— ГЕОХИМИЯ =

УДК 552.08:54+553.3.071

СОСТАВ МЕТАСОМАТИЧЕСКИХ МИНЕРАЛОВ ЗОЛОТОРУДНОГО МЕСТОРОЖДЕНИЯ СУХОЙ ЛОГ КАК КРИТЕРИЙ ЕГО ГЕНЕТИЧЕСКОЙ СВЯЗИ С БАЗИТ-ГИПЕРБАЗИТОВЫМ МАГМАТИЗМОМ

© 2005 г. В. Л. Русинов, О. В. Русинова, С. Е. Борисовский, Э. И. Алышева

Представлено академиком А.А. Маракушевым 13.04.2005 г.

Поступило 20.04.2005 г.

Характер метасоматического преобразования горных пород и особенности состава образующихся минералов в стратиформном золоторудном месторождении Сухой Лог (Патомское нагорье) дают новую информацию об условиях гидротермального процесса, в частности об участии компонентов базит-гипербазитовых магм в метасоматизме и рудообразовании.

Месторождение приурочено к золотоносному Бодайбинскому турбидитовому террейну рифейского возраста к югу от пассивной континентальной окраины Северо-Азиатского кратона. В пределах террейна локализованы золото-кварцевые жильные и золото-сульфидно-кварцевые прожилково-вкрапленные месторождения [1]. Глубинное строение Бодайбинского золотоносного района детально описано в [2]. В районе месторождения Сухой Лог, наиболее крупного по запасам золота, мощность рудовмещающей турбидитовой толщи составляет 7-8 км. Толща подстилается раннерифейским офиолитовым комплексом мощностью около 10 км, в котором преобладают метабазальты и метатерригенные породы с горизонтами железистых кварцитов, интрудированные телами гипербазитов. Последние фиксируются локальными положительными аномалиями силы тяжести. Гранитные массивы, более молодые по отношению к рудовмещающим турбидитам, проявлены как на уровне современного эрозионного среза, так и на глубине. Позиция золоторудного месторождения Сухой Лог увязывается с глубокозалегающим Угаханским гранитным плутоном, отраженным в поле Δg Угаханским минимумом; предполагается, что кровля плутона залегает на глубине 3-3.2 км, подошва 8-8.5 км, а месторождение смещено к краю проекции плутона на земную поверхность [2]. В венд-кембрийское вре-

Институт геологии рудных месторождений, петрографии, минералогии и геохимии Российской Академии наук, Москва мя толщи эпикратонного прогиба подверглись покровно-складчатым и сдвиговым деформациям и региональному метаморфизму.

Месторождение Сухой Лог непосредственно заключено в сильно перемятых и рассланцованных углеродистых алевролитах, аргиллитах и песчаниках, метаморфизованных в зеленосланцевой фации. Основная часть руды представлена прожилково-вкрапленной тонкодисперсной минерализацией метасоматического генезиса [1, 3, 4]. Метасоматические преобразования пород, ассоциирующие с рудоотложением, происходили позднее регионального метаморфизма. Рудная минерализация представлена золотом, сосредоточенным в сульфидах преимущественно в самородной и теллуридной формах, а также платиноидами, которые образуют собственные минералы и среди которых преобладает платина [5]. Ранние рудные парагенезисы (преимущественно платиноидов) развиты в основном на флангах, в менее измененных породах, а поздние (золотоносные) ассоциируют с наиболее интенсивными изменениями в центре рудной зоны [6].

Наиболее распространенные сульфиды (пирит, пирротин, пентландит, халькопирит, галенит, сфалерит) образуют срастания с нерудными минералами (карбонатами, кварцем, хлоритом), что свидетельствует об их одновременном отложении. Поэтому информация, получаемая от метасоматических минералов, важна и для выяснения условий рудообразования. Главные парагенезисы метасоматических минералов (Chl + Prg + Qtz; Act + Ank + + Ab; Ni–Chl + Qtz + Pent + Pyrr; Zn–Sid + Sph + Py; Mus + Py + Qtz) отвечают среднетемпературной фации метасоматитов региональных зон сдвиговых деформаций [7]. В этих парагенезисах постоянно присутствует также рутил. Метасоматические минералы составляют от 10–15 до 30–40 об. %

^{*} Ab – альбит, Act – актинолит, Chl – хлорит, Mus – мусковит, NiChl – никелистый хлорит, Pent – пентландит, Prg – парагонит, Ру – пирит, Ругг – пирротин, Qtz – кварц, Sph – сфалерит, ZnSid – цинковистый магнезиосидерит.

Рис. 1. Околорудный метасоматически измененный углеродистый метаалевропелит. Метасоматические преобразования (более светлые участки) образуют полоски вдоль сланцеватости, разделенные менее измененными породами, и кварц-карбонат-сульфидные линзы. Фото прозрачного шлифа.

оруденелых измененных пород. Основной объем измененных пород сложен реликтовыми минералами (мусковит-фенгит, полевые шпаты, кварц, карбонат) и рассеянным углеродистым веществом, а метасоматические ассоциации обогащают отдельные прослои, где образуют мелкие линзы, вкрапленность, тонкие полоски и прожилки (рис. 1).

Одними из главных метасоматических минералов являются светлые слюды. При идентификации слюд по дифрактограммам особое внимание обращают на величину первого базального отражения (d_1) и параметр $c\sin\beta$, который вычисляют по пятому базальному отражению (рис. 2). Среди изученных слюд отсутствуют гидратированные разности. По величине csin β выделено три группы слюд, существенно различающихся этим параметром и не обнаруживающих постепенных переходов. К первой группе отнесены повсеместно распространенные слюды К-ряда с широкими вариациями значений параметра (от 19.99 до 19.84 Å), что обусловлено изоморфизмом фенгитового типа (от К-мусковита при $c \sin\beta = 19.99$ Å до чистого фенгита при $c\sin\beta = 19.84$ Å). Во вторую группу включены слюды с $c\sin\beta$ от 19.18 до 19.25 Å, что соответствует парагонитовым составам. Слюды с $c\sin\beta$ от 19.55 до 19.41 Å авторы рассматривают как смешанослойные образования промежуточного К-Na-состава с соотношением мусковитовой и парагонитовой компонент примерно 5:5. По составу и структуре они близки к описанным в литературе 6:4 регулярным смешанослойным парагонит-мусковитам, которые характеризуются величиной csinβ, равной 19.72 Å [8]. В анализированных нами пробах все три слюдистые фазы нередко встречались совместно (рис. 2). Микрозондовые исследования показали, что мусковит и парагонит находятся в тесных прорастаниях, что приводит к кажущейся неоднородности составов мусковитов, завышению содержания Na в мусковите в большинстве случаев и к нереально высоким температурам его образования, если использовать для таких составов мусковит-парагонитовый термометр [9]. Фенгитовость калиевой слюды (анализы 1-7 в табл. 1, рис. 3) изменяется в широких пределах (от 3.22 до 3.47 ат. Si в яч.), наиболее низкое содержание натрия, соответствующее более реальной температуре формирования калиевой слюды (330°С), установлено именно для фенгита (анализ 5) и соответствует приведенным выше оценкам температуры по хлоритовому термометру. Для парагонита микрозондовые определения показали однородный состав (анализы 8-11, табл. 1), содержание калия в парагоните соответствует температуре формирования 330-340°С. Судя по тому, что парагонит в срастаниях с мусковитом имеет постоянный состав и не содержит примесей, а состав мусковита варьирует и обнаруживает примесь парагонита, происходило замещение мусковита парагонитом. В пользу этого говорит и присутствие наряду с конечными членами промежуточных по составу и структуре образований (смешанослойных мусковит-парагонит), которые можно рассматривать как метастабильные промежуточные продукты этого замещения.

ДОКЛАДЫ АКАДЕМИИ НАУК том 405 № 5 2005

20, градусы

Рис. 2. Фрагменты дифрактограмм, иллюстрирующие присутствие в пробе калиевой слюды (1), парагонита (2) и смешанослойного образования (К–Nа-слюды) (3). Снято на ДРОН-2, излучение CuK_{α} , скорость вращения счетчика 1 градус/мин.

Другой слоистый силикат хлорит принадлежит к магнезиально-железистым разностям (табл. 2). Температура образования хлорита укладывается в интервал 320–345°С по [10] или 345– 375°С по [11], что находится в соответствии с оценкой минимальной температуры рудообразования около 300°С [5]. В участках скопления сульфидов хлорит содержит примесь никеля до 0.5 мас.%. Никелистый хлорит ассоциирует с тонко врапленным пентландитом и иногда срастается с крупными кристаллами пирита, образуя вместе с

Рис. 3. Составы слюд на диаграмме "фенгитовость – парагонитовость".

Содержание (ат. в яч.) $na = [Na:(Na + K) \cdot 100\%]; Si – ат. в яч. <math>1 -$ мусковит-фенгиты; 2 - парагониты; 3 - слюды смешанного состава.

кварцем около его кристаллов оторочки. Можно предполагать, что никелистый хлорит и пентландит находятся в парагенетических отношениях и свидетельствуют о привносе никеля гидротермальными растворами, как видно из уравнения (здесь и далее в фигурных скобках компоненты раствора):

$$\begin{split} & Fe_{2.5}Mg_2Al_{2.5}Si_3O_{10}(OH)_8 + \{0.749NiO + \\ & + 0.664H_2SO_4\} = Fe_2Mg_2Ni_{0.5}Al_{2.5}Si_3O_{10}(OH)_8 + \\ & + 0.083Fe_6Ni_3S_8 + \{0.664H_2O + 0.996O_2\}. \end{split}$$

Следовательно, описываемая ассоциация никелистого хлорита с пентландитом могла образоваться при воздействии сульфатных никельсодержащих растворов на углеродистые породы, создававшие восстановительную среду.

По литературным данным [9] никелистый хлорит отмечен в гидротермально измененных ультрабазитах и базитах, хотя обычно содержание никеля в нем меньше, чем 0.2 мас.%. По соотношению породообразующих компонентов вмещающие породы Сухого Лога соответствуют грауваккам андезитдацитового состава, далекого от базальтового. Поэтому более вероятен внешний источник никеля в пентландите и хлорите.

Карбонаты в изученных образцах представлены анкеритом и магнезиосидеритом (табл. 3, рис. 4). Анкерит слагает мелкие линзы, ассоциируя с кварцем и слюдой, а магнезиосидерит проявлен в виде тонкой вкрапленности в породе. Особенностью состава магнезиосидеритов является примесь цинка до 0.5 мас.%, что соответствует присутствию до 0.82 ат. Zn в позициях (Fe, Mg). Вхождение

Компо- нент	Мусковит-фенгит							Парагонит			
	1*	2	3	4	5	6	7	8	9	10	11
SiO ₂	48.20	48.80	47.71	50.2	53.14	47.13	49.29	47.84	47.90	48.14	47.20
TiO ₂	0.35	0.45	1.47	0.23	0.33	0.19	0.35	0.02	0.02	0.00	0.02
Al_2O_3	32.14	32.10	31.44	32.07	28.61	33.50	34.09	39.81	39.51	40.04	39.68
FeO	1.71	1.31	1.03	1.80	1.84	1.28	1.44	0.41	0.10	0.22	0.16
MnO	0.03	0.03	0.04	0.01	0.01	0.03	0.01	0.00	0.00	0.00	0.00
MgO	1.72	1.79	1.06	1.71	2.67	0.71	1.51	0.08	0.05	0.10	0.08
CaO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.04	0.03
Na ₂ O	0.42	0.85	1.28	0.4	0.34	0.62	0.47	7.74	7.51	7.68	7.26
K ₂ O	8.67	8.52	8.04	8.76	8.88	10.00	8.70	0.57	0.34	0.63	0.60
Сумма	93.24	93.85	92.14	95.18	95.82	93.46	95.86	96.51	95.46	96.85	95.03
Кристаллохимические формулы											
Si	3.24	3.25	3.23	3.30	3.46	3.24	3.21	3.02	3.04	3.02	3.01
Al (IV)	0.76	0.75	0.77	0.70	0.54	0.76	0.79	0.98	0.96	0.98	0.99
Al (VI)	1.79	1.77	1.75	1.59	1.66	1.96	1.83	1.98	2.00	1.98	2.00
Ti	0.02	0.02	0.07	0.01	0.02	0.01	0.02	0.00	0.00	0.00	0.00
Fe	0.10	0.07	0.06	0.09	0.10	0.07	0.08	0.02	0.01	0.01	0.01
Mn	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mg	0.17	0.18	0.21	0.16	0.26	0.07	0.15	0.01	0.01	0.01	0.01
Ca	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Na	0.06	0.11	0.17	0.05	0.04	0.08	0.06	0.95	0.92	0.93	0.90
Κ	0.74	0.72	0.70	0.68	0.74	0.88	0.72	0.05	0.03	0.05	0.05

Таблица 1. Химический состав слюд (мас. %) из месторождения Сухой Лог

Примечание. Анализы выполнены на микроанализаторе MS-46, аналитик С.Е. Борисовский.

* Здесь и далее по горизонтали номера анализов (то же относится к табл. 2 и 3).

цинка в карбонаты в присутствии сфалерита и пирита описывается уравнением

$$Zn_{0.7}Fe_{0.3}S + 6FeS_2 + \{7H_2CO_3 + 6H_2O\} =$$

$$= 7Fe_{0.9}Zn_{0.1}CO_3 + \{13H_2S + 3O_2\},\$$

Рис. 4. Составы анкеритов и цинковистых магнезиосидеритов месторождения Сухой Лог. Коннодами обозначены предельные составы анализированных минералов.

согласно которому повышение активности углекислоты и восстановительные условия вызывают переход цинка из сульфида в карбонат.

В соответствии с приведеными данными о геологическом положении и строении района месторождения Сухой Лог оно приурочено к региональной зоне смятия с рассланцеванием пород и многочисленными разномасштабными сдвиговыми деформациями, вдоль которых распространялся поток гидротермальных растворов. Сопряженность пластических деформаций и гидротермальной активности, вызвавшей рудообразование, отмечалась в [12]. Флюидный поток в зоне расщеплен на множество тонких прерывистых струй, в результате чего вся толща метасоматитов представляет собой чередование более или менее измененных пород, в соответствии с которым распределены парагенезисы минералов. Минералообразование происходило при Т 320-350°С по хлоритовому термометру, в условиях восстановления сульфатной серы, повышенной активности H₂CO₃ и Na₂O и сопровождалось привносом Ni, PGE, Zn, Cu, Te, Ti, свойственных ультраосновным магмам, и, вероятно, части Аи. Ассоциация

ДОКЛАДЫ АКАДЕМИИ НАУК том 405 № 5 2005

Таблица 2. Химический состав хлорита (мас. %) месторождения Сухой Лог

Компо-	1	2	2	4	~	6		
нент	1	2	3	4	3	6		
SiO ₂	26.68	26.27	25.33	25.46	25.03	25.78		
TiO ₂	0.03	0.02	0.02	0.02	0.00	0.02		
Al_2O_3	23.20	23.22	22.90	23.35	23.37	24.36		
FeO	2.19	23.40	24.98	25.47	25.75	25.32		
NiO	0.51	0.48	0.59	0.52	0.50	0.54		
MnO	0.04	0.04	0.05	0.04	0.05	0.03		
MgO	15.37	15.04	13.55	12.95	12.97	13.58		
CaO	0.00	0.00	0.00	0.01	0.01	0.00		
Сумма	88.02	88.47	87.42	87.82	87.68	89.63		
Кристаллохимические формулы								
Si	2.740	2.704	2.671	2.674	2.641	2.643		
Al (IV)	1.260	1.296	1.329	1.326	1.359	1.357		
Al (VI)	1.548	1.521	1.517	1.565	1.548	1.588		
Ti	0.002	0.002	0.002	0.002	0.000	0.001		
Fe	1.906	2.014	2.203	2.237	2.272	2.171		
Ni	0.042	0.040	0.050	0.044	0.042	0.045		
Mn	0.003	0.003	0.004	0.004	0.004	0.003		
Mg	2.352	2.307	2.129	2.027	2.039	2.075		
Ca	0.000	0.000	0.000	0.001	0.001	0.000		

Таблица 3. Химический состав карбонатов (мол. %) месторождения Сухой Лог

№ ана- лиза	CaCO ₃	MgCO ₃	FeCO ₃	MnCO ₃	ZnCO ₃			
Анкерит								
1	50	32	17	1	нет			
2	50	29	17	4	нет			
3	50	33	16	1	нет			
4	49	34	16	1	нет			
5	50	31	16	3	нет			
6	49	33	17	1	нет			
7	50	33	16	1	нет			
8	50	33	17	1	нет			
9	50	33	16	1	нет			
10	50	28	18	4	нет			
11	51	28	17	4	нет			
12	50	30	16	4	нет			
Сидерит								
1	0.80	25.57	69.98	3.61	0.04			
2	0.64	33.47	63.61	2.26	0.02			
3	0.84	25.68	68.10	5.34	0.04			
4	0.68	25.20	69.50	4.58	0.04			
5	0.54	27.12	69.94	2.38	0.02			
6	0.56	29.77	68.15	1.48	0.04			
7	0.89	37.81	60.36	0.22	0.72			
8	0.36	22.22	75.74	0.82	0.86			

Ni + Zn + PGE характерна также для ряда черносланцевых месторождений юго-восточного Китая и северо-западной Канады, но в отличие от них Сухой Лог характеризуется доминирующей ролью золота среди рудных металлов. Условия глубинной конвекции растворов обусловили специфику натрового метасоматизма на месторождении. Благодаря повышенной фугитивности углекислоты раствор в участках наибольшей проницаемости обладал слабокислой реакцией, при которой устойчив парагонит с кварцем. В менее проработанных участках кислотность снижалась и формировался альбит. Натровый метасоматизм является характерной чертой гидротермального процесса в геологических структурах с глубинной конвекцией флюидов в региональных зонах смятия.

Таким образом, особенности состава и парагенезисов метасоматических минералов подтверждают предположение о глубинной циркуляции гидротермальных растворов и глубинном же источнике ряда металлов, связанном с базит-гипербазитовым магматизмом, что находится в соответствии с присутствием в месторождении платиновой минерализации [6].

Работа выполнена при финансовой поддержке Программы ОНЗ РАН № 2–1114 и РФФИ (проект 04–05–65131).

СПИСОК ЛИТЕРАТУРЫ

- 1. Булгатов А.Н., Гордиенко И.В. // Геология руд. месторождений. 1999. Т. 41. № 3. С. 230–240.
- 2. Лишневский Э.Н., Дистлер В.В. // Геология. руд. месторождений. 2004. Т. 46. № 1. С. 88–104.
- Буряк В.А., Хмелевская Н.М. Сухой Лог одно из крупнейших золоторудных месторождений мира (генезис, закономерности размещения оруденения, критерии прогнозирования). Владивосток: Наука, 1997. 156 с.
- Лаверов Н.П., Прокофьев В.Ю., Дистлер В.В. и др. // ДАН. 2000. Т. 371. № 1. С. 652–656.
- Дистлер В.В., Митрофанов Г.Л., Немеров В.К. и др. // Геология. руд. месторождений. 1996. Т. 38. № 6. С. 467–484.
- 6. *Distler V.V., Yudovskaya M.A.* In: Mieral Deposits at the Beginning of the 21-st Century, Lisse: Swets & Zeitlinger Publ., 2001. P. 151–153.
- 7. Русинов В.Л., Русинова О.В. // ДАН. 2003. Т. 388. № 3. С. 378–382.
- Jiang W.-T., Peacor D.R. // Amer. Miner. 1993. V. 78. P. 782–793.
- 9. *Дир У.А., Хауи Р.А., Зусман Дж.* Породообразующие минералы. М.: Мир, 1966. Т. 3. 316 с.
- Kranidiotis P., MacLean W.H. // Econ. Geol. 1987.
 V. 82. P. 1898–1911.
- 11. Cathelineau M. // Clay Miner. 1988. V. 3. P. 471-485.
- Рундквист Д.В., Бобров В.А., Смирнова Т.Н. и др. // Геология руд. месторождений. 1992. № 6. С. 3–15.

ДОКЛАДЫ АКАДЕМИИ НАУК том 405 № 5 2005