ГЕОХИМИЯ, ГЕОХРОНОЛОГИЯ ЦИРКОНОВ И ВОЗРАСТ АРХЕЙСКОЙ ЖЕЛЕЗОРУДНОЙ ТОЛЩИ КОСТОМУКШСКОГО ЗЕЛЕНОКАМЕННОГО ПОЯСА КАРЕЛЬСКОГО КРАТОНА ФЕННОСКАНДИНАВСКОГО ЩИТА

© 2021 г. А. И. Слабунов^{а, *}, Н. С. Нестерова^а, А. В. Егоров^а, Л. В. Кулешевич^а, В. И. Кевлич^а

^аИнститут геологии Карельского научного центра РАН, Петрозаводск, ул. Пушкинская, 11, Карелия, 185910 Россия *e-mail: slabunov@krc.karelia.ru

Поступила в редакцию 21.04.2020 г. После доработки 19.08.2020 г. Принята к публикации 20.08.2020 г.

Впервые проведены геохронологические исследования цирконов (методом LA-ICP-MS) из метаосадочных пород, вмещающих полосчатые железистые кварциты (BIF), и метариолитов (геллефлинты) гимольской серии Костомукшского зеленокаменного пояса Карельского кратона. Возраст кислого магматизма (метариолитов), проявленного в виде силлов и даек, оценивается в $2759 \pm 19-2743 \pm 15$ млн лет. В изученных сланцах (метаграувакках) возраст резко преобладающей группы детритовых цирконов оценивается в 2753 ± 19 млн лет, в них отмечены также единичные зерна, возраст которых варьирует в интервале 3.1-2.8 млрд лет. По геохимическим особенностям среди цирконов из метариолитов выделяется три типа 1) обедненные Еu и обогащенные Ce; 2) обогащенные Eu и Ce; 3) обогащенные средними редкоземельными элементами. Цирконы двух первых геохимических типов преобладают и в осадках. Морфология и строение кристаллов циркона в риолитах и осадках также идентичны. Таким образом, главным источником цирконов в изученных метаграувакках, чередующихся с BIF, были риолиты при подчиненной роли мезоархейских пород. Формирование железорудной толщи гимольской серии Костомукшского зеленокаменного пояса происходило синхронно с кислым вулканизмом 2760-2740 млн лет назад в субдукционной геодинамической обстановке.

Ключевые слова: архей, цирконы, геохронология, геохимия, полосчатые железистые кварциты, зеленокаменный пояс, Карельский кратон, Костомукшская структура

DOI: 10.31857/S0016752521040063

ВВЕДЕНИЕ

Полосчатые железистые кварциты (bended iron formation – BIF) являются характерными составляющими многих архейских зеленокаменных поясов. Эти осадочные породы являются уникальными образованиями раннего докембрия и не встречаются в фанерозое (например, Bekker et al., 2010). Таким образом, изучение BIF имеет важнейшее значение для понимания ранней истории развития Земли. Кроме того, BIF – это важнейший тип железных руд, которые широко используются в экономике. Они составляют основу одного из крупнейших в России Костомукшского железорудного месторождения (Михайлов, Аминов, 2005), приуроченного к одноименному зеленокаменному поясу (рис. 1). Несмотря на хорошую изученность и многолетнюю эксплуатацию месторождения вопрос о возрасте формирования главной рудоносной толщи - костомукшской свиты гимольской серии Карельского кратона остается дискуссионным. Это создает проблемы в корреляции разрезов зеленокаменных комплексов Карельского кратона, что, в свою очередь, не позволяет проводить геодинамические реконструкции и вести целенаправленный поиск полезных ископаемых.

В рамках данного исследования впервые сделана попытка оценить возраст формирования осадочной, содержащей BIF, толщи с использованием локального метода датирования цирконов, выделенных из 1) вмещающих BIF метаосадочных пород и 2) силлов и даек кислых метавулканитов.

КРАТКИЙ ГЕОЛОГИЧЕСКИЙ ОЧЕРК

Карельский кратон (рис. 1а) относится к числу классических структур этого класса и слагается преимущественно архейскими гранитоидами и зеленокаменными (в меньшей степени — парагнейсовыми) комплексами (Лобач-Жученко, 1988; Миллер, 1988; Рыбаков и др., 1981; Слабунов и др., 2006; Slabunov et al., 2006; Hölttä et al., 2014; Куликов и др., 2017). Последние формируют зеленока-

менные пояса и представляют собой относительно узкие линейные структуры, окруженные гранитоидами. Зеленокаменные комплексы — это совокупность, как правило, относительно слабо или умеренно метаморфизованных вулканогенных и осадочных (в том числе, BIF) пород. Таким образом, именно в них сосредоточена информация об особенностях экзогенных и вулканогенных процессов на раннем этапе развития Земли.

Костомукшкий зеленокаменный пояс располагается в западной части Карельского кратона (рис. 1а) и входит в состав террейна Кианта Западно-Карельской субпровинции (Лобач-Жученко и др., 2000б; Слабунов и др., 2006, 2011; Hölttä et al., 2014). Он представляет собой относительно небольшую (по простиранию прослеживается на 25 км, при ширине 4.5–7 км) субмеридиональную удлиненную амебовидную в плане структуру (рис. 16). Она погружается в целом на восток и прослеживается на глубину до 6.5 км (Горьковец и др., 1981; Самсонов и др., 2001; Горьковец, Шаров, 2015).

Существует две альтернативные точки зрения на строение этого зеленокаменного пояса: одна из них рассматривает его как ассиметричную сложную запрокинутую на запад синклиналь, разрез которой наращивается снизу вверх и подстилается гранитоидами (Горьковец и др., 1981; Горьковец, Шаров, 2015; Лобач-Жученко и др., 2000а); другая рассматривает пояс как коллаж тектонических пластин, в целом запрокинутых на запад (Puchtel et al., 1998; Кожевников, 2000; Бибикова и др., 2005; Кожевников и др., 2006). Имея разные представления о строении и соотношениях слагающих пояс геологических тел, большинство исследователей выделяет в его составе две литостратиграфические (стратотектонические) ассоциации: контокскую и гимольскую серии. Первая формирует западную и центральную часть пояса и состоит из метаморфизованных вулканитов с прослоями осадков (рис. 1б). В составе контокской серии выделяют:

 базальт-коматиитовую толщу (которая часто подразделяется на две и тогда они рассматриваются как ниемиярвинская и рувинваарская свиты), с редкими прослоями железистых кварцитов и дацитовых туфов, ее изотопный возраст оценивается как мезоархейский: 2843 \pm 39 и 2808 \pm 95 млн лет — Sm-Nd изохона по базальтам и коматиитам (Puchtel et al., 1998; Лобач-Жученко и др., 2000а); 2792 \pm 6 млн лет — по цирконам (SHRIMP-II) из туфов (Кожевников и др., 2006);

2) толщу туфов, туффитов риолитов - риодацитов (редко до андезитов) с простоями BIF и углеродистых сланцев — шурловарская свита, изотопный возраст которой по цирконам из кислых вулканитов оценивается в 2801 \pm 7 и 2795 \pm 29 (TIMS) (Puchtel et al., 1998; Лобач-Жученко и др., 2000а), 2790 \pm 21 (TIMS) и 2791 \pm 23 (NORDSIM) млн лет (Бибикова и др., 2005).

Гимольская серия слагает восточный борт зеленокаменного пояса и представлена метаморфизованными песчано-глинистыми осадками флишевого типа. В основании толщи выделяются конгломераты (суккозерская свита), в нижней части толщи велика доля BIF (костомукшская свита), а в верхней резко преобладают безрудные граvвакки (сурлампинская свита). В составе гимольской серии описаны также метатуффиты кислого состава, возраст цирконов из которых оценивается в 2787 \pm 8 млн лет (TIMS) (Бибикова и др., 2005). Железорудная толща сечется неоархейскими (2707 \pm 31 и 2675 \pm 9 млн лет, соответственно) гранит-порфирами и гранитами (Шурловарский массив) (Лобач-Жученко и др., 2000а). Кроме того, она содержит силлы и сечется дайками метариолитов (в региональной литературе часто именуемых "геллефлинтой"), изотопный возраст которых не был определен.

Гранитоиды тоналит-трондьемит-гранодиоритовой (ТТГ) ассоциации из обрамления пояса не являются фундаментом для зеленокаменного комплекса, так как их возраст 2779 ± 11 млн лет (Бибикова и др., 2005) и это моложе, по крайней, мере вулканитов контокской серии. Вместе с тем установлены гранитоиды секущие базальт-коматиитовый разрез зеленокаменного пояса: граниты Ниемиярвинского массива (2720 ± 20 млн лет (Бибикова и др., 1977)) и санукитоиды массивов

Рис. 1. Расположение и строение Костомукшского зеленокаменного пояса: (а) пояс в структуре Фенноскандинавского щита (Рыбаков и др., 1981; Слабунов и др., 2006, 2011; Балаганский и др., 2016; Куликов и др., 2017). *1* – каледониды, байкалиды и неопротерозойские образования; *2*, *3* – палеопротерозойская кора: *2* – ювенильная; *3* – с фрагментами архейской; *4* – архейская кора (НК – кратон Норрботтен; БП – Беломорская провинция, КП – Кольская провинция, MK – Мурманский кратон); *5* – архейские (а) зеленокаменные (Г – Гимольский, И – Иломантси, К – Кухмо, Х – Хедозерско-Большеозерский) и (б) парагнейсовые пояса; *6* – палеопротерозойские границы провинций. (б–г) схемы геологического строения: (б) пояса (Горьковец и др., 1981; Кожевников, 1982; Кулешевич, Фурман, 2009); (в) Костомукшского железорудного месторождения; (г) Корпангского железорудного месторождения. *1* – неопротерозойские (ифейские) лампроиты и кимберлиты, *2* – палеопротерозойские (2.4 млрд лет) долериты; *3–8* неоархейские: *3* – 2.71 млрд лет санукитоиды; *4* – (2.72–2.71 млрд лет) граниты; *5* – 2.78 млрд лет силлы и дайки метариолитов (гел.ефиннты); *8* – ВІF; *9–11* – мезоархейские (2.84-2.78 млрд лет): *9* – базальты и базальт-коматииты (рувинваарская свита); *10* – туфы, туффиты риолит-риодациты с простоями ВІF и углеродистых сланцев (шурловарская свита); *11* – базальты и коматиититы (ниемиярвинская свита); *12* – разломы; *13* – надвиг; *14* – места отбора геохронологических проб.

Таблица 1. Химический состав (окислы – в мас. %, элементы – в г/т) метариолитов (1 – Э-КОРП1-3/1; 2 – Э-КОС2-7/1) и метаграувакки (3 – Э-КОС-2-8/1) из главной железорудной толщи (костомукшкой свиты гимольской серии) Костомукшского зеленокаменного пояса

Компонент	1	2	3
SiO ₂	69.54	70.14	60.99
TiO ₂	0.12	0.09	0.55
Al_2O_3	16.69	17.21	15.62
Fe_2O_3	0.83	0.01	1.65
FeO	1.0	1.01	6.05
MnO	0.025	0.022	0.065
MgO	0.39	0.92	2.97
CaO	3.31	3.18	3.67
Na ₂ O	6.18	5.86	3.17
K ₂ O	1.13	0.87	3.09
P_2O_5	0.07	0.08	0.21
H ₂ O	0.013	0.17	0.02
ппп	0.56	0.38	1.53
Sc	9.19	7.79	24.52
V	45.77	45.10	176.70
Cr	55.23	22.40	207.10
Co	3.11	2.46	26.11
Ni	42.71	18.78	71.47
Cu	11.82	5.78	9.95
Zn	13.52	24.70	105.70
Rb	41.65	15.17	148.00
Sr	520.50	623.00	666.90
Y	1.19	1.51	14.79
Zr	43.25	52.79	109.40
Nb	1.07	1.07	6.42
Ba	448.70	542.70	948.90
La	1.72	1.45	26.00
Ce	3.02	2.81	56.18
Pr	0.32	0.36	7.02
Nd	1.14	1.23	26.33
Sm	0.29	0.32	4.46
Eu	0.20	0.22	1.46
Gd	0.22	0.20	3.93
Tb	0.04	0.04	0.50
Dy	0.22	0.30	2.74
Ho	0.04	0.05	0.52
Er	0.10	0.15	1.41
Tm		0.02	0.20
Yb	0.11	0.17	1.38
Lu	0.02	0.03	0.18
Ht T.	1.21	1.54	2.57
1a T1	0.19	0.20	0.88
Th	0.19	0.23	4.84
U	0.08	0.12	1.48

Таловейс (2718 \pm 6–2707 \pm 9 млн лет (Бибикова и др., 2005)).

Рассматриваемый район в раннем палеопротерозое находился в области формирования крупной магматической провинции, элементом которого является рой даек долеритов с возрастом 2.4 млрд лет (Степанова и др., 2017) секущих, в том числе, и архейский гранит-зеленокаменный комплекс (рис. 16–1г). Наиболее позднее проявление эндогенной активности здесь — неопротерозойский (около 1.2 млрд лет) щелочно-ультраосновной магматизм (лампроиты, кимберлиты) (Никитина и др., 1999; Горьковец, Шаров, 2015).

Для определения времени формирования железорудной осадочной толщи (костомукшской свиты гимольской серии) нами отобраны пробы из биотитовых сланцев (КОС2-8/1) и две – из силла (КОС2-7/1) и дайки (КОРП1-3/1) метариолитов (табл. 1). Сланцы и метариолиты из силла отобраны в карьере "Центральный" Костомукшского месторождения (рис. 1в), а метариолиты из дайки - в карьере Корпангского месторождения (рис. 1г).

Биотитовые сланцы представляют собой мелкозернистые тонкополосчатые с хорошо выраженной агрегатной линейностью по биотиту породы. Они являются составляющей, наряду с BIF. ритмично слоистой флишоидной толщи (верхнекостомукшкая подсвита костомукшской свиты гимольской серии) и интерпретируются как метаморфизованные песчано-глинистые осадки флишоидного типа (Горьковец и др., 1981; Милькевич, Мыскова, 1998; Раевская и др., 1992) или как туфы или туффиты (Чернов, 1964; Бибикова и др., 2005). По особенностям химического состава (табл. 1; рис. 2) отобранная проба сланцев полностью сопоставима с породами из разреза осадков костомукшской свиты гимольской серии, специальное литолого-петрогеохимическое изучение которых позволило классифицировать их как метаграуваакки, формирующиеся в островодужной системе (Милькевич, Мыскова, 1998).

Силл метариолитов залегает среди рудной толщи в виде субсогласного пластового (с секущими полосчатость вмещающих пород апофизами) тела (рис. 1в) мощностью до 500 м метаморфизованного и деформированного совместно с вмещающими метаосадками (Горьковец и др., 1981; Горьковец, Раевская, 1983).

Изученная дайка метариолитов сечет вмещающие метаграувакки с прослоями железистых кварцитов, но совместно с ними метаморфизована и деформирована (рис. 1г).

По геохимическим особенностям изученные метариолиты (табл. 1) сопоставимы с островодужными магматическими породами: подобно последним они обеднены Nb, относительно La и Th, на дискриминационных диаграммах (Pearce et al.,

Рис. 2. Фигуративные точки составов сланцев, из которых отобрана геохронологическая проба Э-КОС-8/1, в сравнении с метаграувакками (Милькевич, Мыскова, 1998) и туффитом (Бибикова и др., 2005) костомукшской свиты гимольской серии на диаграммах SiO₂ – окислы (в мас. %) и Ni (в г/т), спайдерграмме нормированных по хондритам (Nakamura, 1974) содержаний РЗЭ и на дискриминационной диаграмме Th-La-Sc (Bhatia, 1983) (поля осадков A – океанических островных дуг; В – континентальных островных дуг; С, D – активных и пассивных континентальных окраин соответственно.

Условные обозначения: 1 – сланец (проба Э-КОС-8/1); 2, 3 – метатуффит (проба К-7/97 (Бибикова и др., 2005)); 4 – метаграувакки (Милькевич, Мыскова, 1998)

1984) их фигуративные точки лежат в соответствующем поле.

Следует еще раз обратить внимание на то, что рассматриваемые метаосадки и метариолиты секутся жильными телами гранит-порфиров (с возрастом 2.7 млрд лет) и массивами микроклиновыми гранитов (с возрастом 2.68 млрд лет).

МЕТОДЫ ИССЛЕДОВАНИЙ

Определение петрогенных окислов выполнено классическим методом химического силикатного анализа в Институте геологии Карельского научного центра РАН (ИГ КарНЦ РАН), г. Петрозаводск. Концентрации рассеянных и редкоземельных элементов в породах измерены методом ICP MS (X Series II, ThermoScientific) также в ИГ КарНЦ РАН по методике детально описанной в работе (Светов и др., 2015).

Выделение цирконов проводилось в ИГ КарНЦ РАН (г. Петрозаводск) по стандартной методике с использованием магнитной сепарации и тяжелых жидкостей. При этом для работы с метариолитами, которые характеризуются низким содержанием и тонкодисперсной размерностью цирконов, был использован щадящий режим дробления. Внутренняя структура цирконов изучалась средствами оптической микроскопии и катодолюминесценции в ЦИИ ВСЕГЕИ (г. Санкт-Петербург), а состав минеральных включений в них на электронном сканирующем микроскопе Vega II с полупроводниковым детектором Oxford Inca 350 в ИГ КарНЦ РАН (г. Петрозаводск).

U-Pb датирование цирконов и определение в них содержания малых элементов осуществлялось на приборе ICP-MS Agilent 7500 Се с системой лазерной абляции Complex Pro102 (LA-ICP-MS) с диаметром лазерного пучка ~30-35 µm в Пекинском университете (Китай). Содержание U, Th и Рь в цирконе калибровалось по ²⁹Si. В качестве эталонов при определении возраста и U/Pb отношений использовались международные стандарты циркона PLE и TEM, а при определении содержания малых элементов – #610, #612 и #614. Обработка полученных данных осуществлялась с использованием программного обеспечения ICPMSDataCal, Glitter 4.0 и программы SQUID (Ludwig, 2000). Погрешности единичных анализов (отношений и возрастов) приводятся на уровне 1σ, а погрешности вычисленных конкордантных возрастов и пересечений с конкордией — на уровне 25. Построение графиков с конкордией проводилось с использованием программы ISOPLOT/EX (Ludwig, 1999).

ГЕОХРОНОЛОГИЯ И ГЕОХИМИЯ ЦИРКОНОВ

Из метариолитов, слагающих силл среди рудовмещающей толщи костомукшской свиты гимольской серии (рис. 1в), выделены относительно мелкие (размер по длиной оси от 50 до 120 мкм, с преобладанием (около 80% выборки) -40-80 мкм), изометричные и призматические (коэффициент удлинения (1.1–1.8) зерна циркона (проба Э-КОС2-7/1). На их изображениях в катодной люминисценции (CL) и в отраженных электронах (BSE) (рис. 3а) в большинстве кристаллов видна осцилляторная зональность, характерная для кристаллизации минерала в магматических системах (Corfu et al., 2003), хотя есть зерна, в которых она не проявлена. В качестве минеральных включений в кристаллах цирконов отмечены: апатит, реже - биотит и барит. Соотношение Th/U варьирует в цирконах от 0.48 до 0.98, что характерно для магматических разновидностей.

Оценка возраста цирконов по 14 аналитическим точкам цирконов по верхнему пересечению с конкордией -2753 ± 21 млн лет (табл. 2; рис. 3б). Кроме того, по 7 аналитическим точкам вычисляется конкордантный возраст данной выборки цирконов -2759 ± 8.9 млн лет (рис.36). Последнее значение принимается за наиболее точную оценку изотопного возраста цирконов из метариолитов силла. С учетом того, что все признаки (зональное строение зерен цирконов, высокие значения отношения Th/U, минеральные включения апатита) указывают на магматическую природу цирконов, следует в большой долей уверенности считать, что возраст 2759 ± 8.9 млн лет соответствует магматической стадии формирования силла.

Геохимические особенности цирконов (табл. 3; рис. 3в) позволяют выделить среди них три типа: 1) обедненные Eu и обогащенные Ce; 2) обогащенные Eu и Ce; 3) обогащенные средними редкоземельными элементами (РЗЭ). В изученной выборке преобладают именно обедненные Eu (Eu*/Eu < 1) и несколько обогащенные Ce кристаллы (рис. 3в), что типично для магматических цирконов (Hoskin, Schaltegger, 2003).

Это, по-видимому, означает, что часть цирконов кристаллизовались в магматической камере из расплава совместно с плагиоклазом (коэффициент распределения плагиоклаз/кислый расплав $K_{\rm D}^{\rm Eu} = 2.1; K_{\rm D}^{\rm Ce} = 0.3$ (Кокс и др., 1982)), обеспечив дефицит Еи и обогащение Се. Вторая – более редкая группа цирконов, наоборот, обогащена Eu (Eu*/Eu > 1), также как и валовый состав метариолитов, из которых эта проба выделена (рис. 3в). Эта часть выборки, по-видимому, кристаллизовалась из поздней фазы расплава, обогащенного плагиоклазом и калиевым полевым шпа-

Рис. 3. Морфология, возраст и геохимия цирконов из силла метариолитов (Э-КОС-2-7/1): (а) BSE- и CL- изображения цирконов с точками датирования (табл. 2), значениями 207 Pb- 206 Pb возраста (T_{Pb-Pb} в млн лет) и минеральными включениями (Ap – апатит); (б) Диаграммы с конкордией (T_c – конкордантный возраст; T_1 – изохронный возраст по верхнему пересечению); (в) спайдерграмма нормированных по хондриту (Nakamura, 1974) содержаний РЗЭ в цирконах, на врезке – в метариолите, из которого отобрана проба.

 ы U-Pb геохронологических исследований (LA-ICP-MS) цирконов из метариолитов Э-КОС2-7/1, Э-КОРП1-3/1 и сланцев	ЭС2-8/1 гимольской серии Костомукшского зеленокаменного пояса Карельского кратона
The U-Pb It	OC2-8/11
 Таблица 2.	(метаграувв

298

attartitions U, r/r Th, r/r Th, r/r D 207 Pb/206 Pb 0 KC-1 395 317 0.80 0.1897 0	Измерен	ные изотоі	THLE OTHO	винэш				Возраст	*, млн лет		e L
KC-1 395 317 0.80 0.1897 0 KC-2 192 144 0.75 0.1904 0 KC-3 198 157 0.79 0.1913 0 KC-3 198 157 0.79 0.1913 0 KC-4 496 406 0.83 0.1799 0 KC-5 563 468 0.83 0.1799 0 KC-5 563 468 0.83 0.1930 0 KC-10 366 192 0.52 0.1842 0 KC-13 188 156 0.83 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.77 0.1912 0 KC-18 688 528 0.77 0.1912 0 KC-19 178 132 0.74 0.1912 0 KC-14 179 167 0.64 0.1916	$b \pm 1\sigma$ ²	^{.07} Pb/ ²³⁵ U	± 1σ	²⁰⁶ Pb/ ²³⁸ U	± 1σ	Rho	$^{206}\text{Pb}/^{238}\text{U}$	± 1σ	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}$	± lσ	n, %
KC-1395317 0.80 0.1897 0 KC-2192144 0.75 0.1904 0 KC-3198157 0.79 0.1913 0 KC-4496 406 0.82 0.1778 0 KC-5563 468 0.83 0.1779 0 KC-6165118 0.72 0.1905 0 KC-10366192 0.89 0.1868 0 KC-11177152 0.86 0.1930 0 KC-13188156 0.83 0.1930 0 KC-13188156 0.83 0.1930 0 KC-13188156 0.83 0.1930 0 KC-14179135 0.77 0.1924 0 KC-13188156 0.83 0.1930 0 KC-14179135 0.77 0.1912 0 KC-15142 95 0.77 0.1930 0 KC-19178 132 0.77 0.1916 0 KC-19178 132 0.77 0.1916 0 KC-19178 132 0.77 0.1930 0 KC-19178 132 0.77 0.1916 0 KC-19178 132 0.77 0.1916 0 KC-19KR-1 234 0.77 0.1916 0.78 KR-1 234 0.79 0.79 0.19098 0.78 KR-2	-	-	Э-КОС	2-7/1	-						
KC-2192144 0.75 0.1904 0 KC-3198157 0.79 0.1913 0 KC-4496406 0.82 0.1778 0 KC-5563468 0.83 0.1799 0 KC-6165118 0.72 0.1905 0 KC-10366192 0.89 0.1842 0 KC-11177152 0.83 0.1930 0 KC-13188156 0.83 0.1930 0 KC-14179135 0.75 0.1930 0 KC-13188156 0.83 0.1930 0 KC-14179135 0.75 0.1930 0 KC-13188156 0.83 0.1930 0 KC-14179135 0.76 0.1930 0 KC-13188 156 0.77 0.1912 0 KC-19178 132 0.77 0.1925 0 KC-19167 107 0.67 0.1916 0 KR-1 234 147 0.63 0.19162 0 KR-2 533 0.79 0.70 0.19098 0 KR-3 315 247 0.70 0.19098 0 KR-7 225 147 0.65 0.19162 0 KR-7 225 147 0.95 0.19162 0 KR-7 0.95 0.99 0.19162 0 KR-7	0.00457	13.66919	0.30704	0.52239	0.00491	0.9	2709	21	2739	25	1.11
KC-3 198 157 0.79 0.1913 0 KC-4 496 406 0.82 0.1799 0 KC-5 563 468 0.83 0.1799 0 KC-5 563 468 0.83 0.1799 0 KC-7 144 369 0.83 0.1905 0 KC-10 366 192 0.89 0.1842 0 KC-11 177 152 0.86 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.75 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.77 0.1842 0 KC-18 688 528 0.77 0.1916 0 KC-19 178 135 0.74 0.19	0.00481	13.91295	0.32984	0.52964	0.00541	0.9	2740	23	2746	26	0.22
KC-4 496 406 0.82 0.1778 0 KC-5 563 468 0.83 0.1799 0 KC-6 165 118 0.72 0.1905 0 KC-10 366 192 0.89 0.1868 0 KC-11 177 152 0.86 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 152 0.83 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.77 0.1912 0 KC-18 688 528 0.77 0.1912 0 KC-19 178 132 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-19 167 0.64 0.1998 <td< td=""><td>0.00484</td><td>14.09435</td><td>0.33454</td><td>0.53404</td><td>0.00545</td><td>0.9</td><td>2758</td><td>23</td><td>2754</td><td>26</td><td>-0.15</td></td<>	0.00484	14.09435	0.33454	0.53404	0.00545	0.9	2758	23	2754	26	-0.15
KC-5 563 468 0.83 0.1799 0 KC-6 165 118 0.72 0.1905 0 KC-7 414 369 0.89 0.1868 0 KC-10 366 192 0.52 0.1842 0 KC-11 177 152 0.86 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-13 188 155 0.86 0.1930 0 KC-13 188 155 0.83 0.1930 0 KC-14 179 135 0.77 0.1912 0 KC-19 178 132 0.77 0.1912 0 KC-19 178 132 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-19 167 0.64 0.1846 <td< td=""><td>0.00552</td><td>11.3954</td><td>0.33225</td><td>0.46492</td><td>0.00499</td><td>0.9</td><td>2461</td><td>22</td><td>2632</td><td>53</td><td>6.95</td></td<>	0.00552	11.3954	0.33225	0.46492	0.00499	0.9	2461	22	2632	53	6.95
KC-6165118 0.72 0.1905 0 KC-7414369 0.89 0.1868 0 KC-10366192 0.52 0.1842 0 KC-11 177 152 0.86 0.1930 0 KC-13188 156 0.83 0.1930 0 KC-13188 156 0.83 0.1930 0 KC-14 179 135 0.75 0.1924 0 KC-15 142 95 0.67 0.1925 0 KC-19 178 132 0.77 0.1916 0 KC-19 178 132 0.77 0.1916 0 KC-20 167 107 0.64 0.1912 0 KR-1 234 147 0.64 0.18986 0 KR-3 315 247 0.79 0.19167 0 KR-4 352 248 0.70 0.19167 0 KR-5 632 563 0.89 0.19167 0 KR-7 225 147 0.65 0.19162 0 KR-7 225 147 0.95 0.19162 0 KR-7 0.95 0.95 0.19162 0 KR-7 0.95 0.95 0.19162 0	0.00537	12.5225	0.3505	0.50485	0.00521	0.91	2635	22	2652	51	0.65
KC-7414369 0.89 0.1868 0 KC-10366192 0.52 0.1842 0 KC-11 177 152 0.86 0.1930 0 KC-13188 156 0.83 0.1930 0 KC-14 179 135 0.75 0.1924 0 KC-15 142 95 0.67 0.1925 0 KC-18 688 528 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-19 178 132 0.74 0.1912 0 KC-19 178 132 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.18986 0 KR-1 234 147 0.63 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-3 315 247 0.79 0.19157 0 KR-5 632 563 0.79 0.19162 0 KR-7 225 147 0.05 0.19162 0 KR-7 225 147 0.95 0.19162 0 KR-7 225 147 0.95 0.19162 0	0.00498	13.86453	0.34133	0.52756	0.00557	0.9	2731	24	2747	27	0.59
KC-10 366 192 0.52 0.1842 0 KC-11 177 152 0.86 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.75 0.1924 0 KC-18 688 528 0.77 0.1916 0 KC-19 178 132 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1898 0 KC-21 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1898 0 KR-1 234 147 0.63 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 253 0.79 0.19098 0 KR-5 632 563 0.79 0.19162	0.00575	13.31739	0.38399	0.51701	0.00553	0.91	2686	24	2714	52	1.04
KC-11 177 152 0.86 0.1930 0 KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.75 0.1924 0 KC-15 142 95 0.67 0.1925 0 KC-18 688 528 0.77 0.1912 0 KC-19 178 132 0.74 0.1912 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1898 0 KR-1 234 147 0.63 0.18966 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 258 0.79 0.19157 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 563 0.70 0.19098 0 KR-7 225 147 0.65 0.19162 0 KR-7 225 147 0.05 0.19162 <	0.00546	12.74783	0.35226	0.50186	0.00536	0.9	2622	23	2691	50	2.63
KC-13 188 156 0.83 0.1930 0 KC-14 179 135 0.75 0.1924 0 KC-15 142 95 0.67 0.1925 0 KC-18 688 528 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1912 0 KC-20 167 107 0.64 0.1998 0 KR-1 234 147 0.63 0.18966 0 KR-3 315 247 0.63 0.19157 0 KR-4 352 258 153 0.70 0.19098 0 KR-3 315 247 0.78 0.19157 0 0 KR-4 352 253 0.79 0.19098 0 0 KR-7 225 147 0.65 0.19162 0 0 KR-7 225 147 0.05 0.19162 0 0 0 0 </td <td>0.00514</td> <td>14.32713</td> <td>0.36123</td> <td>0.53814</td> <td>0.00569</td> <td>0.9</td> <td>2776</td> <td>24</td> <td>2768</td> <td>27</td> <td>-0.29</td>	0.00514	14.32713	0.36123	0.53814	0.00569	0.9	2776	24	2768	27	-0.29
KC-14 179 135 0.75 0.1924 0 KC-15 142 95 0.67 0.1925 0 KC-18 688 528 0.77 0.1916 0 KC-19 178 132 0.74 0.1912 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1898 0 KR-1 234 147 0.63 0.18966 0 KR-2 258 153 0.59 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19157 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.05 0.19162 0 KR-9 683 647 0.95 0.19162 0	0.00518	14.28466	0.36318	0.53655	0.00569	0.9	2769	24	2768	28	-0.04
KC-15 142 95 0.67 0.1925 0 KC-18 688 528 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1912 0 KC-20 167 107 0.64 0.1898 0 KR-1 234 147 0.63 0.18966 0 KR-2 258 153 0.59 0.18966 0 KR-3 315 247 0.63 0.19157 0 KR-4 352 248 0.70 0.19157 0 KR-5 632 563 0.70 0.19157 0 KR-7 225 147 0.65 0.19162 0 KR-7 225 147 0.05 0.19162 0 KR-9 683 647 0.95 0.19162 0	0.00532	14.16431	0.37257	0.53383	0.00595	0.9	2758	25	2763	29	0.18
KC-18 688 528 0.77 0.1816 0 KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1896 0 KC-20 167 107 0.63 0.18966 0 KR-1 234 147 0.63 0.18966 0 KR-2 258 153 0.59 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19157 0 KR-5 632 563 0.89 0.18473 0 KR-7 225 147 0.65 0.19157 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19162 0	0.00539	14.1337	0.37624	0.53235	0.00602	0.9	2751	25	2764	29	0.47
KC-19 178 132 0.74 0.1912 0 KC-20 167 107 0.64 0.1898 0 KR-1 234 147 0.63 0.18966 0 KR-1 234 147 0.63 0.18966 0 KR-1 234 147 0.63 0.18966 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 247 0.78 0.19157 0 KR-5 632 563 0.89 0.19157 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19162 0	0.0048	12.68713	0.31822	0.5065	0.00502	0.9	2642	21	2668	28	0.98
KC-20 167 107 0.64 0.1898 0 KR-1 234 147 0.63 0.18966 0 KR-2 258 153 0.59 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19157 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00527	14.0777	0.36975	0.53389	0.00573	0.9	2758	24	2752	29	-0.22
KR-1 234 147 0.63 0.18966 0 KR-2 258 153 0.59 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19098 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00525	13.76826	0.36299	0.52598	0.00564	0.9	2724	24	2740	29	0.59
KR-1 234 147 0.63 0.18966 0 KR-2 258 153 0.59 0.18966 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19098 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	-	-	J-KOPI	11-3/1	-		-		-		_
KR-2 258 153 0.59 0.18473 0 KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19098 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00593	14.76593	0.44814	0.56462	0.00647	0.9	2886	27	2739	35	-5.09
KR-3 315 247 0.78 0.19157 0 KR-4 352 248 0.70 0.19098 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00654	12.96075	0.43224	0.50886	0.00607	0.9	2652	26	2696	60	1.66
KR-4 352 248 0.70 0.19098 0 KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00597	13.68807	0.41492	0.51819	0.00581	0.9	2691	25	2756	35	2.42
KR-5 632 563 0.89 0.18582 0 KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00619	13.9682	0.44223	0.53044	0.0062	0.9	2743	26	2751	37	0.29
KR-7 225 147 0.65 0.19162 0 KR-9 683 647 0.95 0.19259 0	0.00838	12.01451	0.51898	0.46893	0.00611	0.91	2479	27	2706	76	9.16
KR-9 683 647 0.95 0.19259 0	0.00633	14.1046	0.45568	0.53382	0.00635	0.9	2758	27	2756	37	-)0.07
	0.00635	14.03258	0.45361	0.52845	0.00612	0.9	2735	26	2764	38	1.06
KR-10 396 132 0.33 0.16277 0	0.00659	9.59326	0.36958	0.42746	0.00528	0.89	2294	24	2485	70	8.33

СЛАБУНОВ и др.

Toward Constratational Toward Experimentational Experimentational <thexperimentational< th=""> Experimentational</thexperimentational<>																
Image U,r Th,r Th,r <th< th=""><th>Точки</th><th>Содер</th><th>жание</th><th>T.h. /T I</th><th></th><th>Измере</th><th>нные изото</th><th>IIHE OTH</th><th>ошения</th><th></th><th></th><th></th><th>Возраст</th><th>*, MJH JICT</th><th></th><th>8</th></th<>	Точки	Содер	жание	T.h. /T I		Измере	нные изото	IIHE OTH	ошения				Возраст	*, MJH JICT		8
S1 717 934 1.9 0.1068 0.0063 0.3530 0.53237 0.0063 0.3 230 273 274 40 -0.11 51 717 934 1.30 0.1066 0.0663 0.53237 0.0063 0.3 0.3536 0.54353 0.54354 0.54 23 23 40 2.3 55 580 653 1.13 0.24397 0.00643 1.37456 0.4415 0.00633 0.00647 0.9 2340 23 <td< th=""><th>анализов</th><th>U, r/T</th><th>Th, r/r</th><th></th><th>207Pb/206Pb</th><th>$\pm 1\sigma$</th><th>²⁰⁷Pb/²³⁵U</th><th>+ 1α</th><th>²⁰⁶Pb/²³⁸U</th><th>$\pm 1\sigma$</th><th>Rho</th><th>$^{206}Pb/^{238}U$</th><th>+ 1σ</th><th>$^{207}\text{Pb}/^{206}\text{Pb}$</th><th>+ 1σ</th><th>Ď,</th></td<>	анализов	U, r/T	Th, r/r		207 Pb/ 206 Pb	$\pm 1\sigma$	²⁰⁷ Pb/ ²³⁵ U	+ 1α	²⁰⁶ Pb/ ²³⁸ U	$\pm 1\sigma$	Rho	$^{206}Pb/^{238}U$	+ 1σ	$^{207}\text{Pb}/^{206}\text{Pb}$	+ 1σ	Ď,
1 717 934 1.30 0.19068 0.000661 1.37345 0.43025 0.53237 0.0065 1.27 2394 271 274 40 -0.11 25 337 194 0.19168 0.000661 13.73456 0.44725 0.44715 0.44712 0.44125 0.4412 0.4412 0.25341 2544 255 2344 255 2344 255 2344 254 256 2344 256 2344 256 2344 256 230		-						Э-КОС	22-8/1							
32 337 194 0.34 0.00654 1.3.7465 0.47356 0.48135 0.00654 1.7.7465 0.48145 0.00654 1.7.7456 0.48135 0.00654 1.7.7456 0.48135 0.00654 1.7.7456 0.48135 0.00654 1.7.7456 0.48135 0.00657 0.2.323 0.2.3073 0.00657 0.2.323 0.00657 0.2.323 0.00657 0.2.324 0.7.664 0.4.6 -4.13 57 95 0.12 0.02031 0.00657 0.03657 0.03657 0.03657 0.03657 0.03657 0.03667 0.03 0.03 0.03 0.03 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.006667 0.006667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.00667 0.0075	S1	717	934	1.30	0.19068	0.00663	13.99591	0.48029	0.53237	0.0065	0.9	2751	27	2748	40	-0.11
33 81 127 089 0.18642 0.00641 12.77562 0.4815 0.4815 0.0055 0.0<7 234 235 2711 41 40 55 731 388 0.23 0.0063 16.337 0.55316 0.55317 0.0065 0.55317 0.5333 0.9 232 28 270 24 24 24 57 55 113 0.04391 0.00713 15.4557 0.55312 0.0063 0.9 2719 28 270 24 2.24 57 55 140 0.5531 0.55313 0.55312 0.0063 0.9 2766 38 2766 42 2.26 51 799 887 111 0.2111 0.00713 15.4537 0.55312 0.0063 0.9 2766 28 2766 2764 266 2764 266 2764 266 2764 266 2764 266 2764 266 2764 266 276	S2	357	194	0.54	0.19185	0.00669	13.73465	0.47258	0.51925	0.00631	0.9	2696	27	2758	40	2.30
34 731 388 0.53 0.20033 0.00838 0.55530 0.55307 0.55307 0.55307 0.55307 0.55307 0.5308 0.90 234 234 24	S3	851	1272	0.89	0.18642	0.00647	12.37562	0.42426	0.4815	0.00574	0.9	2534	25	2711	41	6.99
S5 580 653 113 0.24397 0.00683 0.53389 0.0088 0.9 2779 28 776 40 -2.06 S7 95 234 99 0.42 0.90713 13.4058 0.53889 0.00693 0.9 2779 28 779 28 779 28 779 28 779 28 779 28 779 28 779 28 779 28 726 73 3.23 3.23 S8 883 111 112 0.791 13.4155 0.4664 0.5532 0.0063 0.9 2769 276 47 2.64 S1 316 240 13.4155 0.4664 0.5538 0.5536 0.5539 0.573 0.99 2769 276 47 2.64 S1 115 279 0.191 0.3073 0.5544 0.0073 0.99 2769 47 2.64 45 -4.64 S1 115	S4	731	388	0.53	0.20073	0.00698	16.08857	0.55361	0.58134	0.00695	0.9	2954	28	2832	40	-4.13
S6 234 99 0.42 0.19212 0.00061 14.27618 0.53012 0.00633 0.9 2779 28 2770 24 24 23 S7 95 86 0.91 0.19048 0.0071 13.4125 0.49695 0.51473 0.23468 0.00701 0.9 2766 30 2746 43 3.23 S8 839 1.01 0.1918 0.0071 13.9615 0.49603 0.51473 0.52468 0.00711 28 2766 43 2.34 S10 799 887 1.11 0.2118 0.0073 19.2357 0.55582 0.00682 0.45649 0.5559 0.55793 0.5558 0.5569 0.775 28 276 27 27 25	S5	580	653	1.13	0.24397	0.00858	21.9674	0.76467	0.65307	0.00801	0.9	3240	31	3146	40	-2.90
S7 95 86 01 010448 0.00718 13.4125 0.49058 0.51072 0.50073 0.9 2506 30 2766 43 3.3 S8 141 112 0.79 0.19301 0.00718 13.96195 0.55824 0.55824 0.00701 0.9151 1.306195 0.55824 0.55824 0.00769 236 237 242 2364 S10 799 887 1.11 0.20131 1.306073 0.55824 0.55824 0.00689 286 286 287 236 42 2464 S11 240 0.76 0.19141 0.0071 15.5828 0.57924 0.0073 299 287 42 246 S11 270 0.9911 0.0071 15.5828 0.57924 0.0073 0.99 287 43 266 S11 270 0.9919 0.0071 15.5832 0.5754 0.0073 0.9 279 44 45 45	S6	234	66	0.42	0.19212	0.00691	14.27618	0.50912	0.53898	0.0068	0.9	2779	28	2760	42	-0.68
88 141 112 0.70 0.1930 0.00718 0.5443 0.52468 0.5075 0.5758 43 5755 43 5.364 810 892 1.07 0.1915 0.00687 14.73748 0.55582 0.50687 0.45874 0.5588 0.50461 0.00775 0.28 28 2755 42 -5.44 811 316 240 0.74 0.1911 0.0071 15.8877 0.58834 0.50751 0.46844 0.00752 0.9 2131 21 2899 42 -5.44 811 240 0.74 0.1911 0.0071 15.8877 0.58328 0.50732 0.9 239 28 43 5.8 813 115 84 0.77 0.19130 0.00771 14.90548 0.56736 0.393 29 28 27 44 5.8 814 77 0.73 0.1914 0.00771 14.90548 0.56742 0.50730 29 28 27 <td>S7</td> <td>95</td> <td>86</td> <td>0.91</td> <td>0.19048</td> <td>0.00712</td> <td>13.41255</td> <td>0.49695</td> <td>0.51072</td> <td>0.00693</td> <td>0.9</td> <td>2660</td> <td>30</td> <td>2746</td> <td>43</td> <td>3.23</td>	S7	95	86	0.91	0.19048	0.00712	13.41255	0.49695	0.51072	0.00693	0.9	2660	30	2746	43	3.23
S9 836 892 107 0.1915 0.00687 14.73748 0.5580 0.5582 0.00687 14.73748 0.5584 0.5684 1351 315 235 24 255 42 -5.14 811 111 0.22118 0.0077 19.22357 0.6884 0.60639 0.9 3151 315 29 42 -5.14 811 316 240 0.79 1.5877 0.5828 0.57924 0.0073 0.9 2599 28 -5.564 812 115 84 0.73 1.5877 0.5828 0.57924 0.0073 0.9 2897 28 2753 44 5.69 813 115 84 0.70 1.5787 0.56448 0.56443 0.56742 0.5676 0.0073 2897 45 -5.75 44 5.69 814 270 14 0.0077 14.90548 0.56742 0.56743 0.0073 0.99 2897 45 -5.755 <	S8	141	112	0.79	0.19301	0.00718	13.96195	0.51473	0.52468	0.00701	0.9	2719	30	2768	43	1.80
100 790 887 1.11 0.22118 0.0077 19.22357 0.68854 0.68854 0.60639 0.9 3151 31 2999 42 -5.14 811 316 240 0.76 0.111 0.00713 13.08037 0.48064 0.90639 0.9 2399 23 2446 5.5887 812 0.74 0.18982 0.00701 15.15877 0.55828 0.55828 0.57924 0.99 2397 33 27721 44 -696 813 0.77 0.87 0.0701 15.15877 0.55828 0.55726 0.99 2397 33 27741 44 -696 813 0.77 0.887 0.6771 0.497648 0.56474 0.56726 0.90767 0.9772 0.9772 23977 337 2774 445 -0.72 814 0.77 0.9971 14.90748 0.56474 0.56726 0.90773 0.99 2377 44 55756 -60772 816 0.77 0.9977 14.90748 0.56474 0.56726 0.9077 0.99779 23779 457 -0.75 817 1116 0.0701 114.26749 0.56474 0.56474 0.00776 0.99 2779 47 -0.75 817 112 0.99741 14.26749 0.56474 0.56474 0.00776 0.99 2376 45 -0.75 817 112 0.91912 0.00771 14.257	S9	836	892	1.07	0.1915	0.00687	14.73748	0.52508	0.5582	0.00682	0.9	2859	28	2755	42	-3.64
S113162400.760.19110.0071313.080370.486040.496460.06390.92599282752445.89S1210177480.740.189820.0070115.158770.558280.579240.007330.9294630274144-6.96S13115840.720.9070115.158770.558280.5564780.567560.008080.9289733287445-0.79S143112700.870.919440.0072714.905480.5564780.567560.007030.9289733287445-0.79S150.550.990.990.0073114.267490.5564780.564780.007030.9288631277930275945-0.79S16125880.700.99510.0073114.267490.556480.564880.00730.9277930277945-0.79S16125880.700.99510.072114.567490.556480.564880.007530277933276946-5.04S16125880.900.995114.755190.560920.548880.007560.997330277945-0.72S174325731330.9120.0073114.257490.560920.548880.007560.99276946-2.16S1796 <t< td=""><td>S10</td><td>799</td><td>887</td><td>1.11</td><td>0.22118</td><td>0.00797</td><td>19.22357</td><td>0.68854</td><td>0.63041</td><td>0.00775</td><td>0.9</td><td>3151</td><td>31</td><td>2989</td><td>42</td><td>-5.14</td></t<>	S10	799	887	1.11	0.22118	0.00797	19.22357	0.68854	0.63041	0.00775	0.9	3151	31	2989	42	-5.14
S12 1017 748 0.74 0.18982 0.0701 15.15877 0.55828 0.57924 0.00723 0.9 2946 30 2741 44 -6.50 S13 115 84 0.72 0.20598 0.00721 14.96748 0.55747 0.55726 0.00808 0.9 2874 45 -0.79 S14 311 270 0.87 0.19144 0.00721 14.90548 0.56498 0.56474 0.00743 0.9 2876 45 -0.79 S15 283 155 0.55 0.19199 0.00761 14.555842 0.56792 0.59793 0.9 2779 45 -0.70 S16 125 88 0.70 0.19199 0.00761 15.55842 0.56763 0.5779 0.99 260 2759 45 -0.70 S17 432 1.3 0.19221 0.00741 14.552819 0.56663 0.0756 0.9 2779 2767 476 -0.71	S11	316	240	0.76	0.19111	0.00713	13.08037	0.48604	0.49646	0.00639	0.9	2599	28	2752	44	5.89
S1311584 0.72 0.20598 0.00805 16.10873 0.62742 0.56726 0.00808 0.9 2897 33 2874 45 -0.74 S14311270 0.87 0.19144 0.00727 14.90548 0.56498 0.56474 0.00743 0.9 2886 31 2755 45 -4.54 S15 283 0.19199 0.00731 14.26749 0.55426 0.53902 0.00707 0.9 2886 31 2759 45 -4.54 S16 1223 80 0.1951 0.00771 14.2549 0.54252 0.53902 0.00707 0.9 2297 30 2759 46 -2.16 S17 432 573 1.33 0.192 0.00741 14.52819 0.56022 0.5486 0.00707 0.9 2297 30 2799 46 -2.16 S17 432 573 1.33 0.1921 0.00741 14.52819 0.56026 0.5486 0.00702 0.9 2297 30 2799 46 -2.16 S18 79 61 0.0721 14.52819 0.56028 0.5486 0.00732 0.99 2879 46 -2.16 S19 166 0.19311 0.00721 14.52819 0.56928 0.54176 0.00719 0.99 2779 48 -2.16 S19 166 0.1911 0.00711 14.95721 0.00732 0.99 2779 30	S12	1017	748	0.74	0.18982	0.00701	15.15877	0.55828	0.57924	0.00723	0.9	2946	30	2741	44	-6.96
S14 311 270 0.87 0.19144 0.00727 14.90548 0.56498 0.56474 0.00737 0.9 2866 31 2755 45 -4.54 S15 283 155 0.55 0.19199 0.00731 14.26749 0.54722 0.53902 0.00707 0.9 2779 30 2759 45 -0.72 S16 125 88 0.70 0.19551 0.00747 14.55842 0.56105 0.5772 0.00803 0.9 2379 33 2759 45 -0.70 S17 432 573 1.33 0.19291 0.00747 14.55842 0.5614 0.00756 0.9 2379 33 2769 46 -5.04 S18 79 70 0.89 0.19291 0.00747 14.55849 0.55464 0.57656 0.9 2779 48 -0.073 S19 46 0.1931 0.00741 14.95721 0.60078 0.54175 0.00833 0.9	S13	115	84	0.72	0.20598	0.00805	16.10873	0.62742	0.56726	0.00808	0.9	2897	33	2874	45	-0.79
S15 283 155 0.051 0.0731 14.26749 0.54725 0.53902 0.00707 0.9 2779 30 2739 45 -0.72 $S16$ 125 88 0.70 0.95511 0.00767 15.58842 0.61051 0.5772 0.00803 0.9 2937 33 2789 46 -5.04 $S17$ 432 573 1.33 0.192 0.00741 14.52819 0.56092 0.54886 0.00726 0.9 2807 33 2759 46 -2.16 $S18$ 79 70 0.89 0.19211 0.00741 14.52819 0.56092 0.54886 0.00726 0.9 2807 33 2769 46 -2.16 $S18$ 79 70 0.89 0.19211 0.00741 14.52819 0.56092 0.54886 0.00726 0.9 28767 48 -0.07 $S19$ 146 0.19211 0.00731 14.27227 0.60078 0.54175 0.00719 0.9 2776 47 -3.55 $S20$ 319 146 0.19111 0.00771 14.1987 0.55556 0.54175 0.00719 2094 2776 49 -0.72 $S21$ 49 0.0719 0.99113 0.00771 14.1987 0.55556 0.54175 0.00719 2794 47 -1.72 $S222$ 355 375 0.99 2791 0.99 2794 2794 49 -0.72 <tr<< td=""><td>S14</td><td>311</td><td>270</td><td>0.87</td><td>0.19144</td><td>0.00727</td><td>14.90548</td><td>0.56498</td><td>0.56474</td><td>0.00743</td><td>0.9</td><td>2886</td><td>31</td><td>2755</td><td>45</td><td>-4.54</td></tr<<>	S14	311	270	0.87	0.19144	0.00727	14.90548	0.56498	0.56474	0.00743	0.9	2886	31	2755	45	-4.54
S16125880.700.195510.0076715.588420.610510.57720.008030.9293733278946-5.04S174325731.330.1920.007414.528190.560920.548860.007260.9282030275946-2.16S1879700.890.192910.0081314.272270.600780.556630.007530.99276936277748-0.07S1996610.640.193110.0078214.957270.600780.556640.56140.08180.92769367747-3.55S203191460.460.190110.0074114.19870.555660.541750.007190.9277337277347-1.72S2197690.710.191630.0074114.19870.555660.541750.007720.9277449-5.64S223553741430.380.0077613.150410.558560.541750.007720.9277431277649-5.84S233741430.380.0077613.150410.558130.007720.99276931277549-0.77S233741430.380.0977613.150410.558130.007720.99273431277549-0.77S24380.460.91120.00776<	S15	283	155	0.55	0.19199	0.00731	14.26749	0.54252	0.53902	0.00707	0.9	2779	30	2759	45	-0.72
S17 432 573 1.33 0.192 0.0074 14.52819 0.56092 0.54886 0.00726 0.9 2820 30 2759 46 -2.16 S18 79 70 0.89 0.19291 0.00813 14.27227 0.60078 0.53663 0.00853 0.9 2769 36 2767 48 -0.07 S19 96 61 0.64 0.19321 0.00782 14.54527 0.600788 0.55656 0.54175 0.00719 30 2770 47 -3.55 S20 319 146 0.46 0.19011 0.00741 14.1987 0.55556 0.54175 0.00719 30 2743 47 -1.72 S21 97 69 0.71 0.19163 0.00776 13.33441 0.56911 0.52813 0.00729 0.99 2776 49 -1.72 S21 59 0.71 0.19123 0.57941 0.56913 0.00729 0.99 2774 49	S16	125	88	0.70	0.19551	0.00767	15.55842	0.61051	0.5772	0.00803	0.9	2937	33	2789	46	-5.04
S18 79 70 0.89 0.19291 0.00813 14.27227 0.60078 0.53663 0.00853 0.9 2769 36 2767 48 -0.07 S19 96 61 0.64 0.19321 0.00782 14.95421 0.6058 0.5614 0.00818 0.9 2770 47 -3.55 S20 319 146 0.46 0.19011 0.00741 14.1987 0.55556 0.54175 0.00719 0.9 2791 30 2743 47 -1.72 S21 97 69 0.71 0.19163 0.00797 13.15041 0.54991 0.49777 0.00732 0.9 2764 30 2776 49 -1.72 S21 97 0.9 0.71 0.19163 0.00776 13.15041 0.54991 0.52813 0.00729 0.9 2774 30 2756 49 -0.73 S22 375 143 0.56911 0.55836 0.53435 0.00729 <	S17	432	573	1.33	0.192	0.0074	14.52819	0.56092	0.54886	0.00726	0.9	2820	30	2759	46	-2.16
S19 96 61 0.64 0.19321 0.00782 14.95421 0.6058 0.5614 0.00818 0.9 2872 34 2770 47 -3.55 S20 319 146 0.46 0.19011 0.00741 14.1987 0.55556 0.54175 0.00719 0.9 2743 47 -1.72 S21 97 69 0.71 0.19163 0.00776 13.15041 0.54991 0.49777 0.00732 0.9 2743 37 -1.72 S21 97 69 0.71 0.19163 0.00776 13.15041 0.54991 0.49777 0.00732 0.9 2734 31 2756 49 5.84 S22 355 374 143 0.19184 0.00776 13.139341 0.56911 0.52813 0.00729 0.9 2756 49 0.70 S23 374 143 0.38 0.90776 14.13235 0.57685 0.57343 0.9 2760 31	S18	62	70	0.89	0.19291	0.00813	14.27227	0.60078	0.53663	0.00853	0.9	2769	36	2767	48	-0.07
S20 319 146 0.46 0.19011 0.00741 14.1987 0.55556 0.54175 0.00719 2791 30 2743 47 -1.72 S21 97 69 0.71 0.19163 0.00797 13.15041 0.54991 0.49777 0.00732 0.9 2604 32 2756 49 5.84 S22 355 375 1.05 0.19163 0.00776 13.5441 0.56911 0.52813 0.00729 0.9 2734 31 2754 49 5.84 S22 355 375 1.05 0.19184 0.00776 13.15335 0.57835 0.00729 0.9 2734 31 2754 49 0.73 S23 374 143 0.38 0.19184 0.00776 14.13235 0.57435 0.09 2760 31 2752 49 0.073 S24 348 143 0.66 0.19112 0.00778 0.57435 0.9 2760 31	S19	96	61	0.64	0.19321	0.00782	14.95421	0.6058	0.5614	0.00818	0.9	2872	34	2770	47	-3.55
S2197690.710.191630.0079713.150410.549910.497770.007320.92604322756495.84S223553751.050.191380.0077613.934410.569110.528130.007290.92734312754490.73S233741430.380.191840.0077614.132350.576850.534350.007290.9276031275849-0.07S243481580.460.191120.0077813.977360.574870.530480.007290.9276031275849-0.07S243372240.660.189330.0077813.887390.532060.532060.0730.92760312752490.33S253372240.660.189330.0077313.887390.532060.07320.92760312736790.33	S20	319	146	0.46	0.19011	0.00741	14.1987	0.55556	0.54175	0.00719	0.9	2791	30	2743	47	-1.72
S223553751.050.191380.0077613.934410.569110.528130.007290.92734312754490.73S233741430.380.191840.0077614.132350.576850.534350.007290.9276031275849-0.07S243481580.460.191120.0077813.977360.574470.530480.00730.92743312752490.33S253372240.660.189330.0077313.887390.532060.5322060.07320.9274331273650-0.51	S21	97	69	0.71	0.19163	0.00797	13.15041	0.54991	0.49777	0.00732	0.9	2604	32	2756	49	5.84
S23 374 143 0.38 0.19184 0.00776 14.13235 0.57685 0.53435 0.00729 0.9 2760 31 2758 49 -0.07 S24 348 158 0.46 0.19112 0.00778 13.97736 0.57447 0.53048 0.0073 0.9 2743 31 2752 49 -0.07 S24 337 224 0.66 0.19112 0.00778 13.88739 0.53206 0.00732 0.9 2743 31 2752 49 0.33 S25 337 224 0.66 0.18933 0.00773 13.88739 0.53206 0.00732 0.9 2750 31 2736 50 -0.51	S22	355	375	1.05	0.19138	0.00776	13.93441	0.56911	0.52813	0.00729	0.9	2734	31	2754	49	0.73
S24 348 158 0.46 0.19112 0.00778 13.97736 0.57447 0.53048 0.0073 0.9 2743 31 2752 49 0.33 S25 337 224 0.66 0.18933 0.00773 13.88739 0.57305 0.53206 0.00732 0.9 2743 31 2736 49 0.33	S23	374	143	0.38	0.19184	0.00776	14.13235	0.57685	0.53435	0.00729	0.9	2760	31	2758	49	-0.07
S25 337 224 0.66 0.18933 0.00773 13.88739 0.57305 0.53206 0.00732 0.9 2750 31 2736 50 -0.51	S24	348	158	0.46	0.19112	0.00778	13.97736	0.57447	0.53048	0.0073	0.9	2743	31	2752	49	0.33
	S25	337	224	0.66	0.18933	0.00773	13.88739	0.57305	0.53206	0.00732	0.9	2750	31	2736	50	-0.51

ГЕОХИМИЯ, ГЕОХРОНОЛОГИЯ ЦИРКОНОВ И ВОЗРАСТ

Таблица 3. Содержание (в г/т) РЗЭ в цирконах из метариолитов (геллефлинты) Э-КОС2-7/1 (КС-1-20) и Э-КОРП1-3/1 (КК-1-10), сланца (метаграувакки) Э-КОС2-8/1 (S1-25)

Точка изм.	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
KC-1	5.38	82.83	8.34	59.89	49.8	21.43	66.37	12.16	92.66	27.95	114.2	23.48	229.74	45.56
KC-2	13.87	155.66	27.54	216.58	116.37	44.24	77	9.55	62.32	18.11	77.06	16.93	177.78	39.1
KC-3	7.7	81.48	11.53	89.73	47.62	14.82	40.34	7.55	67.51	22.46	99.34	21.57	219.04	45.56
KC-4	33.35	223.16	33.06	210.35	170.59	83.8	211.6	35.48	221.54	55.86	205.34	38.28	348.78	67.02
KC-5	18.31	174.5	23.71	159.83	109.86	87.26	122.06	19.4	124.22	33.38	126.43	25.49	242.05	46.14
KC-6	4.23	56.39	6.89	56.08	31.61	8.09	31.37	6.02	54.09	18.31	81.48	17.83	185.47	38.86
KC-7	21.74	128.01	17.88	105.23	59.19	24	84.42	16.86	131.52	38.62	151.35	30.24	288.56	54.76
KC-10	5.78	61.49	8.28	50.09	39.13	11.17	50.79	10.83	85.78	26.44	111.16	23.38	226.02	45.29
KC-11	14.72	72.98	9.68	75.66	40.66	10.57	42.51	7.43	60.09	19.57	85.62	18.65	189.3	39.81
KC-13	20.23	96.91	17.3	126.04	63.98	8.09	55.95	8.35	61.94	19.67	84.62	18.54	194.05	41.91
KC-14	15.57	60.34	10.65	83.2	48.94	13.11	44.71	6.93	57.14	18.84	83.03	18.37	189.94	41.35
KC-15	4.83	43.06	4.59	36.98	23.06	4.12	24.28	4.32	37.78	12.28	54.22	11.61	123.61	25.87
KC-18	93.81	242.38	54.39	319.02	203.92	89.38	250.06	41.57	239.91	54.97	186.93	33.8	312.99	56.1
KC-19	14.13	60.18	7.69	54.45	29.35	6.06	31.33	5.83	49.88	17.49	78.25	17.6	187.92	41.18
KC-20	0.688	23.8	0.531	4.29	3.87	1.064	9.19	2.62	28.15	11.14	56.46	13.4	149.08	34.32
KR-1	0.405	19.8	0.17	2.03	3.32	0.683	14.18	4.3	45.05	15.83	70.83	15.02	149.82	30.33
KR-2	12.8	37.72	5.77	31.78	13.68	12.46	28.64	6.98	64.47	21.73	92.73	19.28	187.99	37.56
KR-3	2.54	29.17	1.74	13.81	12.73	1.99	38.21	10.04	96.83	32.15	131.55	27.06	256.92	49.27
KR-4	1.227	28.71	0.823	6.46	7.47	1.146	27.98	7.97	82.78	28.6	124.96	26.2	254.73	49.32
KR-5	15.2	142.79	21.09	143.35	116.5	44.21	167.63	32.39	232.19	62.99	236.82	46.37	426.54	78.29
KR-7	0.988	19.7	1.166	8.7	8.63	1.68	23.32	6.23	60.01	20.45	88.26	18.5	183.26	36.91
KR-9	17.94	171.05	28.21	220.57	146.33	78.9	194.24	34.54	246.26	67.12	253.01	48.8	441.61	82.66
KR-10	32.85	144.84	17.29	92.24	29.82	6.25	39.15	7.72	64.15	19.86	81.88	16.42	156.23	29.51
S 1	43.88	274.75	26.74	198.79	91.83	238.08	176.28	37.45	329.96	101.8	382.42	69.9	600.52	106.52
S2	9.99	67.5	5.37	28.19	9.19	5.54	22.21	6.29	71.74	28.23	136.48	31.07	333.22	70.89
S 3	32.39	149.46	15.62	107.67	49.12	84.51	97.23	21.05	187.38	58.73	223.86	42.6	388.03	73.75
S4	59.04	197.51	29.02	172.42	73.83	130.57	124.52	25.45	223.9	68.73	265.96	51.48	482.71	93.4
S5	8.17	160.73	4.75	35.41	21.15	24.97	65.26	19.92	223.74	83.7	371.98	76.64	743.29	143.61
S6	11.61	65.54	6.78	39.58	13.73	14.85	24.52	5.73	55.85	20.16	90.61	20.51	215.3	47.27
S 7	0.72	16.25	0.611	6.45	7.29	1.68	24.87	7.74	87.96	32.4	145.45	31.35	311.62	61.93
S8	0.232	22.38	0.168	1.86	2.41	0.774	10.34	3.27	39.11	15.69	77.61	18.55	201.38	45.22
S9	11.53	163.53	8.03	59.81	35.72	45.12	90.35	23.53	231.1	80.32	347.57	74.1	738.46	149.93
S10	49.77	277.51	32.38	228.73	106.44	263.36	180.48	35.71	306.2	94.24	353.32	65.32	597.37	117.17
SII SII	37.91	159.13	20.48	141.25	60.64	115.34	100.8	20.62	177.63	53.56	197.82	36.39	332.97	64.28
S12	31.37	130.45	13.23	77.72	33.55	43.07	76.85	19.85	202.07	72.57	316.42	66.23	656.54	132.46
S13	0.5	13.37	0.404	3.75	3.59	0.801	16.33	5.22	60.64	23.25	103.64	22.03	211.19	41.89
S14	32.01	144.36	17.35	106.98	43.24	64.74	81.14	17.68	161.49	50.56	200.56	38.55	366.55	72.55
515 516	9.41	30.49	4./9	50.92	14.02	5.65	29.96	1.13	/0.8	24.14	100.55	10 14	255.80	50.29
S10	62.87	141.15	12.57	52.09	11.06	2.34	23.5	5.75	56.47	19.59	84.44	18.14	184.03	38.27
5 1/	38.33	203.15	25.78	100.45	12.2	155.43	115.4/	22.93	189.19	30.34	207.11	35.78	323.31	60.4
S18 S10	0.//9	1/.58	0.508	4.54	5.91	1.39	12.98	5.//	40.79	13.21	/1.39	10.19	109.03	37.02 26.07
S19 S20	30.04	20.69	19.92	92.93 14 40	11.23	3.00 7.00	20.30	4.39	54.00	13.13	04.22	11.8/	122.23	20.07
520 S21	4.42	29.08	2.11	14.48	0.80	1.29	18.99	5.12	55.00	20.39	94.23	21.45	150.04	4/.//
521	1.19/	52.25	0.736	6.63	6.75	1.95	21.81	5.78	55.69	18.69	//.01	15.76	150.84	30.34

300

Рис. 4. Морфология, возраст и геохимия цирконов из дайки метариолитов (Э-КОРП1-3/1): (а) BSE- и CL-изображения цирконов с точками датирования (табл. 2), значениями ²⁰⁷Pb–²⁰⁶Pb возраста (T_{Pb-Pb} в млн лет); (б) Диаграммы с конкордией (T_c – конкордантный возраст; T₁ – изохронный возраст по верхнему пересечению, T₂ – изохронный возраст по нижнему пересечению; (в) спайдерграмма нормированнных по хондриту (Nakamura, 1974) содержаний РЗЭ в цирконах, на врезке – в метариолите, из которого отобрана проба.

том. Третья группа имеет черты сходства с составом цирконов с наиболее дискордантными (степень дискордантности более 15%) значениями возрастов, что, вероятно, является признаком начальных стадий нарушения геохимической системы.

Следующая группа изученных цирконов (Э-КОРП1-3/1) была выделена из метариолитов дайки, секущей осадочный разрез железорудной части гимольской серии (рис. 1в). Концентрация цирконов мала: из пробы весом 3 кг выделено 34 зерна. Они, также как и в предыдущей пробе, мелкие (от 50 до 130 мкм, с преобладанием (более 57% выборки) — 50–80 мкм), изометричные и призматические (коэффициент удлинения варьирует от 1.1 до 3.5, но существенно (около 80%) преобладает 1.1–1.76 (рис. 4а).

С цирконами из силла их роднит и то, что большая часть зерен характеризуется наличием осцилляторной зональности, которая видна на CL- и BSE-изображениях (рис. 4а), а также тем, что соотношение Th/U в зернах также высокое – 0.46–0.95, типичное для магматических цирконов (Hoskin, Schaltegger, 2003). Кроме того, в кристаллах цирконов отмечены минеральные включения апатита и биотита. Таким образом, строение и состав цирконов в обеих пробах из метариолитов весьма сходны и согласуются с предположением о формировании их в магматической системе.

U-Pb возраст цирконов из дайки по 8 аналитическим точкам по верхнему пересечению оценивается в 2736 \pm 37 млн лет (рис. 4б). Кроме того, можно оценить возраст цирконов по 3 наиболее конкордантным аналитическим точкам — 2743 \pm 15 млн лет. Последнее значение наиболее точно отражает возраст магматической стадии формирования метариолитов дайки.

Геохимические особенности цирконов из рассматриваемой пробы полностью аналогичны таковым из силла риолитов (Э-КОС1-7/1): среди них также выделяется три типа (рис. 4в): 1) обедненные Еи и обогащенные Се; 2) обогащенные Еи и нейтральным Се; 3) обогащенные средними РЗЭ.

Столь значительное сходство возрастов и вариаций составов цирконов из кислых субвулканических тел различной морфологии и из различных участков зеленокаменного пояса (рис. 1б) служит важным аргументом в пользу их формирования в ходе единого магматического события.

Еще одна проба цирконов, выделенная из биотитовых сланцев (метаграувакк), была проанализирована в рамках данного исследования. Для изотопных исследований было отобрано 40 зерен и проанализировано 25 точек. Цирконы не имеют признаков окатанности. По морфлогическим признакам среди них выделяется две группы: первая составляет около 70% выборки, характеризуется относительно мелким (50–100 мкм) размером, изометричной и слабоудлиненно-призматической (коэффициент удлинения 1.0–2.0) формой; вторая – составляет около 18% выборки, состоит из относительно крупных (120– 140 мкм) удлиненно-призматических (коэффициент удлинения 2.5–5.9) кристаллов (рис. 5а).

Важно отметить, что возраст наиболее многочисленной части цирконов из метаграувакки (2753 \pm 15 млн лет) в пределах аналитической ошибки совпадает с таковым для цирконов из рассмотренных выше метариолитов (2759 \pm 8.9 и 2743 \pm 15 млн лет).

Сходство цирконов из метаграувакки и метариолитов проявляется и при сопоставлении их геохимических характеристик (рис. 5в). Неоархейские цирконы из осадков, также как и из субвулканических тел, обеднены легкими РЗЭ, характеризуются положительной аномалией Се, а аномалия Еи у части зерен положительная, у другой — отрицательная. При этом большая часть древних цирконов немного обогащена тяжелыми РЗЭ (рис. 5в). Несмотря на то, что цирконы из метаграувакки и метариолитов очень сходны, обращает на себя внимание, что среди первых не отмечены аналитические точки с высокой дискордантностью и, соответственно, обогащенные легкими и средними РЗЭ.

Таким образом, большая часть (21 из 25 проанализированных) детритовых цирконов из метаграувакки сходна по возрасту, геохимии РЗЭ и морфологии с цирконами из рассмотренных выше метариолитов. Это означает, что одним из ведущих источников вещества для осадков являлись неоархейские риолиты и, таким образом, время вулканической активности и осадконакопления были весьма сближены (или практически синхронны). Вместе с тем, в источнике сноса присутствовали и более древние — мезоархейские породы.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Проведенные геохронологические и геохимические исследования цирконов из метаморфизо-

Рис. 5. Морфология, возраст и геохимия цирконов из сланцев (Э-КОС2-8/1): (а) BSE- и CL-изображения цирконов с точками датирования (табл.2), значениями 207 Pb $^{-206}$ Pb возраста (T_{Pb-Pb} в млн лет), минеральными включениями (*Ap* – апатит, *Pl* – плагиоклаз- андезин); (б) Диаграммы с конкордией (T_1 – изохронный возраст по верхнему пересечению, T_2 – изохронный возраст по нижнему пересечению); (в) спайдерграмма нормированнных по хондриту (Na-kamura, 1974) содержаний РЗЭ в цирконах (пунктирная линия – аналитические точки с T_{Pb-Pb} более 2770 млн лет, серое поле – состав цирконов в метариолитах).

ванных магматических и осадочных пород костомукшской свиты гимольской серии Костомукшского зеленокаменного пояса позволяют оценить возраст формирования главной железорудной толщи Карельского кратона. Впервые показано, что возраст магматических цирконов из метариолитов силла и дайки — 2759 ± 8.9 и 2743 ± 15 млн лет, соответственно. Это означает, что возраст толщи вмешаюших эти магматические тела осалков не моложе 2.74 млрд лет, так как исследованная дайка сечет вмещающие осадочные породы (рис. 1г). Метаморфические процессы, которые фиксируются в породах, не привели к формированию в изученных породах новых генераций цирконов и не нарушили существенно изотопную систему существовавших кристаллов.

Для оценки возраста накопления осадков были изучены цирконы из метаграувакки костомукшской серии гимольской серии, залегающей стратиграфически выше силла риолитов (рис. 1в). Петрогеохимические характеристики этой породы полностью сопоставимы с метаграуваакками детально изученного (Милькевич, Мыскова, 1998) здесь разреза (рис. 2). Особенности состава метаграувакк позволили сделать вывод о том, что эти слабодифференцированные незрелые осадки сформировались за счет разрушения базальтов (около 50%) и кислых вулканитов (Милькевич, Мыскова, 1998). Полученные нами данные так же указывают на важную роль риолитов при их формировании: возраст, морфология и геохимические особенности детритовых цирконов из этих осадков аналогичны таковым из метариолитов в составе гимольской серии. Особенно следует обратить внимание на сходство геохимических характеристик цирконов в осадках и метариолитах (рис. 3в; рис.4в; рис. 5в).

Представленные факты могут означать, что активный вулканизм и осадконакопление рассмотренной части гимольской серии Костомукшского пояса происходили синхронно 2.76-2.74 млрд лет назад. Вместе с тем, среди детритовых цирконов из осадков установлены и редкие зерна со значительно большим – мезоархейским (до 3.1 млрд лет) возрастом. Это может означать, что в области питания бассейна осадконакопления присутствовали более древние породы. На то, что в источнике сноса осадков были и породы с древним коровым компонентом указывает также и тот факт, что Sm-Nd модельный возраст сланцев (туффитов) гимольской серии оценивается в 2.98 млрд лет, а их ϵNd_{2800} варьирует от +1.2 до +1.58 (Самсонов и др., 2001; Бибикова и др., 2005).

Полученные оценки возраста главной железорудной осадочной толщи (костомукшской свиты гимольской серии) Костомукшского зеленокаменного пояса в 2759 ± 19–2743 ± 15 млн лет хорошо коррелируются со временем (не древнее

2753 ± 15 млн лет (Мыскова, Львов, 2019)) формирования метаграувакки с прослоями BIF нижней терригенной толщи соседнего Хедозерско-Большезерского зеленокаменного пояса (рис. 1а), осадочной толщи (свита Ронкаперя, время формирования не древнее 2750-2700 млн лет) зеленокаменного пояса Кухмо (рис.1a) (Lehtonen et al., 2016) и терригенными метаосадками всего Западно-Карельского региона (Чекулаев, Арестова, 2020). Кислые вулканиты с близкими к исследованным метариолитам возрастами 2749 ± ± 5 млн лет (Левченков и др., 2000) и 2754 ± \pm 6 млн лет (Sorjonen-Ward, 1993) фиксируются, соответственно, в Гимольском и Иломантси зеленокаменных поясах (рис.1а), а в Хедозерско-Большезерском велика роль более молодых (2712-2703 млн лет) вулканитов (Мыскова и др., 2020). Следует также отметить, что в Костомукшском зеленокаменном поясе осадочный железорудный комплекс гимольской серии сформировался спустя 35-50 млн лет после вулканитов и осадков контокской серии.

Полученные данные, убедительно указывающие на (а) неоархейский (2.76-2.74 млрд лет) возраст осадочной толщи, элементом которой являются BIF. (б) а также на синхронность ее формирования с кислыми вулканитами имеют важное значение для оценки условий формирования BIF. Во-первых, это означает, что осадконакопление железорудной толщи происходило в эпоху до кислородного взрыва (Great Oxidation Event - GOE), начавшегося около 2.45 млрд лет назад. Как предполагается (Bekker et al., 2010; Kasting, 2019), атмосфера в архее преимущественно состояла из углекислого газа с крайне низким содержанием кислорода. Это значит, что в гидросфере железо должно было находиться в хорошо растворимой двухвалентной форме. Для его осаждения необходимо, чтобы, по крайней мере, периодически в водном бассейне возникали условия для окисления железа до трехвалентной формы. Их могли обеспечить синтезирующие кислород цианобактерии или железобактерии, окисляющие двухвалентное железо микроорганизмы (Koehler et al., 2010). Находка в Австралии неоархейских строматолитов, которые могли быть постройками цианобактерий (Buick, 1992), а также наличие разнообразных архейских микрофоссилий в зеленокаменных комплексах Карельского кратона (Высоцкий и др., 2019; Медведев и др., 2014; Розанов, Ушатинская, 2011) позволяют рассматривать такую модель, как одну из перспективных. Во-вторых, геохимические характеристики рассматриваемых метаосадков и метариолитов указывают на их формирование в связи с субдукционными процессами, а значит образование BIF происходило в бассейне, связанном с данной геодинамической обстановкой.

КРАТКИЕ ВЫВОДЫ

1. Возраст кислого магматизма, проявленного в виде силлов и даек метариолитов среди метаосадков железорудной гимольской серии Костомукшского зеленокаменного пояса, на основании изучения U-Pb возраста цирконов методом LA-ICP-MS, оценивается в 2759 \pm 19–2743 \pm \pm 15 млн лет;

2. Главным источником цирконов в метаграувакках, чередующихся с ВІГ гимольской серии Костомукшского зеленокаменного пояса, были риолиты. На это указывает сходство U-Pb возраста (2753 ± 19 млн лет) наиболее распространенной группы детритовых цирконов в осадках с таковым из метариолитов, а также сопоставимые геохимические и морфологические особенности цирконов в этих породах;

3. Формирование железорудной осадочной толщи (гимольской серии) в Костомукшском зеленокаменном поясе происходило синхронно с кислым вулканизмом в субдукционной геодинамической обстановке.

Авторы выражают благодарность руководству и сотрудникам рудоуправления АО "Карельский окатыш" (г. Костомукша) за возможность провести научные геологические исследования на карьерах, сотрудникам Школы наук о Земле и Космосе Пекинского университета проф Жангу Лифею, к.г-м.н. Сяоли Ли и PhD Ф. Ма, которые в рамках реализации договора о сотрудничестве предоставили возможность провести геохронологические исследования в лаборатории университета. Авторы признательны рецензентам, ценные замечания и рекомендации которых помогли лучше раскрыть тему.

Статья является вкладом в выполнение государственного задания КарНЦ РАН (ИГ КарНЦ РАН, проект АААА-A18-118020290085-4).

СПИСОК ЛИТЕРАТУРЫ

Балаганский В.В., Горбунов И.А., Мудрук С.В. (2016). Палеопротерозойские Лапландско-Кольский и Свекофеннский орогены (Балтийский щит). Вестник Кольского научного центра РАН (3), 5.

Бибикова Е.В., Бергман И.А., Грачева Т.В., Макарова В.А. (1977) Архейский возраст железорудных формаций Карелии. Геохронология и проблемы рудообразования. М.: Наука, 25-32.

Бибикова Е.В., Самсонов А.В., Петрова А.Ю., Кирнозова Т.И. (2005) Геохронология архея западной Карелии. *Стратиграфия. Геологическая корреляция* **13**(5), 3.

Высоцкий С.В., Ханчук А.И., Кулешевич Л.В., Игнатьев А.В., Слабунов А.И., Веливецкая Т.А. (2019). Мультиизотопный состав серы сульфидов и микрофоссилии мезоархейского колчеданного рудопроявления Лекса Карельского кратона: новые данные о роли абиогенных и биогенных факторов при формировании древнейших руд. ДАН, 485(5), 599.

Горьковец В.Я., Раевская М.Б. (1983) О взаимоотношении геллефлинт и железорудных толщ Костомукшского месторождения. *Геология и стратиграфия докембрийских образований Карелии. Оперативно-информационные материалы за 1982 год.* Петрозаводск: КНЦ РАН, 32-36.

Горьковец В.Я., Раевская М.Б., Белоусов Е.Ф., Инина К.А. (1981) Геология и металлогения района Костомукшского железорудного месторождения. Петрозаводск: Карелия, 143 с.

Горьковец В.Я., Шаров Н.В. (Отв. ред.) (2015) Костомукшский рудный район (геология, глубинное строение и минерагения). Петрозаводск: КарНЦ РАН, 322 с.

Кожевников В.Н. (1982) Условия формирования структурно-метаморфических парагенезисов в докембрийских комплексах. Л.: Наука, 184 с.

Кожевников В.Н. (2000) Архейские зеленокаменные пояса Карельского кратона как аккреционные орогены. Петрозаводск: КарНЦ РАН, 223 с.

Кожевников В.Н., Бережная Н.Г., Пресняков С.Л., Лепехина Е.Н., Антонов А.В., Сергеев С.А. (2006) Геохронология циркона (SHRIMP-II) из архейских стратотектонических ассоциаций в зеленокаменных поясах Карельского кратона: роль в стратиграфических и геодинамических реконструкциях. *Стратиграфия. Геологическая корреляция* **14**(3), 19.

Кокс К.Г., Белл Дж.Д., Панкхерст Р.Дж. (1982) Интерпретация изверженных горных пород. М.: Недра, 414 с.

Кулешевич Л.В., Фурман В.Н. (2009) Золоторудное месторождение Таловейс в Костомукшской докембрийской зеленокаменной структуре (Карелия). Геология рудных месторождений **51**(1), 58.

Куликов В.С., Светов С.А., Слабунов А.И., Куликова В.В., Полин А.К., Голубев А.И., Горьковец В.Я., Иващенко В.И., Гоголев М.А. (2017) Геологическая карта Юго-восточной Фенноскандии масштаба 1:750000: новые подходы к составлению. *Труды Карельского НЦ РАН. Серия "Геология докембрия"* (2), 3.

Левченков О.А., Богданов Ю.Б., Матреничев В.А., Саватенов В.М., Яковлев С.З., Макеева А.Ф. (2000). Новые данные о возрасте вулканитов лопия Карелии. Общие вопросы расчленения докембрия. Материалы III Всероссийского совещания. Апатиты: КНЦ РАН, 143-145.

Лобач-Жученко С.Б. (Отв. ред.) (1988) Зеленокаменные пояса фундамента Восточно-Европейской платформы (геология и петрология вулканитов). Л.: Наука, 215 с.

Лобач-Жученко С.Б., Арестова Н.А., Милькевич Р.И. Левченков О.А., Сергеев С.А. (2000а) Стратиграфический разрез Костомукшской структуры Карелии (верхний архей), реконструированный на основе геохронологических, геохимических и изотопных данных. Стратиграфия. Геологическая корреляция **8**(4), 319.

Лобач-Жученко С.Б., Чекулаев В.П., Арестова Н.А., Левский Л.К., Коваленко А.В. (2000б) Архейские тер-

рейны Карелии: геологическое и изотопно-геохимическое обоснование. *Геотектоника* (6), 26.

Медведев П.В., Светов С.А., Светова А.И. (2014) Реликты термофильной хемолитотрофной микробиоты в кремнистых породах архейского возраста (Центральная Карелия). *Труды Карельского научного центра РАН* (1), 135.

Миллер Ю.В. (1988). Структура архейских зеленокаменных поясов. Л.: Наука, 142 с.

Милькевич Р.И., Мыскова Т.А. (1998) Позднеархейские метатерригенные породы Западной Карелии (литология, геохимия, источники сноса). Литология и полезные ископаемые (2), 177.

Михайлов В.П., Аминов В.Н. (Отв. ред.). (2005) Минерально-сырьевая база Республики Карелия /Кн. 1. Горючие полезные ископаемые. Металлические полезные ископаемые. Петрозаводск: Карелия, 280 с.

Мыскова Т.А., Львов П.А. (2019) История формирования Хедозеро-Большозерской структуры Балтийского щита в свете новых геохимических и геохронологических данных. *Труды Карельского научного центра РАН*. *Серия "Геология докембрия"* (10), 5.

Мыскова Т.А., Милькевич Р.И., Львов П.А., Житникова И.А. (2020) Неоархейские вулканиты Хедозеро-Большозерской зеленокаменной структуры Центральной Карелии: состав, возраст и тектоническая обстановка. Стратиграфия. Геологическая корреляция **28**(2), 3.

Myskovaa T. A., Milkevich R. I., Lvov P. A., Zhitnikova I. A. (2020) Neoarchean Volcanites of the Khedozero-Bolshozero Greenstone Structure (Central Karelia): Composition, Age, and Tectonic Setting. *Stratigraphy and Geological Correlation*, **28**(2), 107.

Никитина Л.П., Левский Л.К., Лохов К.И., Беляцкий Б.В., Журавлев В.А., Лепехина Е.Н., Антонов А.В. (1999) Протерозойский шелочно-ультраосновной магматизм восточной части Балтийского щита. *Петроло*еия **7**(3), 252.

Раевская М.Б., Горьковец В.Я., Светова А.И., Володичев О.И. (1992) Стратиграфия докембрия Карелии. Опорные разрезы верхнеархейских отложений. Петрозаводск: КарНЦ РАН, 191 с.

Розанов А.Ю., Ушатинская Г.Т. (Науч. ред.). (2011) Ископаемые бактерии и другие микроорганизмы в земных породах и астроматериалах. М.: ПИН РАН, 172 с.

Рыбаков С.И., Светова А.И., Куликов В.С., Робонен В.И., Горьковец В.Я., Раевская М.Б. (1981) Вулканизм архейских зеленокаменных поясов Карелии. Л.: Наука, 154 с.

Самсонов А.В., Берзин Р.Г., Заможняя Н.Г., Щипанский А.А., Бибикова Е.В., Кирнозова Т.И., Конилов А.Н. (2001) Процессы формирования раннедокембрийской коры Северо-Западной Карелии, Балтийский щит: результаты геологических, петрологических и глубинных сейсмических (профиль 4В) исследований. Глубинное строение и эволюция земной коры восточной части Фенноскандинавского щита: профиль Кемь – Калевала. Петрозаводск: КарНЦ РАН, 109-143.

Светов С.А., Степанова А.В., Чаженгина С.Ю., Светова Е.Н., Рыбникова З.П., Михайлова А.И., Парамонов А.С., Утицына В.Л., Эхова М.В., Колодей В.С. (2015) Прецизионный (ICP-MS, LA-ICP-MS) анализ состава горных пород и минералов: методика и оценка точности результатов на примере раннедокембрийских мафитовых комплексов. *Труды Карельского научного центра РАН. Серия "Геология докембрия"* (7), 173.

Слабунов А.И., Лобач-Жученко С.Б., Бибикова Е.В., Балаганский В.В., Сорьонен-Вард П., Володичев О.И., Щипанский А.А., Светов С.А., Чекулаев В.П., Арестова Н.А., Степанов В.С. (2006) Архей Балтийского щита: геология, геохронология, геодинамические обстановки. *Геотектоника* (6), 3.

Слабунов А.И., Хёлтта П., Шаров Н.В., Нестерова Н.С. (2011) 4-D модель формирования земной коры Фенноскандинавского щита в архее как синтез современных геологических данных. Геология Карелии от архея до наших дней. Материалы докладов Всероссийской конференции, посвященной 50-летию Института геологии Карельского научного центра РАН. Петрозаводск: КарНЦ РАН, 13-21.

Степанова А.В., Сальникова Е.Б., Самсонов А.В., Ларионова Ю.О., Егорова С.В., Саватенков В.М. (2017) Дайки долеритов 2404 млн лет на Карельском кратоне — фрагмент палеопротерозойской крупной магматической провинции. ДАН 472(2), 185.

Чекулаев В.П., Арестова Н.А. (2020) Архейские метатерригенные породы Карельской провинции: геологическое положение, геохимия, источники сноса. *Стратиграфия. Геологическая корреляция* **28**(4), 3.

Чернов В.М. (1964) Стратиграфия и условия осадконакопления вулканогенных (лептитовых) железистокремнистых формаций Карелии. М.- Л.: Наука, 123 с.

Bhatia M.R. (1983) Plate tectonics and geochemical composition of sandstones. *J. Geol* **91**, 611.

Buick R. (1992) The antiquity of oxygenic photosynthesis: Evidence from stromatolites in sulphate-deficient Archaean lakes. *Science* **255**, 74.

Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P. (2003) Atlas of Zircon Textures. In *Zircon. Reviews in Mineralogy and Geochemistry. The Mineralogical Society of America* (53), 469-500.

Hoskin P.W.O., Schaltegger U. (2003) The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In Zircon. Reviews in Mineralogy and Geochemistry. The Mineralogical Society of America (53), 27-62.

Höltta P., Heilimo E., Huhma H. Kontinen A., Mertanen S., Mikkola P., Paavola J., Peltonen P., Semprich J., Slabunov A., Sorjonen-Ward P. (2014) The Archaean Karelia and Belomorian Provinces, Fennoscandian Shield. In *Evolution of Archean Crust and Early Life* (Eds. Dilek Y., Furnes H.). Modern Approaches in Solid Earth Sciences (7). Springer, 55-102.

Kasting J.F. (2019) Early Early Atmosphere and Oceans. In *Oldest Rocks*. Second Edition. (Eds.: van Kranendonk M.J., Bennett V.C., Hoffmann J.E.). Amsterdam: Elsevier, 49-61.

Lehtonen E., Heilimo E., Halkoaho T., Käpyaho A., Hölttä P. (2016) U-Pb geochronology of Archaean volcanic-sedimentary sequences in the Kuhmo greenstone belt, Karelia Province – Multiphase volcanism from Meso- to Neoarchaean and a Neoarchaean depositional basin? *Precambrian Res.* 275, 48. Ludwig K.R. (2000) SQUID 1.00. User's Manual. Berkeley Geochronology Center. Special Publication (2), 2455. Ridge Road, Berkeley, CA 94709. USA.

Ludwig K.R. (1999) User's manual for Isoplot/Ex. Version 2.10. A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center. Special Publication(1a), 2455. Ridge Road, Berkeley CA 94709. USA.

Nakamura N. (1974) Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. *Geochim. Cosmochim. Acta* **38**, 757.

Pearce J.A., Harris N.B.W., Tindle A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. *J. Petrol.* **25**, 956.

Puchtel I.S., Hofmann A.W., Mezger K., Jochuma K.P., Shchipansky A.A., Samsonov A.V. (1998) Oceanic plateau model for continental crustal growth in the Archaean: a case study from the Kostomuksha greenstone belt, NW Baltic Shield. *Earth Planet. Sci. Lett.* 155, 57.

Slabunov A.I., Lobach-Zhuchenko S.B., Bibikova E.V., Sorjonen-Ward P., Balagansky V.V., Volodichev O.I., Shchipansky A.A., Svetov S.A., Chekulaev V.P., Arestova N.A., Stepanov V.S. (2006) The Archean nucleus of the Fennoscandian (Baltic) Shield. In *European Lithosphere Dynamics*. (Eds. Gee D.G. & Stephenson R.A.). London: The Geological Society Publishing House, 18-38.

Sorjonen-Ward P. (1993) An overview of structural evolution and lithic units within and intruding the late Archean Hattu schist belt Ilomantsi eastern Finland. In *Geological development, gold mineralization and exploration methods in the late Archean Hattu schist belt, Ilomantsi, Eastern.* (Eds. Nurmi P., Sorjonen-Ward P.). Geological Survey of Finland Special Paper (17), 9-102.