755
Sm	25.6	84.6	126	109	151	94.5	158	26.5	51.9	134	214	211	85.5
Eu	7.86	25.8	29.8	26.7	40.2	18.0	38.3	7.74	14.3	31.6	53.9	56.2	23.2
Gd	24.3	63.9	81.5	74.0	95.9	66.4	89.6	23.7	42.9	93.0	131	142	71.4
ТЪ	2.91	7.93	7.59	7.33	10.8	6.84	9.30	2.81	4.89	10.9	14.6	16.5	8.22
Dy	12.0	32.9	29.9	30.6	45.4	31.2	39.8	12.0	19.8	54.6	69.4	80.1	32.7
Но	2.02	5.17	4.36	4.74	7.23	5.41	6.18	2.19	3.38	10.1	12.3	13.9	5.00
Er	4.18	9.53	7.39	8.62	15.31	10.8	12.0	4.78	7.11	24.9	27.1	30.0	99.66
Πm	0.47	0.97	0.74	0.91	1.76	0.91	1.49	09.0	0.81	3.00	2.73	3.02	0.99
Yb	1.81	4.83	3.70	4.85	9.80	4.06	7.16	2.61	3.80	15.0	11.7	13.7	4.35
Lu	0.24	0.60	0.43	0.56	1.17	0.38	0.78	0.35	0.46	1.74	1.06	1.30	0.44
(La/Yb) _r	ч 124	229	341	223	188	176	139	59	95	96	293	246	291

ГЕОХИМИЧЕСКИЕ ИНДИКАТОРЫ ЭВОЛЮЦИИ

Рис. 7. Коэффициенты сокристаллизации для сосуществующих перовскита (*Prv*), апатита (*Ap*) и титанита (*Ttn*) щелочноультраосновных пород.

показывает, что по характеру распределения и содержаниям REE они отвечают апатитам из карбонатитов массивов Ально, Сокли и Фен (Hornig-Kjarsgaard, 1998).

Титанит. Нами проанализированы поздний титанит, замещающий перовскит в пироксенитах Африканды (обр. 25-AFR), а также титанит из основной массы ийолитов Озерной Вараки и Хибинского массива. Сравнение показывает, что если хибинские разновидности существенно обогащены Sr, то титанит Озерной Вараки и Африканды характеризуется повышенными содержаниями Nb, Ta, Zr, Hf, U и Th (табл. 11). Концентрации REE во всех разновидностях варьируют незначительно, хондрит-нормализованные графики (рис. 6в), вследствие относительно низких значений $(La/Yb)_N$ отношения (40–53), пологие и имеют прямолинейную форму.

Распределение REE

между сосуществующими минеральными фазами

Сравнение значений коэффициентов сокристаллизации, полученных для сосуществующих пар перовскит/апатит ($D_{Prv/Ap}$), перовскит/титанит($D_{Prv/Tin}$) и апатит/титанит ($D_{Ap/Tin}$) (по данным табл. 9–11) показывает, что в ранних пироксен-перовскитовых кумулатах преимущественной фазой для редких земель, Y, Pb, Th, и U является перовскит (рис. 7). Перовскит I (ранней генерации) (обр. 25-AFR) наиболее интенсивно концентрирует легкие и средние редкие земли ($D_{Prv/Ap}$ для

La-Gd > 4), причем он максимально экстрагирует из расплава Ce, Pr, Nd и Sm. Аналогичная картина наблюдается и для пары перовскит II-апатит (обр. 8-OV). После завершения кристаллизации перовскита главным концентратором в основном легких REE становится апатит, который, кроме того, экстрагирует из расплава Sr. В более эволюционированных членах серии (мельтейгитах и ийолитах), в которых одновременно кристаллизуются апатит и титанит, последний концентрирует преимущественно средние и тяжелые REE. В целом для всех пар сосуществующих титанита и апатита наблюдается закономерное снижение коэффициента $D_{Ap/Ttn}$ от легких к тяжелым REE. Таким образом, вхождение REE в указанные минералы при магматической кристаллизации щелочно-ультраосновной серии происходит в последовательности: перовскит > апатит > титанит. Полученные результаты согласуются с данными микрозондовых анализов минералов из клинопироксенитов и камафугитовых лав Уганды (Lloyd et al., 1996), а также плутонических щелочно-ультраосновных пород Олдоиньо Ленгаи (Dawson et al., 1994, 1995), которые показывают относительное постоянство распределения REE в паре перовскит-апатит $(D_{Prv/Ap}$: La 9, Ce 16, Nd 9.5). Величины $D_{Prv/Ap}$, сходные с полученными нами значениями для пар поздний перовскит II-апатит, установлены для кальцитовых карбонатитов Кайзерштуля (Hornig-Kjarsgaard, 1998): $D_{Prv/Ap}$ в этих породах понижаются от 6.8–4.9 для LREE, 3.0–1.5 для MREE и 0.5 для Yb.

Компоненты	PRX	MLG	IJL	MLG	IJL	IJL	IJL	IJL
	AFR	OZV	KVD	KHI	KHI	KHI	KHI	KHI
	25-AFR*	8-OV	7/30*	455/345*	455/239*	1636/874	1636/721	301/500
V	465	273	494	348	344	318	127	407
Cu	227	107	1.07	3.48	1.72	61.2	37.0	115
Sr	801	987	764	3633	3648	4387	2220	4266
Y	229	270	91.3	288	313	231	123	334
Zr	3351	2826	7023	2551	1594	1206	716	2356
Nb	2299	6265	17324	2387	2335	2045	507	2659
Ba	2.89	16.74	11.6	30.3	25.2	9.13	6.92	9.69
La	693	1260	505	1102	1096	678	382	961
Ce	1416	3323	1544	2721	2576	1813	989	2463
Pr	154	407	176	268	257	228	123	309
Nd	556	1423	714	1102	1087	840	442	1148
Sm	109	209	105	191	193	137	69.8	194
Eu	36.3	59.6	26.4	56.2	55.9	41.4	20.7	58.7
Gd	98.0	135	53.5	122	130	109	54.7	143
Tb	13.2	16.9	5.86	16.1	17.5	14.3	7.29	18.9
Dy	62.5	78.6	25.0	80.3	87.2	63.1	32.2	90.3
Но	10.2	12.8	3.78	13.0	14.4	10.3	5.33	14.8
Er	20.9	25.7	7.65	28.1	31.0	20.3	11.1	29.7
Tm	2.40	3.11	0.76	2.93	3.26	2.25	1.24	3.36
Yb	11.6	16.0	3.31	14.0	15.2	9.80	5.11	15.4
Lu	1.26	1.87	0.26	1.11	1.20	0.86	0.49	1.66
Hf	113	73.0	92.4	61.5	38.6	36.4	17.5	69.0
Та	101	593	910	152	143	92.5	35.7	250
Pb	10.2	10.7	4.53	0.82	0.92	1.55	24.2	0.15
Th	26.9	100	82.2	14.5	15.5	9.37	7.71	17.8
U	13.2	13.2	34.2	3.21	2.69	1.48	1.17	3.12

Таблица 11. Содержание микроэлементов (г/т) в титаните из пород щелочно-ультраосновных серий Кольской провинции

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Петрологические исследования, подкрепленные экспериментальными данными (Onuma and Yamamoto, 1976; Wilkinson, Stolz, 1983; Edgar, 1987; Le Bas, 1987; Pan, Longhi, 1990, Veksler et al., 1998a) свидетельствуют о том, что главным процессом, ответственным за образование щелочно-ультраосновных серий разных провинций мира, являлась фракционная кристаллизация первичной оливинмеланефелинитовой магмы. Единая последовательность формирования пород - от ранних оливиновых и клинопироксеновых кумулатов к мелилитолитам, фоидолитам и нефелиновым сиенитам подтверждается геологическими и петрографическими наблюдениями. Оценки состава родона-

ПЕТРОЛОГИЯ том 21 Nº 3 2013 чальных расплавов, проведенные для Кольской щелочной провинции (Арзамасцев, Митрофанов, 2009), позволяют предполагать существование единой первичной меланефелинитовой магмы для щелочно-ультрамафитовых серий Хибин, Ковдора и других щелочных массивов провинции. Эти данные подтверждают и изотопные исследования, показывающие единый мантийный источник для палеозойских щелочных пород региона (Kramm, Kogarko, 1994). Тренды, образуемые на диаграммах распределения петрогенных элементов для серий ЩУК и ЩУХ, отвечают последовательным стадиям фракционирования оливина, клинопироксена и мелилита. Образование фоидолитов контролируется реакцией, связанной с резорбцией мелилита и образованием диопсида и нефелина:

 $3CaMgSi_2O_6 + 2NaAlSiO_4 = Mg_2SiO_4 + Ca_2MgSi_2O_7 + NaCaAlSi_2O_7 + NaAlSi_3O_8$ диопсид нефелин оливин мелилит (тв. раствор) расплав

Имеющиеся в литературе данные по распределению микроэлементов в перечисленных выше главных минеральных фазах щелочно-ультраосновной серии позволяют предполагать накопление REE, Sr, Y, Zr, Hf, Nb, Ta в конечных дериватах. Действительно, учитывая то, что коэффициенты распределения для указанных элементов в первых кристаллизующихся фазах – оливине и диопсиде значительно меньше единицы, должно происходить концентрирование некогерентных элементов в поздних ийолитовых и нефелин-сиенитовых магмах. Примером такого распределения являются щелочные ультрамафиты Хибин, в которых все дифференциаты характеризуются стабильно высокими содержаниями Nb, Ta, REE, Sr и Y. С другой стороны, в других щелочно-ультраосновных массивах провинции на фоне максимального накопления указанных выше элементов в породах ранних фаз, наблюдается снижение концентраций этих элементов в поздних ийолитах и нефелиновых сиенитах. Аналогичная картина наблюдается в щелочно-ультраосновных сериях Маймеча-Котуйской провинции (Сибирь) (Егоров, 1991), комплексе Гардинер (Вост. Гренландия) (Nielsen et al., 1997), плутонических щелочных сериях Танзании (Dawson et al., 1995).

Среди главных причин, обусловивших различие в накоплении REE, HFSE и LIL элементов в щелочных ультраосновных породах двух изученных серий пород, могут быть рассмотрены: (1) ликвация первичного карбонатно-силикатного расплава и преимущественное накопление этих элементов в карбонатитовых жидкостях; (2) изменение условий кристаллизации первичной щелочно-ультраосновной магмы и, соответственно, порядка кристаллизации фаз-концентраторов REE – перовскита, апатита, титанита либо в результате контаминации породами фундамента, либо в результате смешения с порциями фонолитовых расплавов, поступавших из автономного мантийного источника. Действительно, ликвация мантийных расплавов с отделением карбонатных жидкостей рассматривается как один из наиболее вероятных механизмов формирования щелочно-ультраосновных карбонатитовых комплексов (Koster van Groos, Wyllie, 1973; Kjarsgaard, Hamilton, 1988; Lee, Wyllie, 1997). Однако экспериментальные данные (Wyllie, Huang, 1975; Sweeney, 1994; Yaxley, Brey, 2004) и изотопные характеристики пород (Harmer, 1999) указывают на отделение карбонатитовых жидкостей на мантийных глубинах, непосредственно в зонах магмогенерации, и, следовательно, не связаны с условиями дифференциации отликвировавших силикатных расплавов. Кроме того, изотопные данные, полученные для широкого спектра пород разных массивов показывают, что контаминация меланефелинитовых расплавов в результате взаимодействия с докембрийскими гнейсами фундамента, содержащими до 70 мас. % SiO₂, также не может рассматриваться в качестве главного фактора, контролировавшего кристаллизацию перовскита и титанита.

Согласно экспериментальным данным (Veksler, Teptelev, 1990; Kogarko, 1990) и результатам изучения расплавных включений (Kogarko et al., 1991; Veksler et al., 19986), перовскит и апатит являются фазами, образование которых происходило на ранних стадиях кристаллизации щелочно-ультраосновной серии. Доказательством является обнаружение в эвгедральных кристаллах перовскита и апатита включений, гомогенизация которых происходит при температурах >970°С и 1000-700°С соответственно (Когарко, 1977; Nielsen et al., 1997). Исходя из этого, пути кристаллизации серии и распределение элементов-примесей необходимо рассматривать с учетом фаз – концентраторов REE в рамках шестикомпонентных систем SiO₂-TiO₂-Al₂O₃-CaO-MgO-Na₂O и SiO₂-P₂O₅-Al₂O₃-CaO-MgO-Na₂O.

В сечении псевдотройной диаграммы плавкости нефелин-диопсид-титанит (рис. 8), перовскит и остальные пять фаз отвечают минеральной ассоциации, формирующей породы щелочно-ультраосновной серии. Согласно данным (Veksler, Teptelev, 1990), перовскит образует широкое поле кристаллизации, смежное с полями всех фаз за исключением оливина. Фигуративная точка состава (точка А) первичной щелочно-ультраосновной магмы, содержащей 2-3 мас. % TiO₂, располагается в поле кристаллизации диопсида и дочерние расплавы эволюционируют до котектических линий Di-Prv (точки B и C), образуя оливиновые, пироксен-перовскитовые кумулаты и мелилитолиты. Одним из факторов, контролирующих стабильность перовскита в расплавах, является активность кремнезема, которая описывается реакциями $CaTiO_3 + SiO_2 = CaTiSiO_5$ и 2CaTiO₃ + NaAlSi₃O₈ = = NaAlSiO₄ + 2CaTiSiO₅ (Carmichael et al., 1970; Veksler, Teptelev, 1990). Следовательно, даже небольшие добавки в недосыщенный кремнеземом оливин-меланефелинитовый расплав более кислого материала (эволюция расплава $A^1 - B^1 - C$) препятствует ранней кристаллизации перовскита. В результате осаждение титаносиликатов будет происходить не в начальных дифференциатах серии в форме перовскита, а в более эволюционированных продуктах (ийолитах и нефелиновых сиенитах) в форме титанита.

Поведение апатита в процессе эволюции ультраосновной щелочной серии может быть аппроксимировано с помощью сечения NaAlSiO₄–CaMgSi₂O₆– Ca₅(PO₄)₃F (рис. 9), изученного Л.Н. Когарко

Рис. 8. Диаграмма плавкости системы нефелин-диопсид-титанит по данным (Veksler, Teptelev, 1990). Di – диопсид, Prv – перовскит, Tin – титанит, Mel – мелилит, Cg – карнегиит, Ne – нефелин, Ol – оливин. Точка A представляет средневзвешенный состав первичной щелочно-ультраосновной магмы серии ЩУК. Точкой A^1 обозначен гипотетический состав первичной магмы щелочно-ультраосновной серии хибинского типа, состав которой изменился в результате смешения с фонолитовым расплавом. Точки B, B^1 , C – объяснение см. в тексте.

(Kogarko, 1990), на котором фигуративная точка состава первичной оливин-меланефелинитовой магмы располагается в поле кристаллизации диопсида. Поскольку содержание P_2O_5 в исходном расплаве составляет 1.20 мас. % (табл. 2), осаждение апатита на ранних стадиях кристаллизации пород серии маловероятно. Учитывая, что характер распределения P_2O_5 во всех членах серии показывает существование максимума содержаний фосфора (2.8 мас. %) в меланократовых членах фоидолитового ряда (Арзамасцева, Арзамасцев, 1996), можно полагать, что достижение ликвидуса апатита происходит на этапе кристаллизации нефелин-пироксеновых парагенезисов.

Учитывая геохимические особенности перовскита, апатита и титанита, для оценки их роли в ходе кристаллизации пород щелочно-ультраосновных серий привлечены данные по коэффициентам распределения элементов *D*, полученные нами для REE, Y, Nb, Ta, Zr, Hf, Th, U, Sr для породообразу-

ПЕТРОЛОГИЯ том 21 № 3 2013

ющих и акцессорных минералов (Арзамасцев и др., 2009). Сравнение полученных коэффициентов D с литературными данными (Nagasawa et al., 1976; Onuma et al., 1981; Kato et al., 1988; Gasparik et al., 1995; Corgne, Wood, 2005) показывает близкие значения D для равновесия перовскит/матрица (рис. 10). Значения D для REE, Y, Sr, полученные нами для апатита из лампрофиров, сходных по составу дайковым породам Кольской провинции (Арзамасцев и др., 2009), соответствуют опубликованным ранее для щелочно-ультраосновных пород и карбонатитов Вуориярви (Brassiness et al., 2005), базальтоидов. нефелинитов-гавайитов (Paster et al., 1974; Watson, Green, 1981) и согласуются с экспериментальными данными для силикатных и карбонатных систем (Fleet, Pan, 1997). Эти коэффициенты значительно выше D_{REE} полученных для перовскита и апатита щелочно-ультраосновных пород (Расс, Лапутина, 1995). Вариации D_{REE} для изученного апатита из меланефелинита, по-

Di – диопсид, *Ap* – апатит, *Pho* – фосфат кальция, *Mel* – мелилит, *Cg* – карнегиит, *Ne* – нефелин, *Ol* – оливин, L₁ + L₂ – поле несмесимости. Точка *A* представляет средневзвешенный состав первичной щелочно-ультраосновной магмы ковдорского типа. Точкой *A*¹ обозначен гипотетический состав первичной магмы щелочно-ультраосновной серии хибинского типа.

Рис. 10. Коэффициенты распределения минерал-порода для минералов щелочно-ультраосновных пород, по данным (Арзамасцев и др., 2009).

видимому, связаны не с изменением активности SiO₂ в расплаве (Watson, Green, 1981), а с повышенным содержанием в нем Са, что приводит, как показано в (Klemme, Dalpe, 2003), к снижению D_{REE} апатит/расплав. Полученные $D_{Cpx/порода}$ и $D_{Ap/порода}$ в целом соответствуют таковым для минералов в щелочных вулканитах других регионов (Larsen, 1979; Irving, Price, 1981; Onuma et al., 1981; Caroff et al., 1993; Foley et al., 1996). Вместе с тем коэффициенты распределения для титанита из ийолитов Хибин и Озерной Вараки имеют более низкие значения по сравнению с теми, которые получены для титанита из фонолитов (Worner et al., 1983). Исходя из приведенных экспериментальных данных по кристаллизации REE-содержащих титановых минералов и фосфатов, могут быть рассмотрены следующие пути эволюции рассматриваемых щелочно-ультраосновных серий Кольской провинции.

Особенности эволюции щелочно-ультраосновной серии карбонатитовых массивов

Согласно первому сценарию, реализованному, по-видимому, в ряду серии пород щелочно-ультраосновных массивов с карбонатитами, расплав оливинового меланефелинита (точка А на рис. 8), после кристаллизации оливина будет эволюционировать в сторону котектической линии диопсидперовскит, при достижении которой образуются перовскит-клинопироксеновые кумулаты. Ранняя кристаллизация фазы, имеющей $D_{\text{REE}} \gg 1$, приведет к резкому обеднению остаточного расплава и кристаллизации из него последовательной серии REE-деплетированных дериватов – ийолитов и нефелиновых сиенитов. Главную роль в ранней экстракции REE из расплава играл, таким образом, перовскит, однако подчиненная роль на этом этапе апатита, учитывая принципиальную возможность достижения ликвидуса этой фазы, также допустима. В применении к серии ЩУК предложенная модель находит следующие подтверждения:

(1) В составе массивов Африканда, Вуориярви, Салмагора, Турий Мыс присутствуют перовскитклинопироксеновые кумулаты, сложенные первичным магматическим перовскитом. В отдельных интрузиях (Ковдор, Африканда, Озерная Варака, Вуориярви) встречены локальные зоны клинопироксенитов, содержащие до 3 об. % первичномагматического апатита.

(2) Наиболее поздние дериваты серии обеднены REE, Nb, Ta и Sr как по сравнению со средним составом исходной магмы, так и по отношению к более ранним кумулатам.

(3) Первичные REE-содержащие акцессории в поздних дифференциатах серии имеют относительно низкие концентрации редких земель и стронция, что связано с обедненностью расплавов этими элементами. Так, апатит из канкринитовых сиенитов Озерной Вараки и нефелиновых

ПЕТРОЛОГИЯ том 21 № 3 2013

сиенитов Малого Ковдора содержит лишь 0.67-0.71 LREE₂O₃, 0.60-0.68 SrO мас. % и 0.33-1.31 LREE₂O₃, 0.59-1.07 SrO мас. % соответственно (Арзамасцева, Арзамасцев, 1996).

Данные по распределению редких земель в щелочных интрузиях разных провинций свидетельствуют о том, что раннее фракционирование REEсодержащих минеральных фаз является характерной особенностью щелочно-ультраосновных серий. Так, среди плутонических пород Олдоиньо Ленгаи описаны клинопироксенитовые (якупирангитовые) кумулаты, содержащие до 28 об. % перовскита (Dawson et al., 1995). Характер распределения REE в породах Олдоиньо Ленгаи отвечает распределению в изученной щелочно-ультраосновной серии: обогащение REE ранних кумулатов и резкое обеднение редкими землями конечных членов серии – ийолитов и эвколитовых нефелиновых сиенитов. Другим примером является Маймеча-Котуйская провинция, в пределах которой в массивах Кугда, Гули и Одихинча описаны оливиновые и клинопироксеновые породы с большим количеством первично магматического перовскита (Егоров, 1991). В Нижнесаянском карбонатитовом массиве (Южная Сибирь) также описана серия, состоящая из полного спектра щелочных ультрабазитов, включая и клинопироксениты, содержащие до 15 об. % перовскита (Чернышева идр., 1991).

Особенности эволюции хибинской щелочно-ультраосновной серии

Набор пород, составляющих фрагменты щелочно-ультраосновной серии в Хибинском массиве, последовательность их образования, а также общие петрохимические характеристики позволяли предполагать сходные пути эволюции и распределения REE для хибинской серии и серии ЩУК. Однако, как показывают геологические наблюдения и геохимические данные, в хибинской щелочно-ультраосновной серии образование ранних оливиновых и клинопироксеновых кумулатов не сопровождалось массовым осаждением перовскита. В результате REE сохранялись в остаточном расплаве вплоть до конечных стадий кристаллизации и их накопление произошло лишь в поздних ийолитовых дериватах. Могут быть рассмотрены две причины, блокировавшие раннюю кристаллизацию перовскита, и обе они, по-видимому, связаны с резким увеличением активности кремнезема в расплаве. Во-первых, изменение активности SiO₂ обусловлено взаимодействием первичной оливин-меланефелинитовой магмы с вмещающими докембрийскими породами основания. Этому, однако, противоречат данные по изотопии Sr и Nd, свидетельствующие об отсутствии материала коры в процессе образования щелочных магм провинции (Kramm, Kogarko, 1994). Во-вторых, изменение активности SiO₂ вызвано смешением оливин-

меланефелинитовой магмы с более кислым расплавом. В качестве такого расплава может быть рассмотрена фонолитовая магма агпаитовой плутонической серии Хибин. Эволюция этой серии, согласно изотопно-геохимическим и петрологическим данным (Kramm et al., 1993; Арзамасцев и др., 1998), происходила автономно и ее образование связано с мантийным источником, отличным от источника щелочно-ультраосновных магм. Главной особенностью агпаитовых расплавов является относительно более высокое содержание SiO₂, (52-56 мас. %) и щелочей (Na₂O + K₂O > > 16 мас. %), а также фтора. Вместе с тем содержания REE в агпаитовых сиенитах, как показали наши данные (Арзамасцев, Митрофанов, 2009), лишь незначительно превышают содержания в щелочных ультрамафитах. Следовательно, добавление к первичной недосыщенной кремнеземом меланефелинитовой магме даже небольших порций фонолитового расплава приведет к увеличению содержания в нем кремнезема, щелочей и лишь незначительному изменению содержания REE. Действительно, сравнение ийолитов Вуориярви, Озерной Вараки, Салланлатвы и Ковдора с хибинскими аналогами показывает, что последние характеризуются более высокими содержаниями SiO₂, Na₂O и K₂O (табл. 2 и 3). Отличительной особенностью ийолитов Хибин является широкое распространение среди них полевошпатовых разновидностей.

На диаграммах плавкости (рис. 8 и 9) изменение в составе кристаллизующейся магмы выразится в смещении фигуративной точки А исходного расплава в сторону, противоположную котектической поверхности перовскита (A¹) и кристаллизации безперовскитовых оливин-диопсидовых, диопсид-мелилитовых и диопсид-нефелиновых пород (Вариант $A^1 - B^1 - C$). Соответственно, REE и HFSE будут последовательно накапливаться в этих дифференциатах и их экстракция из расплава произойдет только при достижении поверхности ликвидуса апатита и/или титанита на конечных стадиях эволюции щелочно-ультраосновной серии. Исходя из этого можно полагать, что эволюция щелочно-ультраосновной серии в Хибинах была осложнена подмешиванием к первичной оливинмеланефелинитовой магме небольших порций фонолитового расплава, что привело к изменению порядка кристаллизации REE-содержащих титанатов и титаносиликатов и накоплению большинства некогерентных элементов в поздних порциях расплава.

Рассмотренные выше особенности кристаллизации расплавов щелочно-ультраосновных серий провинции схематически изображены на рис. 11, в котором показаны вариации индикаторных элементов-примесей и отдельных оксидов. Таким образом, степень недосыщенности первичных щелочно-ультраосновных расплавов SiO₂ не только влияет на пути эволюции расплавов и образование тех или иных членов породных серий, но и непосредственно определяет поведение и условия концентрации в породах редкоземельных и высокозарядных элементов. Можно видеть, что если наиболее перспективными в отношении указанных элементов-примесей являются породы ранних фаз формирования таких щелочных массивов, как Ковдор, Африканда, Вуориярви, Турий Мыс и др., то в Хибинском массиве максимум накопления REE, Y, Sr, Nb, Ta происходил в конечных фоидолитовых и нефелин-сиенитовых дериватах. Выявленные особенности формирования щелочных массивов, содержащих крупнейшие месторождения редких элементов, непосредственно влияют на состав таких экономически важных минеральных фаз, как апатит, перовскит и титанит, что имеет первоочередное значение для оценки качества редкометалльного сырья.

ЗАКЛЮЧЕНИЕ

Исследование распределения редкоземельных элементов в породах и минералах палеозойских щелочно-ультраосновных пород Кольской провинции позволяет сделать следующие выводы:

(1) Анализ распределения REE, HFSE в породах Ковдорского, Африкандского, Вуориярвинского, Салмагорского массивов показывает, что в ряду дифференциатов щелочно-ультраосновной серии максимальные концентрации лантаноидов, Nb, Ta, Th, U наблюдается не в поздних ийолитовых и нефелин-сиенитовых дериватах, а в породах, образованных на начальных этапах формирования интрузивной серии. Данные по щелочным интрузиям других провинций (интрузии Маймеча-Котуйской провинции, Южной Сибири, Восточной Африки) показывают, что эта закономерность имеет общий характер, свойственный многим щелочно-ультраосновным сериям.

(2) Распределение REE, Nb, Ta, Th, U в щелочно-ультраосновных сериях карбонатитовых массивов провинции контролировалось в основном кристаллизацией перовскита. Показано, что для первичных оливин-меланефелинитовых расплавов серии характерна ранняя кристаллизация перовскита, являющегося главным концентратором указанных элементов. Осаждение перовскита совместно с первыми кристаллизующимися из расплава фазами — оливином и клинопироксеном приводило к резкому обеднению лантаноидами и высокозарядными элементами остаточной магмы и образованию деплетированных ийолитовых и нефелин-сиенитовых дериватов.

(3) Формирование пород щелочно-ультраосновной серии в Хибинах было осложнено подмешиванием к первичной оливин-меланефелинитовой магме небольших порций фонолитового расплава, что привело к изменению порядка кристаллизации REE-содержащих титанатов и титаносиликатов и накоплению большинства некоге-

Рис. 11. Схема изменения содержаний петрогенных оксидов и элементов-примесей в ходе кристаллизации расплавов ЩУК (а) и ЩУХ (б) серий.

По оси абсцисс отложено содержание MgO (мас. %) в породах щелочно-ультраосновных серий, по оси ординат – средние концентрации элементов и оксидов в главных разновидностях пород.

рентных элементов в поздних порциях расплава. В результате хибинские ийолиты, являющиеся поздними, наиболее эволюционированными дериватами щелочно-ультраосновной магмы, имеют наиболее высокие концентрации REE, содержащиеся в высокоредкоземельном апатите и титаните.

Благодарности. LA-ICP-MS определения концентраций элементов-примесей в породах и минералах выполнены в Университете Гранады при содействии профессоров Ф. Беа и П. Монтеро. Я.А. Пахомовский (ГИ КНЦ РАН) провел микрозондовое исследование акцессориев. Доброжелательная рецензия И.Т. Расс (ИГЕМ РАН) была весьма конструктивной.

Работа поддержана Российским фондом фундаментальных исследований (грант 12-05-00244).

СПИСОК ЛИТЕРАТУРЫ

Арзамасцева Л.В., Арзамасцев А.А. Фосфор и стронций как геохимические индикаторы эволюции палеозойской нефелинитовой серии Кольской провинции // Геохимия. 1996. № 5. С. 405-414.

Арзамасцев А.А., Митрофанов Ф.П. Палеозойские плюм-литосферные процессы в Северо-Восточной Фенноскандии: оценка состава первичных мантийных расплавов и условий магмогенерации // Петрология. 2009. T. 17. № 3. C. 324–336.

Арзамасцев А.А., Арзамасцева Л.В., Глазнев В.Н., Раевский А.Б. Глубинное строение и состав нижних горизонтов Хибинского и Ловозерского и комплексов, Кольский полуостров, Россия: петролого-геофизическая модель // Петрология. 1998. Т. 6. № 5. С. 478-496.

Арзамасцев А.А., Беа Ф., Глазнев В.Н., Арзамасцева Л.В., Монтеро П. Кольская щелочная провинция в палеозое: оценка состава первичных мантийных расплавов и условий магмогенерации // Российский журнал наук о Земле. 2001. Т. З. № 1. С. 3-24.

Арзамасцев А.А., Беа Ф., Арзамасцева Л.В., Монтеро П. Протерозойский полифазный массив Гремяха-Вырмес, Кольский полуостров: пример смешения базитовых и щелочных мантийных расплавов // Петрология. 2006. T. 14. № 4. C. 384–414.

Арзамасцев А.А., Беа Ф., Арзамасцева Л.В., Монтеро П. Элементы-примеси в минералах и породах щелочноультраосновных дайковых серий Кольской провинции и Кайзерштуль, Германия: LA-ICP-MS данные // Петрология. 2009. Т. 17. № 1. С. 51-78.

Афанасьев Б.В. Минеральные ресурсы щелочно-ультраосновных массивов Кольского полуострова. Санкт-Петербург: Изд-во "Роза ветров". 2011. 224 с.

Булах А.Г., Иваников В.В. Проблемы минералогии и петрологии карбонатитов // Л.: Изд-во Ленинградского университета, 1984. 244 с.

Галахов А.В. Петрология Хибинского щелочного массива. Л.: Наука, 1975. 256 с.

Галахов А.В., Батраков Б.Н. Химический состав ультраосновных интрузий щелочно-ультраосновных массивов Кольского полуострова // Вещественный состав щелочных интрузивных комплексов Кольского полуострова. Апатиты: Изд. Кольского филиала АН СССР, 1970. C. 3-16.

Егоров Л.С. Ийолит-карбонатитовый плутонизм. Л.: Недра, 1991. 260 с.

Карбонатиты Хибин. Под ред. Дудкина О.Б., Минакова Ф.В. Апатиты: Изд. Кольского филиала АН СССР, 1984. 98 c.

Когарко Л.Н. Проблемы генезиса агпаитовых магм. М.: Наука, 1977. 294 с.

Кравченко С.М., Минеев Д.А., Каменев Е.А. Редкие земли и стронций в породах и минералах ийолит-уртитового комплекса Хибинского массива // Геохимия. 1979. № 7. C. 1035–1045.

Кухаренко А.А., Орлова М.П., Булах А.Г., Багдасаров Э.А., Римская-Корсакова О.М., Нефедов Е.И., Ильинский Г.А., Сергеев А.С., Абакумова Н.Б. Каледонский комплекс ультраосновных, щелочных пород и карбонатитов Кольского полуострова и Северной Карелии. М.: Недра, 1965. 772 c.

Кухаренко А.А., Булах А.Г., Ильинский Г.А., Шинкарев Н.Ф., Орлова М.П. Металлогенические особенности щелочных формаций восточной части Балтийского щита // Тр. Ленингр. об-ва естествоиспыт. 1971. Т. 72. Вып. 2. Л.: Недра, 280 с.

Расс И.Т. Парагенетический анализ зональных минералов. М.: Наука, 1986. 144с.

Расс И.Т., Лапутина И.П. Состав и зональность акцессорных минералов щелочно-ультраосновных пород индикатор состава и особенностей дифференциации исходных магм // Геохимия. № 5. 1995. С. 720–732.

Расс И.Т. Фракционирование микрокомпонентов в сосуществующих высоко- и низкокальциевых щелочно-ультраосновных сериях массива Одихинча (Полярная Сибирь) // Геохимия. 2004. № 8. С. 852-863.

Терновой В.И. Карбонатитовые массивы и их полезные ископаемые. Л.: Изд-во Ленинградского университета, 1977. 168 с.

Чернышева Е.А., Нечелюстов Г.Н., Квитко Т.Д., Вейс Б.Т. Вещественный состав перовскита в щелочных породах Нижнесаянского карбонатитового комплекса // Геохимия. 1991. № 8. С. 102–108.

Anders E., Grevesse N. Abundances of the elements: meteoritic and solar // Geochim. Cosmochim. Acta. 1989. V. 53. P. 197-214.

Bell K., Dunworth L.A., Bulakh A.G., Ivanikov V.V. Alkaline rocks of the Turiy Peninsula, Russia, including type locality turjaite and turjite: a review // Canadian Mineralogist. 1996. V. 34. P. 265-280.

Brassinnes S., Balaganskaya E., Demaiffe D. Magmatic evolution of the differentiated ultramafic, alkaline and carbonatite intrusion of Vuoriyarvi (Kola Peninsula, Russia): a LA-ICP-MS study of apatite // Lithos. 2005. V. 85. P. 76–92.

Carmichael J.S.A., Nicholls J., Smith A.L. Silica activity in igneous rocks // American Mineralogist. 1970. V. 55. P. 242-264.

Caroff M., Maury R.C., Leterrier J., Joron J.L., Cotten J., Guille G. Trace element behavior in the alkali basalt – comenditic trachyte series from Mururoa Atoll, French Polynesia // Lithos. 1993. V. 30. P. 1-22.

Chakhmouradian A.R., Mitchell R.H. Compositional variation of perovskite-group minerals from the carbonatite complexes of the Kola Alkaline Province, Russia // The Canadian Mineralogist. 1997. V. 35. P. 1293–1310.

306

ПЕТРОЛОГИЯ том 21 Nº 3 2013 *Chakhmouradian, A.R., Zaitsev, A.N.* Afrikanda: an association of ultramafic, alkaline and alkali-silica-rich carbonatitic rocks from mantle-derived melts // Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Eds. Wall F., Zaitsev A.N. Mineralogical Society Series. 2004. V. 10. P. 247–291.

Corgne A., Wood B. Trace element partitioning and substitution mechanisms in calcium perovskites // Contrib. Mineral. Petrol. 2005. V. 149. P. 85–97.

Dawson J.B., Smith J.V., Steele I.M. Trace element distribution between coexisting perovskite, apatite and titanite from Oldoinyo Lengai, Tanzania // Chem. Geol. 1994. V. 117. № 1–4. P. 285–290.

Dawson J.B., Smith J.V., Steele I.M. Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoinyo Lengai, Tanzania // Journal of Petrology. 1995. V. 36. № 3. P. 797–826.

Eby G.N. Abundance and distribution of the rare-earth elements and yttrium in the rocks and minerals of the Oka carbonatite complex, Quebec // Geochim. Cosmochim. Acta. 1975. V. 39. \mathbb{N} 5. P. 597–620.

Edgar M.J. The genesis of alkaline magmas with emphasis on their source regions: inferences from experimental studies // Alkaline Igneous Rocks. Editors: Fitton J.G. and Upton B.G.J. Geol. Soc. Spec. Publ. 1987. № 30. P. 29–52.

Fleet M.E., Pan Y. Rare earth elements in apatite: uptake from H_2O -bearing phosphate-fluoride melts and the role of volatile components // Geochim. et Cosmochim. Acta. 1997. V. 61. No 22. P. 4745–4760.

Foley S.F., Jackson S.E., Fryer B.J., Greenough J.D., Jenner G.A. Trace element partition coefficients for clinopyroxene and phlogopite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS // Geochim. Cosmochim. Acta. 1996. V. 60. № 4. P. 629–638.

Gasparik T., Drake M.J. Partitioning of elements among two silicate perovskites, superphase B, and volatile-bearing melt at 23 GPa and 1500–1600°C // Earth Planet. Sci. Lett. 1995. V. 134. P. 307–318.

Harmer R.E. The Petrogenetic Association of Carbonatite and Alkaline Magmatism: Constraints from the Spitskop Complex, South Africa // Journal of Petrology. 1999. V. 40. N° 4. P. 525–548.

Hornig-Kjarsgaard I. Rare Earth Elements in Sövitic Carbonatites and their Mineral Phases // Journal of Petrology. 1998. V. 39. Issue 11/12. P. 2105–2121.

Irving A.T., Price R.C. Geochemistry and evolution of lherzolite-bearing phonolitic lavas from Nigeria, Australia, East Germany, and New Zealand // Geochim. Cosmochim. Acta. 1981. V. 45. \mathbb{N} 8. P. 1309–1320.

Ivanikov V.V., Rukhlov A.S., Bell K. Magmatic Evolution of the Melilitite-Carbonatite-Nephelinite Dyke Series of the Turiy Peninsula (Kandalaksha Bay, White Sea, Russia) // Journal of Petrology. 1998. V. 39. Issue 11/12. P. 2043–2059.

Karchevsky P.I., Moutte J. The phoscorite-carbonatite complex of Vuoriyarvi, northern Karelia // Phoscorites and Carbonatites from Mantle to Mine: The Key Example of the Kola Alkaline Province. Eds. Wall F., Zaitsev A.N. Mineralogical Society Series. 2004. V. 10. P. 163–199.

Kato T., Ringwood A.E., Irifune T. Experimental determination of element partitioning between silicate perovskites, garnets and liquids: constraints on early differentiation of

ПЕТРОЛОГИЯ том 21 № 3 2013

the mantle // Earth Planet. Sci. Lett. 1988. V. 89. P. 123–145.

Kjarsgaard B.A., Hamilton D.L. Liquid immiscibility and the origin of alkali-poor carbonatites // Mineral. Mag. 1988. V. 52. P. 43–55.

Klemme S., Dalpe C. Trace-element partitioning between apatite and carbonatite melt // Amer. Mineral. 2003. V. 88. P. 639–646.

Kogarko L.N. Ore-forming potential of alkaline magmas // Lithos. 1990. V. 26. № 1/2. P. 167–175.

Kogarko L.N., Plant D.A., Henderson C.M., Kjarsgaard B.A. Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, Polar Siberia // Contrib. Mineral. Petrol. 1991. V. 109. № 1. P. 124–129.

Kogarko L.N., Kononova V.A., Orlova M.P., Woolley A. Alkaline Rocks and Carbonatites of the World. Part 2. Former USSR. Chapman & Hall. London. 1995. 226 p.

Korobeinikov A.N., Mitrofanov F.P., Gehor S., Laajoki K., Pavlov V.P., Mamontov V.P. Geology and Copper Sulfide Mineralization of the Salmagorskii Ring Igneous Complex, Kola Peninsula, NW Russia // Journal of Petrology. 1998. V. 39. № 11/12. P. 2033–2041.

Koster van Groos A.F., Wyllie P.J. Liquid immiscibility in the join $NaAlSi_3O_8$ -Ca $Al_2Si_2O_8$ -Na $_2CO_3$ -H $_2O$ // Amer. J. Sci. 1973. V. 273. P. 465–487.

Kramm U., Kogarko L.N., Kononova V.A., Vartiainen H. The Kola Alkaline Province of the CIS and Finland: Precise Rb-Sr ages define 380–360 age range for all magmatism // Lithos. 1993. V. 30. P. 33–44.

Kramm U., Kogarko L.N. Nd and Sr isotope signatures of the Khibina and Lovozero agpaitic centres, Kola Alkaline Province, Russia // Lithos. 1994. V. 32. P. 225–242.

Larsen L.M. Distribution of REE and other trace elements between phenocrysts and peralkaline undersaturated magmas, exemplified by rocks from the Gardar Igneous Province, S. Greenland // Lithos. 1979. V. 12. № 4. P. 303–315.

Le Bas M.J. Nephelinites and carbonatites // Alkaline Igneous Rocks. Editors: Fitton J.G. and Upton B.G.J. 1987. Geol. Soc. Spec. Publ. № 30. 1987. P. 53–83.

Le Bas M.J., Streckeisen A.L. The IUGS systematics of igneous rocks // Journal of Geological Society. London. V. 148. 1991. P. 825–833.

Lee W.-J., Wyllie P.J. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions // Contrib. Mineral. Petrol. 1997. V. 127. P. 1–16.

Lloyd F.E., Edgar A.D., Ragnarsdottir K.V. LREE distribution in perovskite, apatite and titanite from South West Ugandan xenoliths and kamafugite lavas // Mineral. Petrol. 1996. V. 57. № 3–4. P. 205–228.

Mitchell R.H. The Melilitite clan // Undersaturated Alkaline Rocks: Mineralogy, Petrogenesis and Economic Potential. Ed. Mitchell R.H. Mineral. Assoc. Canada. Short Course 24. 1996a. P. 123–152.

Mitchell, R.H. Perovskites: a revised classification scheme for an important rare earth element host in alkaline rocks // Rare Earth Minerals: Chemistry, Origin and Ore Deposits. Eds. A.P. Jones, F. Wall, C.T. Williams. Mineral. Soc. Chapman & Hall. London. U.K. 19966. Ser. 6. P. 41–76. *Mitchell R.H.* The classification of melilite clan // Alkaline magmatism and the problems of mantle sources. Irkutsk. 2001. P. 117–150.

Mitchell R.H., Reed S.J.B. Ion microprobe determination of rare earth elements in perovskite from kimberlites and al-nöites // Mineral. Mag. 1988. V. 52. P. 331–339.

Nagasawa H., Schreiber H.D., Blanchard D.P. Partition coefficients of REE and Sc in perovskite, melilite, and spinel and their implications for Allende inclusions // Lunar Science. 1976. V. 7. P. 588–590.

Nielsen T.F.D. Tertiary alkaline magmatism in East Greenland: a review // Alkaline Igneous Rocks. Eds. J.G.Fitton, B.G.J.Upton. Geol. Soc. Spec. Publ. № 30. 1987. P. 489–515.

Nielsen T.F.D., Solovova I.P., Veksler I.V. Parental melts of melilitolite and origin of alkaline carbonatite: evidence from crystallized melt inclusions, Gardiner complex // Contrib. Mineral. Petrol. 1997. V. 126. P. 331–344.

Onuma K., Yamamoto M. Crystallization in the silica-undersaturated portion of the system diopside-nepheline-akermanite-silica and its bearing on the formation of melilitites and nephelinites // Journal Fac. Sci. Hokkaido University. 1976. V. 4(17). P. 347–355.

Onuma N., Ninomiya S., Nagasawa H. Mineral/Groundmass partition coefficients for nepheline, melilite, clinopyroxene and perovskite in melilite-nepheline basalt, Nyiragongo, Zaire // Geochem. Journal. 1981. V. 15. № 4. P. 221–228.

Pan V., Longhi, J. The system Mg_2SiO_4 -Ca₂SiO₄-CaAl₂O₄-NaAlSiO₄-SiO₂. One atmosphere liquidus equilibria of analogs of alkaline mafic lavas // Contrib. Mineral. Petrol. 1990. V. 105. No 5. P. 569-584.

Paster T.P., Schauwecher D.S., Haskin L.A. The behavior of some trace elements during solidification of the Skaergaard layered series // Geochim. Cosmochim. Acta. 1974. V. 38. P. 1549–1577.

Rass I.T. Rare-earth elements in the rock-forming minerals of melilitic rocks in alkaline-ultrabasic complexes // Geochim Cosmochim Acta. 1982. V. 46. P. 1477–1488.

Sweeney R.J. Carbonatite melt compositions in the Earth's mantle // Earth Planet. Sci. Lett. 1994. V. 128. P. 259–270.

Veksler I.V., Teptelev M.P. Conditions for crystallization and concentration of perovskite-type minerals in alkaline magmas // Lithos. 1990. V. 26. № 1/2. P. 177–189.

Veksler I.V., Fedorchuk Y.M., Nielsen T.F.D. Phase equilibria in the silica-undersaturated part of the KAlSiO₄– Mg_2SiO_4 – Ca_2SiO_4 – SiO_2 –F system at 1 atm and the larnite-normative trend of melt evolution // Contrib. Mineral. Petrol. 1998a. V. 131. Nº 4. P. 347–363.

Veksler, I.V., Nielsen T.F.D., Sokolov S.V. Mineralogy of Crystallized Melt Inclusions from Gardiner and Kovdor Ultramafic Alkaline Complexes: Implications for Carbonatite Genesis // Journal of Petrology. 19986. V. 39. № 11/12. P. 2015–2031.

Verhulst, A., Balaganskaya, E., Kirnarsky, Y., Demaiffe D. Petrological and geochemical trace elements and Sr–Nd isotopes characteristics of the Paleozoic Kovdor ultramafic, alkaline and carbonatite intrusion Kola Peninsula, NW Russia // Lithos. 2000. V. 51. № 1–2. P. 1–25.

Watson E.B., Green T.H. Apatite/liquid partition coefficients for the rare earth elements and strontium // Earth Planet. Sci. Lett. 1981. V. 56. P. 405–421.

Wilkinson, J.F.G., Stolz, A.J. Low-pressure fractionation of strongly undersaturated alkaline ultrabasic magma: the olivine-melilite-nepheline at Moiliili, Oahu, Hawaii // Contrib. Mineral Petrol. 1983. V. 38. P. 363–374.

Wyllie P.J., Huang W.-L. Influence of mantle CO₂ in the generation of carbonatites and kimberlites // Nature. 1975. V. 257. P. 297–299.

Woolley A.R. Alkaline Rocks and Carbonatites of the World. Part 1. North and South America. London: British Museum (Natural History), 1987. 216 p.

Worner G., Beusen J.-M., Duchateau N., Gijbels R., Schmincke H.-U. Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See Volcano (Germany) // Contrib. Mineral. Petrol. 1983. V. 84. N_{2} 2/3. P. 152–173.

Yaxley G.M., Brey G.P. Phase relations of carbonate-bearing eclogite assemblages from 2.5 to 5.5 GPa: implications for petrogenesis of carbonatites // Contrib. Mineral. Petrol. 2004. V. 146. P. 606–619.