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Abstract—The increasing popularity of compound-specific hydrogen isotope (D/H) analyses for investigating
sedimentary organic matter raises humerous questions about the exchange of carbon-bound hydrogen over
geologic timescales. Important questions include the rates of isotopic exchange, methods for diagnosing
exchange in ancient samples, and the isotopic consequences of that exchange. This article provides a review
of relevant literature data along with new data from several pilot studies to investigate such issues. Published
experimental estimates of exchange rates between organic hydrogen and water indicate that at warm
temperatures (50—100°C) exchange likely occurs on timescale$ td 10° yr. Incubation experiments using
organic compounds and D-enriched water, combined with compound-specific D/H analyses, provide a new
and highly sensitive method for measuring exchange at low temperatures. Compari8onvafues for
isoprenoid andh-alkyl carbon skeletons in sedimentary organic matter provides no evidence for exchange in
young K1 Ma), cool sediments, but strong evidence for exchange in anci88( Ma) rocks. Specific rates
of exchange are probably influenced by the nature and abundance of organic matter, pore-water chemistry, the
presence of catalytic mineral surfaces, and perhaps even enzymatic activity.

Estimates of equilibrium fractionation factors between organic H and water indicate that typical lipids will
be depleted in D relative to water by75 to 140%. at equilibrium (30°C). Thus large differencesdi
between organic molecules and water cannot be unambiguously interpreted as evidence against hydrogen
exchange. A better approach may be to use changes in stereochemistry as a proxy for hydrogen exchange. For
example, estimated rates of H exchange in pristane are similar to predicted rates for stereochemical inversion
in steranes and hopanes. The isotopic consequences of this exchange remain in question. Incubations of
cholestene with DO indicate that the number of D atoms incorporated during structural rearrangements can
be far less than the number of C-H bonds that are broken. Sample calculations indicate that, for steranes in
immature sediments, the D/H ratio imparted by biosynthesis may be largely preserved in spite of significant
structural changes. Copyright © 2004 Elsevier Ltd

1. INTRODUCTION cifically, we combine a review of published data with new,
_ . ) o compound-specific D/H measurements from three pilot studies.
Hydrogen isotope ratios’fi/*H, or D/H) of individual or In the first, we demonstrate that monitoring the incorporation of

ganic compounds are being used to reconstruct D/H ratios of p_o into organic molecules during incubation experiments can
paleoenvironmental water and hence climatic recoXls ét guantify exchange half-times of 1@r in experiments lasting

al., 2000; Sauer et al., 2001; Huang et al., J00&hereas  ony a few months. Second, we extend the approach of
similar attempts using bulk isotopic analyses have had to con- aondersen et al. (2001py comparing differences in the D/H
tend both with complex mixtures of organic material and with - 4tjp between polyisoprenoid and straight-chain lipids in rocks
the rapid exchange of O- and N-bound hydrogénshnamur- gating back to 1.6 Ga. Third, we examine incorporation of
thy et al., 1993 the analysis of individual compounds such as - geyterium into isomerized and rearranged cholestene during
n-alkanes and sterols potentially avoids both problems. With jcubation experiments and suggest that measurements of cer-
this opportunity come new questions about the isotopic fidelity t5in structural changes in molecules may be useful as a proxy
of carbon-bound hydrogen over geologic timescales. Current ¢, estimating hydrogen exchange. Convergence of &e

evidence suggests that virtually all organic hydrogen will ex- y4jyes of these molecules could provide evidence for hydrogen
change on timescales less than the age of the Earth even at lowgychange over long timescales in sedimentary rocks.
temperaturesoepp, 1978, but uncertainties about rates and
catalytic effects still encompass many orders of magnitude.
In this report we 1) summarize information about rates of
exchange of carbon-bound hydrogen; 2) evaluate new and 2-1- Incubation Experiments
existing methods for identifying and quantifying exchange in  The test compounds-icosane and cholest-5-ene (Sigma Chemical
sedimentary organic molecules; and 3) examine relationships Co., St. Louis, MO) were incubated with,D (99.5% D, Cambridge

between hydrogen exchange and isotopic compositions. Spe_lsotope Laboratories, Andover, MA) on four different inorganic sub-
strates:

2. EXPERIMENTAL

A 2.1.1. Montmorillonite
* Author to whom correspondence should be addressed, at Division of

Geological and Planetary Sciences, California Institute of Technology,  The reference material SAz-1(Clay Minerals Society, University of
Mail Code 170-25, Pasadena, CA 91125 USA (als@gps.Caltech.edu). Missouri), a homogenized Ca-montmorillonite clay, was cleaned by
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Table 1. Petroleum samples for D/H analyses.

Approx.

Sample age (Ma) Formation/location

Description Maturity Reference

1810 1640 Barney Ck. Fm., McArthur Basin, NT, Mesoproterozoic bitumen from calcareous  Immature  Summons et al. (1988)

Aust. shale GR-10

306 1000 Nonesuch Fm., Midcontinent Rift, USA  Neoproterozoic oil seep from pyritic black Mature Pratt et a. (1991)

shale

376 543 Athel Fm., Salt Basin, South Oman Terminal Proterozoic Hugf oil Mature Grantham et al. (1988)

357 365 Nullara Limestone, Canning Basin, WA, L. Devonian oil from Blina-1 Mature Edwards et a. (1997)
Aust.

364 340 Grant Fm., Canning Basin WA, Aust. E. Carboniferous oil from West Terrace-1 ~ Mature Edwards et a. (1997)

three-fold ultrasonication in 9:1 dichloromethane(DCM)/methanol
(MeOH) with centrifugation between extractions, followed by air-
drying at 120°C for > 2 d. This clay has a reported surface area of 97
m?/g and a cation exchange capacity of 1.2 meg/g (Olphenaand Fripiat,
1979). Total carbon content of the cleaned clay was 0.011 + 0.004%
on a dry-weight basis. The aqueous pH of this substrate, measured by
adding 20 mL of distilled H,O to 10 g of dry SAz-1, was 8.20.

2.1.2. Montmorillonite + XAD

A portion of cleaned SAz-1 was blended with 10% XAD-2 resin (a
styrene-divinylbenzene copolymer, 2% crosslinked, 200—400 mesh
pellets, Aldrich, Milwaukee, WI) by weight to simulate sediment
containing abundant polymeric organic matter. The XAD resin was
cleaned of extractable material by repeated ultrasonication in organic
solvents. Blank extractions of both SAz-1 and clay + XAD yielded no
detectable organic compounds by gas chromatography/mass spectrom-
etry (GC/IMS).

2.1.3. Slica

Powdered microcrystalline silica (Sigma Chemical Co.) was cleaned
and dried as for montmorillonite. The reported grain sizeis 0.5-10 um,
with 80% between 1 and 5 um. The total carbon content of the cleaned
silica was < 0.004%. Because the silica was found to catalyze sub-
stantial hydrogen exchange, trace and major element chemistry of the
silica was analyzed by ICP-MS, which indicated that transition metals
were present in the range 0.1 to 10 pg/g and platinum-group elements
were present at 0.2 to 4 ng/g. Aqueous pH of the cleaned silica was
5.73.

2.1.4. Marine clay

Clay-rich, core-top sediments collected from the Gulf of Mexico
(850 m water depth; 27.740°N, 90.771°W) were air-dried at 40°C over
a period of weeks, then crushed to a fine powder and homogenized.
They were further air-dried at 120°C for 2 d immediately before use.
Total organic carbon content was 1.6 = 0.7%. The sediment was
treated with HCI to remove carbonate, but the measured value of §'°C
was —10.4%o, indicating that as much as half of the remaining C was
probably inorganic. Carbonate content in the initial sample, determined
by weight-loss after acidification to pH 1 with HCI then rinsing, was
2%. Aqueous pH of the sediment, measured after drying then rehydrat-
ing with distilled H,0O, was 7.57.

Samples were prepared in precombusted, 12-mm OD Pyrex tubes.
Each tube contained 1 g dry substrate; 80 uL of a hexane solution
containing 2.5 ng/uL each of icosane and cholest-5-ene; and 2 mL of
D,0. Concentrations of compounds added to the marine clay samples
were ~1000-fold higher than those of analogous compounds (n-Csg,
cholesterol) native to the sediment. Tubes were evacuated to ~1 mbar
and sealed with a torch. Samples were incubated at 30° and 60°C in
heated, insulated chambers, and at 7° in a laboratory refrigerator.

Incubations were stopped after 35 and 88 d. Samples were freeze-
dried, then extracted by threefold ultrasonication with 9:1 methyl
t-butyl ether (MTBE)/MeOH at room temperature. The entire proce-
dure was conducted in the Pyrex sample tubes, specifically to minimize
exposure to metal surfaces and high temperatures which might induce

exchange of hydrogen with any residual D,O. Extracts were treated
with acetic anhydride/pyridine at 65°C to prepare the acetate derivative
of androstanol, then analyzed by GC/MS on an Agilent 5973 MS with
electron-impact ionization. Compound abundances were quantified by
GC/FID by reference to a coinjected fatty acid methyl ester standard.

Icosane recovered from incubations on clean montmorillonite or
silica was further purified by two-fold, and in some cases three-fold,
urea adduction followed by silica-gel column chromatography to elim-
inate al p-enriched background components. D/H ratios were mea-
sured on aFinnigan-MAT 252 i sotope-ratio mass spectrometer coupled
to aVarian GC viaapyrolysis furnace operating at 1440°C (the system
is described in detail by Sessions et a., 2001). Coinjected n-alkanes
were used as isotopic reference peaks. Accuracy, estimated as the
root-mean-square error of 15 n-alkanes in an external standard, aver-
aged 5.8%o during the period of these measurements. This relatively
poor accuracy appears related to the presence of highly p-enriched
background components in some of the samples (Sessions, 2001). To
reduce Hj-related errors, peak heights for analytes and coinjected
standards were matched to within ~30%. The value of the H;-factor
used to correct data was determined by measuring a series of n-alkanes
of varying peak height (Sessions et a., 2001).

2.2. Petroleum Samples

Five bitumen and oil samples from host rocks ranging in age from
340 to 1640 Ma were obtained from archives of the Australian Geo-
logical Survey Organization (now Geosciences Austraia). Samples
were chosen to represent old, organic-rich materials that have experi-
enced as little thermal maturation as possible (Table 1). Samples were
extracted and separated into silicalite adduct (containing n-alkanes and
some monomethyl alkanes) and nonadduct fractions according to the
procedures described by West et al. (1990).

D/H ratios were measured on a Finnigan Delta+XL isotope-ratio
mass spectrometer (IRMS) coupled to an Agilent 6890 GC via the
Finnigan TC interface held at 1440°C. For silicalite adduct samples,
three fatty acid methyl esters (FAME's) were coinjected with the
samples, and served both as isotopic reference peaks (C,, and C5,) and
as an independent test of accuracy (C,, FAME). The accuracy of 6D
measurements was estimated on this basis as =3.8%o for adduct frac-
tions. Because chromatograms for the non-adduct samples were sig-
nificantly more crowded, standards could not be coinjected and an
external tank of H, was used as the isotopic reference. We estimate the
precision of isotopic analyses for the nonadducted samples at +10.2%o,
based on the pooled standard deviation of replicate analyses.

3. RESULTS

3.1. Incubations

Extracts of incubated samples yielded chromatograms with
numerous peaks representing compounds present at very low
concentrations but with very high D/H ratios (enrichments
>10,000%o0). Coelution of these components made it impossi-
ble to determine accurate values of 8D for individual com-
pounds in the extracts. Interferences from high-D products
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Table 2. Measured changes in 6D for icosane and calculated ex-
change half-times.

Temp Time AD N tys
Sample? (°C) (days) (%0)° (%0)° (Kyrg)®
M7-35 7 35 53 6.4 >66.6
M7-88 7 88 11.8 7.2 90.9
M30-35 30 35 46.0 30.0 9.27
M30-88 30 88 22.8 7.2 47.0
M60-35 60 35 204 12.9 209
M60-88 60 88 53.7 23.0 20.0
S7-35 7 35 1.9 7.2 >59.2
S7-88 7 88 3.1 6.4 >168
S30-35 30 35 11.8 7.2 36.1
S30-88 30 88 -39 6.8 >158
S60-35 60 35 52.1 6.4 8.19
S60-88 60 88 88.0 9.5 12.2

2 Sample numbers beginning with ‘M’ were incubated on montmo-
rillonite, those beginning with ‘S were incubated on silica

b Change in 8D value, calculated as 6D(final) — 8D (initial), where
&D(initial) = —54.6%o.

¢ Standard deviation of AD estimated from repeated measurements
of samples and coinjected standards (Sessions, 2001).

4 Exchange half-life, calculated using equation 2 and assuming F, =
1.0. Numbers marked with ‘>’ are minimum estimates for samples
with no significant exchange.

could be eliminated only for the n-alkane fraction, which could
be purified by urea adduction before isotopic analysis. Thus no
IRMS data are reported for cholestene or its transformation
products. Similarly, no IRMS data are reported for icosane
incubated on the marine clay substrate because of the possibil-
ity of in-situ generation of strongly D-labeled icosane.

Hydrogen-isotopic compositions of icosane incubated on
montmorillonite or silica appear in Table 2. Changes in 6D
values ranged from undetectable in most of the 7°C samples to
a maximum of 88%. in the 88-d sample incubated on silica
With one exception, the recovery of icosane from these exper-
iments (before urea adduction) ranged from 47 to 100% and
was generally above 65% (data not shown). Recovery of ico-
sane in sample S30-35 was only 17%, and data from that
sample are not included in subsequent calculations. In general,
8D valuesincreased systematically with increasing temperature
and length of incubation, though several apparent reversals of
this pattern were observed (e.g., compare M30-35 and M30-88
in Table 2). Such differences are considerably larger than
analytical uncertainties.

3.2. Petroleum Samples

Values of 8D for straight-chain and isoprenoid hydrocarbons
extracted from oils and bitumens ranged from —57%. to
—145%o (Table 3). Values of 6D for homologous n-alkanes in
each bitumen increased smoothly with chain length, as has been
observed in n-alkanes from other reservoired petroleum sam-
ples (Li et a., 2001; Schimmelmann et al., unpublished data).
The range of available isoprenoids is too narrow to discern
whether a similar pattern exists for the isoprenoid hydrocar-
bons. Considering all samples, the mean difference in 8D
between each isoprenoid and the n-alkane of identical weight
(e.g., phytane and n-C,,) was 15.8 = 8.2%o, with the isopre-
noids enriched in D relative to n-alkanes.

Table 3. Compound-specific 6D values for petroleum samples.

Compound 1810% 306 376 357 364
n-alkanes
Cua —142 —80 —110 —137 —106
Cis —145 -84 -114 —140 -118
Cis —143 —88 —115 —137 —119
Cyy —138 —86 -117 -134 —118
Cis —137 —87 —107 —132 —-117
Cuo -132 -85 —-115 —132  —117
Cyo —128 —83 —107 —130 —112
Cy —123 -83 -111 -132 —113
C,, —121 —88 —105 —126 —112
Cos -112 -82 -95 —122 —104
Cou —115 —-92 —99 —126 —114
Cos —-117 -95 -135  -116
Cys —101 —80 —128 —108
C,, -93 —131 —108
Cyg -85 —126 —109
Cyo -89 -132 —110
Cy —64 —124 —110
Cay -75 -129  -110
Cs —-57 —127 —112
Regular isoprenoids
C,g (norpristane) -131 -71° -99 —-103 —100
C,q (pristane) —113 —63° -101 —107 -95
Cso (phytane) —107 —-108  -116  —103

2 Sample numbers are explained in Table 1.
b Coeluting with n-Cyg,
¢ Coeluting with n-C,.

3.3. Incubations of Cholestene

Cholest-5-ene (the input) and three closely related com-
pounds (cholest-4-ene, 20R-diacholestene, and 20S-diacho-
lestene) were recovered from incubations on all four sub-
strates. Relative abundances varied widely (Table 4). Under
conditions of acid catalysis cholest-5-ene undergoes a num-
ber of reactions, including double-bond migration to give
cholest-4-ene, backbone rearrangement to give diasterenes
(5,14-methyl-10,13-nor-cholest-13(17)-ene), and inversion
at C-20 (Table 4). Clean montmorillonite was the most
efficient catalyst for these rearrangments, followed by silica
then marine clay. Addition of XAD resin to montmorillonite
substantially decreased the rate of rearrangement. Reaction
rates were extremely fast, but yields did not vary as a
function of temperature or time (for example compare yields
of 20(R)diacholestene from montmorillonite samplesin Ta-
ble 4) and so appear not to be kinetically limited. The
distribution of D in isomers of cholestene and diacholestene
is described in detail elsewhere.

4. DISCUSSION

4.1. Taxonomy of Exchange Processes

The terms “ exchangeable”’ and “nonexchangeable’ hydrogen
are commonly used to distinguish between hydrogen that ex-
changes with ambient water on a timescale of seconds to days
(generaly O- or N-bound H) from that which does not (gen-
erally carbon-bound hydrogen, but also potentially O- or N-
bound H that is shielded from exchange by thetertiary structure
of molecules). This usage arose from practical considerations
during isotopic measurements of bulk organic hydrogen (Smith
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Table 4. Recovery of steroid compounds from incubation experi-
ments.?

Cholest-  Cholest-
Sample®  5-ene®  4-ene®

20R-dia- 20S-dia- Tota
cholestene®  cholestene”  sterenes

M7-35 4 2 48 31 85
M7-88 13 5 59 35 112
M30-35 4 2 51 35 91
M30-88 30 6 37 18 92
M60-35 7 3 51 28 90
M60-88 9 4 43 20 76
X7-35 83 9 26 12 130
X7-88 29 0 8 0 36
X30-35 75 7 15 6 102
X30-88 85 10 19 6 121
X60-35 91 6 9 2 108
X60-88 61 6 6 0 74
S7-35 42 23 23 0 87
S7-88 68 22 43 5 138
S30-35 45 18 14 0 v
S30-88 48 17 29 0 94
S60-35 60 1 24 9 104
S60-88 52 8 19 7 87
G7-35 55 15 12 2 85
G7-88 55 13 12 2 83
G30-35 89 21 10 1 121
G30-88 72 24 10 0 105
G60-35 60 25 27 4 115
G60-88 38 15 16 3 73

2Values expressed as percentage of cholest-5-ene originally added,
based on comparison of FID peak areas.

b sample labels follow the pattern (Substrate) (Temp. °C) — (Time,
days); M = montmorillonite, X = montmorillonite + XAD resin, S =
microcrystalline silica, G = marine clay.

¢ All R configuration at C-20.

9 Double bond position is A13(17).

and Epstein, 1970; Yapp and Epstein, 1982). However, such
broad generalizations can be misleading, particularly in their
implication that C-bound H is completely nonexchangeable. In
addition, the term “hydrogen exchange” has sometimes been
used by geochemists to encompass almost any process that
leads to changes in organic D/H ratios over time. This broad
usage obscures a great diversity of chemical mechanisms, and
confuses the discussion and comparison of experimental re-
sults. To clarify the situation, we propose here a systematic and
specific terminology for chemical mechanisms leading to the
incorporation of exogenous H in organic molecules. While the
examples provided here illustrate individual processes, many
chemical and geochemical phenomena, such as the rearrange-
ment of sterenes to diasterenes or the thermal maturation of
kerogen, can exhibit characteristics of multiple processes.
Conceptually, chemical mechanisms capable of altering D/H
ratios can be grouped into five categories, indicated schemati-
caly in Figure 1. Of these, three involve no change in the
number of H atoms in the molecule and might commonly be
described as exchange reactions. Differences among these pro-
cesses are, however, very significant. The broad category of
exchange is thus further subdivided into several more specific
processes. The first of these is ‘pure exchange,’ a term used
here to describe a chemical reaction in which the reactants and
products are chemically and structurally (but not isotopically)
identical. Conceptually, pure exchange involves the replace-
ment of a single hydrogen with no effect on the rest of the

H
HO
K
H
5 H
‘— =z 3
HO HO

/o N

Fig. 1. Examples of chemica reactions potentially leading to
changes in D/H ratios. (1) pure exchange, (2) exchange accompanying
stereochemical inversion, (3) rearrangement, (4) hydrogen addition,
(5) hydrogen loss. Hydrogen positions affected by each reaction are
shown on the product.

molecule. For C-bound H, the process requires abstraction and
replacement of a hydrogen with no accompanying isomeriza-
tion (Fig. 1). Exchange at a chiral carbon atom, such as C-3in
cholesterol, may occur by the same mechanism and result in
inversion of the chiral center. Since sterecisomers are com-
monly regarded as distinct structures, we distinguish this pro-
cess as stereochemical exchange (Fig. 1).

A subtle question arises as to the identity of exchange at a
tetrahedral carbon center bonded to four unique substituents,
two of which are isotopes of the same element. For example, if
C-2 in cholesterol contains both D and H as substituents it is
distinct from its mirror image, and exchange of either hydrogen
atom can lead to inversion of the tetrahedral center. Neverthe-
less, the distribution of isotopesis usually not considered when
classifying a carbon atom as chiral, so we describe such a
process as pure exchange while recognizing that most features
of the reaction are identical to those in stereochemical ex-
change.

The final subcategory of exchange processes, constitutional
exchange, includes al reactions in which the reactant and
product are constitutional isomers (Moss, 1996). In such cases,
the molecular structure changes but the chemical formula does
not. Relevant reactions may involve double-bond migration
(Fig. 1), methyl shifts, and carbon backbone rearrangements.
These reactions fall outside the standard definition of isotope
exchange reactions (Muller, 1994) but do lead to the incorpo-
ration of exogenous H, often at multiple positions.

A process is termed addition when the net inventory of
hydrogen increases. Addition processes include the hydrogena-
tion of double bonds (Fig. 1), aswell as cleavage reactions such
as decarboxylation of organic acids. Hydrogen elimination,
such as in the dehydration of alcohols (Fig. 1), is frequently
accompanied by a kinetic isotope effect that fractionates hy-
drogen isotopes in the product. Even in the absence of isotope
effects, significant intramolecular isotopic ordering may exist,
so that the loss of hydrogen at a specific position can change the
average isotope ratio of the molecule.
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4.2. Mathematics of Hydrogen Exchange

Exchange between an organic molecule and water can be
represented by

RH + HDO < RD +H,0 (1)
Assuming that H,O is present in excess, the rate of reaction 1

is proportional to the concentration of RH. The approach to
equilibrium is described by

=e™" @)

where F isthe fractional abundance of D [= D/(D + H)] in the
organic molecule initialy, at timet, and at equilibrium, and k
is the reaction rate constant (Roberts and Urey, 1939; Wedek-
ing and Hayes, 1983; Criss, 1999). Eqn. 2 is exact, but when
working with organic samples and water containing a natural
abundance of D (F~ 10~ %), the isotope ratio (R) or 8D value
can be approximately substituted for F. Importantly for systems
in nature, the value of the equilibrium fractionation factor ()
must be known to determine the value of F.. In the special case
of experiments involving exchange between organic hydrogen
with a natural abundance of D and heavy water with F~ 1, the
equilibrium fractionation can generally be ignored and F, as-
sumed to be unity.

The left side of Egn. 2 has a value of one initialy, ap-
proaches zero at isotopic equilibrium, and can be evaluated for
any t if k is known. Conceptually, that value represents the
fraction of hydrogen atoms that remain unexchanged. By rear-
ranging Eqgn. 2, the isotopic composition of organic H can aso
be evaluated for any time. On geological time scales, it is
frequently more convenient to think in terms of an exchange
half-time (t,,, = (In 2)/k) rather than a rate constant. After one
half-time, the difference between 8, and &, is half the initial
value. After two half times it is one quarter, etc.

Two complications arise in regard to Egn. 2. First, mineral
surfaces frequently act as catalysts for exchange reactions in
natural samples (Alexander et a., 1981). The overall rate
constant for such reactions will generally be first order in both
the reactant (organic substrate) and the availability of catalytic
sites. The rate of exchange will also depend on competition by
other species for catalytic sites. Extension of laboratory exper-
iments to natural settings is thus difficult, both in predicting
absolute rates of exchange and in extrapolating initial exchange
rates to longer timescales.

Second, the variables in Egn. 2 are specific to each hydrogen
position For example, in n-alkanes the methyl and methylene
hydrogens will exchange at significantly different rates, and
will approach different equilibrium isotopic compositions.
Moreover, each position—potentially including methylene po-
sitions that are otherwise equivalent— can start with a different
isotopic composition as a result of intramolecular isotopic
ordering (e.g., Monson and Hayes, 1980). Thus for virtualy all
organic molecules larger than ethane, it is strictly incorrect to
apply Eqgn. 2 to an entire molecule using average values of k, F;,
and F.. Instead, the isotopic composition of each hydrogen
position must be calculated independently as

-50 t t } t
methylene H e
\/
4 ; L
/
q butane /
£ 4504 (average K) ; 1
[a] K
73] ~  butane
 (individual K's) [
"""""""""""" methyl H |
-250 } v} v} vt
-50 t t t t
methylene H
oo T T T -
butane // |
= (average K) X --------
& 1504 / 1
a 7
73
] \\ butane |
’,." (individual K's)
| methyl H
~250 +——rrrrr——rrrrr——rrrrr—r—rrrrd
10 100 1,000 10,000 100,000

Time (years)

Fig. 2. The progress of hydrogen exchange for n-butane molecules
with hypothetical exchange half-times of 1000 yr (four methylene
hydrogens; dashed line) and 10,000 yr (six methyl hydrogens; dotted
line). The gray solid line represents exchange of the bulk molecule
calculated from Eqgn. 4 using separate rate constants for each position,
while the black solid line represents that calculated using Eqgn. 2 with
the weighted-average rate constant (i.e., 6400 yr). In the upper graph,
the initial and equilibrium isotopic compositions of methyl and meth-
ylene hydrogens are the same; in the lower graph, they differ between
the two groups.

F, = (°F; — "Foexp( — ki) + F, 3

where the left superscript denotes a variable that refers specif-
ically to hydrogen position p in the molecule. The average
isotopic composition of the molecule can then be calculated by
summing over al individual hydrogen positions

Fo= TS [CF, — Foexp( — °K1) + °F.]

p=1

il

et

S|

> [(°F — PFIexp(—"kt)]  (4)
p=1

where n is the number of hydrogen atoms in the molecule.

A hypothetical exampleis provided in Figure 2 for n-butane,
in which the hydrogens al belong to one of two groups of
equivalent positions (i.e., methylene versus methyl), and as-
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suming that the two positions undergo exchange with (again
hypothetical) half-times of 1000 and 10,000 yr, respectively. In
this example, 8 values have been substituted for F in Egns. 2
and 4. The top graph represents the case in which both methyl
and methylene hydrogens have the same initial and equilibrium
isotopic compositions. In the bottom, both §; and 6, differ for
the two positions. The regular sigmoidal curves represent ex-
change at individual methyl and methylene hydrogen positions
and, between those extremes, a hypothetical molecule with all
H positions having t,,, = 6400 yr, i.e., the weighted mean of
the two rate constants. The distorted sigmoid displays the
rel ationship between 6D and t for the molecule calculated using
Egn. 4 and accounting for the different rate constants at each
position.

Asapractical matter, it isnot generally possible to determine
rate constants for every hydrogen position in even one com-
pound, let alonein many different compounds. Since geochem-
ists are often interested in identifying molecules that are not
affected by exchange, Figure 2 suggests an expedient. Using
average values of §,, 8, and k in Eqn. 2 will accurately predict
the exchange behavior of the bulk molecule over short time
scales, and will provide a conservative estimate regarding the
onset of exchange. Conversely, values of k observed for the
bulk molecule in short-time experiments, such as those pre-
sented in Table 2, will be estimates of weighted-average rate
constants. On the other hand, using average values to estimate
the time needed to reach equilibrium can result in errors of
nearly an order of magnitude.

4.3. Equilibrium | sotope Effects

Exchange of hydrogen between an organic molecule and
water will eventually lead to isotopic equilibrium. The D/H
ratios of the products will then differ by an amount governed by
equilibrium isotope effects. It is impossible to make quantita-
tive assessments of hydrogen exchange based on 6D values if
the presumed end point of exchange is not known, an important
point that is sometimes overlooked. Existing data regarding
equilibrium fractionations are thus compiled here.

In principle, equilibrium isotope effects can either be directly
measured or predicted from theoretical calculations. Laboratory
experiments suffer from the fundamental difficulty of achieving
hydrogen-isotopic equilibrium while simultaneously limiting
other reactions of the organic molecule. Two experimental
studies (Thomson, 1960; Meloche et al., 1977) used isomerase
enzymes to catalyze exchange reactions at 35°C and thereby
measure equilibrium fractionations (Table 5), but no data are
available to extrapolate these results to other temperatures.
Calibrations of equilibrium fractionations based on analyses of
geologic samples have not been reported.

Theoretical calculations of equilibrium isotope effects have
been based on spectroscopic data (Knyazev et a., 1992). That
approach produces estimates of fractionation in the vapor phase
which are described by

INapp = INBasa — INBgijg )

where « is the equilibrium fractionation factor defined as the
ratio of isotopic ratios (Ra/Rg) for compounds A and B, and 8
isthe ratio of reduced partition functions for each compound in

Table 5. Equilibrium fractionation factors measured experimentally
between C-bound H and water.

Structure® Aop® Source of Estimate
C-CHg4 0.84 Experiment, Meloche et al. (1977)
C-CH,-C 0.93 Experiment, Thomson (1960)
C-CH,OH 1.00 Calculation, Meloche et a. (1977)
C-CHOH-C 1.10 Calculation, Meloche et a. (1977)
C-CH(OH), 1.18 Calculation, Meloche et a. (1977)

@ Fractionation factor is specific to the hydrogen position in bold

type.
b Equilibrium fractionation factor, defined as Ry/R,, a 35°C in the
liquid phase.

its monodeuterated (denoted by an asterisk) versus undeuter-
ated forms. To a first approximation, gas-phase fractionation
will differ from that in the condensed phase by an amount equal
to the difference in vapor pressure ratios for the isotopol ogues
of each molecule

INapp(l) — INaae(g) = INPya: — INPggs (6)

(see Knyazev et d., 1992, egn. 6). Table 6 compiles values for
ag(l), the equilibrium fractionation factor between organic H
and water in the liquid phase at 27°C, calculated from Egns. 5
and 6 with data from sources noted in the footnotes to Table 6.

This approach ignores isotope effects on solubility and ad-
sorption, which could be important for sedimentary organic
matter. Nevertheless such uncertainties are likely small relative
to those in calculated values of B for the organic compounds,
which dominate the overall uncertainty in the reported fraction-
ation factors. The uncertainties reported by Knyazev et a. (up
to 100%0 1o) are quite large, and highlight the need for more
accurate estimates. Comparisons of experimental (Table 5) and
theoretical (Table 6) estimates agree quite well for methyl and
methylene hydrocarbon positions, but very poorly for methyl
acohols. Assuming that the values for hydrocarbons are accu-
rate, we can then predict that at equilibrium icosane will be
depleted in D by ~70%. relative to water (« = 0.837 for 6
methyl hydrogens and «=0.944 for 36 methylene hydrogens).
Similar calculations indicate that cholestane would be depleted
by ~160%. and phytane would be depleted by ~110%.

4.4. Rates of Hydrogen Exchange

Many different techniques have been used to estimate rates
of hydrogen exchange. In general, they involve measuring the
incorporation or loss of isotopic labels (either deuterium or
tritium) by scintillation counting, conventional and isotope-
ratio mass spectrometry, and NMR. In this section we summa-
rize available data—both from new experiments described
above, and from literature reports—that are relevant to hydro-
gen exchange in ageol ogic context. Measurements of exchange
in the presence of rare metal catalysts, strongly acidic condi-
tions, organic solvents, etc. have not been included, nor have
studies of exchange of oxygen- or nitrogen-bound hydrogen.

4.4.1. Deuterium label experiments

The use of isotope-ratio mass spectrometry to analyze mol-
ecules that have been chemically converted to H, provides a
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Table 6. Calculated equilibrium fractionation factors between C-bound H and water.

Structure* In Bre? IN(Pryre)® aom’® o
Alkanes
CH, 2.26 (0.02) —0.0070¢ 0.692 0.042
C,Hg 2.36 (0.07) —0.0070° 0.765 0.099
CH;-CH,-CH4 2.45 (0.06) —0.0070¢ 0.837 0.078
CH;-CH,-CH4 2.57 (0.09) —0.0072° 0.944 0.102
CgH 1, (cyclohexane) 242 (NA) —0.0072° 0.812 0.119
(CHj)s-CH 2.42 (0.06) —0.0072° 0.812 0.080
Alkenes
CH_=CH, 2.33(NA) —0.0072° 0.743 0.130
CgHg (benzene) 2.38(0.06) —0.0042 0.783 0.083
CH,=CH-CH=CH, 2.09 (NA) —0.0072° 0.584 0.165
CH;-CH,-O-CH4 2.38(NA) —0.0070° 0.781 0.124
CH4;-CH,-O-CHj4 251 (NA) —0.0072° 0.889 0.109
CH;-CH,-O-CH, 245 (NA) —0.0070° 0.837 0.115
Carbonyl compounds, alcohols, amines
CH;-CHO 2.30(0.07) —0.0076° 0.721 0.105
CH;-CO-CHg4 2.36 (0.08) —0.0036" 0.768 0.112
CH;-CO-O-CH,4 2.38(0.13) —0.0070° 0.781 0.180
CH;-CO-O-CH,4 2.49(0.13) —0.0070¢ 0.872 0.161
CH;-CO-OH 2.39(NA) —0.0070° 0.789 0.122
CH;-OH 2.40 (.05) —0.0070¢ 0.797 0.070
CH4-NH, 2.39(NA) —0.0070° 0.789 0.122
Halogens
CH,CI 2.36 (0.04) 0.0109 0.779 0.059
H,C=CCl, 2.34(0.07) 0.0109 0.764 0.099
cis-HCIC=CCIH 2.31(0.07) 0.0109 0.741 0.102
trans-HCIC=CCIH 2.28 (0.07) 0.0109 0.719 0.105

Fractionation factor is specific to the hydrogen position in bold type.

@ Ratio of reduced partition functions for the organic compound, from Knyazev et a. (1992). Uncertainty is given in parantheses, and where not

available a value of 0.09 is assumed for calculation of overall uncertainty.

b \apor pressure isotope effect for the organic compound, sources of data are indicated by footnotes.
¢ Equilibrium fractionation factor for condensed phases at 27°C, calculated from Egs. 5 and 6 using data in this table plus InBponz0 = 2.55

(Knyazev et a., 1992) and In(Py,0mp0) = 0.0704 (van Hook, 1968).

dValue for 2,2-dimethylpropane at 10°C reported by Hopfner (1969).

¢Value for cyclohexane at 25°C reported by Kiss et a. (1972).
fValue for benzene at 20°C reported by Kiss et a. (1972).
9 Value for toluene at 25°C reported by Kiss et a. (1972).

" Value for acetone at 20°C reported by Hopfner and Hostermann (1976).

' Value for chloromethane at —23°C reported by Hopfner (1969).

very high sengitivity to changes in isotopic composition. When
organic matter with a natural abundance of D is equilibrated
with D,0, this tranglates into a very high sensitivity to hydro-
gen exchange. The natural abundance of deuterium is
~ 0.015% and the D/H ratio can be determined with arelative
precision better than 1%. Incorporation of 1.5 ppm D is thus
readily detectable and, if it occurred over the course of amonth,
the corresponding rate constant would be 1.8 X 10~ °yr—* (t,,,
= 38,000 yr). The price for this sensitivity is the inability to
measure rates for specific hydrogen positions, because of the
conversion to H, for analysis. Observing the loss of a D label
could provide such information, but analysis of highly deute-
rium-enriched samples is problematic, particularly in the pres-
ence of a helium carrier gas.

Koepp (1978) first used offline combustion/reduction cou-
pled with isotope-ratio mass spectrometry (IRMS) to measure
the deuterium content of test compounds and petroleum frac-
tions incubated with D,O (Table 7). No catalysts were added to
the experiments, and the observed exchange rates were very
slow. Thus they probably represent a lower limit for what can
be expected in natural environments. Extrapolation of the data

in Table 7 to 100°C indicates exchange half-times of 107 and
10° yr for the saturated and aromatic fractions of petroleum
(Koepp, 1978). These half-times are 3 to 4 orders of magnitude
faster than for the model compounds n-hexane and toluene,
possibly indicating the presence of more reactive compoundsin
the crude, saturated and aromatic fractions.

In contrast, exchange half-times determined for icosane on
mineral substrates by our new, compound-specific analyses
range from ~10,000 yr at 60°C to ~100,000 yr at 7°C (Table
7 and Fig. 3) Much of the increase in exchange rates relative to
those reported by Koepp (1978) can likely be attributed to the
presence of mineral catalysts. Still, these rates indicate that
exchange in icosane should essentialy be complete after a
million years at any temperature above 0°C, a prediction which
does not fit with available geochemical data (Andersen et a.,
2001; Li et al., 2001). A possibility that remains to be inves-
tigated is whether catalytic mineral surfaces might be masked
by the presence of polar organic material, thus explaining the
lower apparent rates of exchange in natural sediments. Catal-
ysis of hydrogen exchange by enzymes (e.g., Meloche et al.,
1977) in natural sediments would serve to make the sterilized
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Table 7. Exchange half-times derived from GC/MS and IRMS measurements of deuterium incorporation.
Analyte Substrate Temp (°C) H Position ty2 (yrs) Reference®
methane 630,000
n-hexane 87,000
cyclohexane 140,000
toluene none® 200 al 350,000 1
saturates 7,700
aromatics 200
NSO compounds 0.99
bulk oil 14
methane 8,700
n-hexane 1,700
cyclohexane 8,700
toluene none® 240 all 23,000 1
saturates 870
aromatics 28
NSO compounds 0.22
bulk oil 38
7d >67,000
7 91,000
mont.® 30 all 9,300 2
icosane 30 47,000
60 21,000
60 20,000
7 >59,000
7 >170,000
icosane silica 30 All na 2
30 >158,000
60 8,200
60 12,200
pristane mont.® 160 1° 21 3
2° 15
2,6,10-trimethylundecanoic acid a-carbon 0.62
all 57
3,7,11-trimethyldodecanoic acid mont. 160 a-carbon 0.24 4
all 23
4,8,12-trimethyltridecanoic acid a-carbon 0.21
all 23

2(1) Koepp (1978); (2) this study; (3) Alexander et al. (1984); (4) Larcher et a. (1986).
b Samples were incubated with D,O in Pyrex tubes, with no mineral substrate added.

¢ SAz-1 montmorillonite.
9 Replicate temperatures represent 35 day and 88 day experiments.

¢ Montmorillonite, treated to give Al as sole interlayer cation, then saturated with D,O.

laboratory exchange experiments anomalously slow, rather
than fast, and so cannot explain this inconsistency.

The activation energy indicated by the data (proportiona to
the slope in Fig. 3) is lower than in all other experimental
measurements of hydrogen exchange, including those examin-
ing aromatic hydrogen. A possible cause of anomalously fast
exchange is that a small number of highly active catalytic sites
exists in the mineral substrates, resulting in relatively quick
exchange in a small subgroup of molecules. The “average’ rate
of exchange (i.e., the experimentally measured rate constant)
early in the experiment will then be similar to that in the
fastest-exchanging molecules, as illustrated in the example of
Figure 2. Such uncertainties underscore the difficulty of using
highly sensitive analytical techniques to measure very small
increments of exchange.

Measurements of D-NMR or mass spectra for intact mole-
cules (i.e., without conversion of the analytesto H,) provide the

ability to measure rates at specific molecular positions, but with
greatly reduced sensitivity towards changes in deuterium con-
tent. Alexander et a. (1984) equilibrated pristane with Al-
montmorillonite that had been vacuum-dried then rehydrated
with D,O. The incorporation of ~40% D into pristane was
estimated via GC/MS, and proton NMR was used to assess
relative deuterium abundances at different molecular positions.
They estimate exchange half-times at 160°C of 2.1 and 1.5 yr
for methyl and methylene positions of pristane, respectively
(Table 7). These values are much slower than half-times deter-
mined for naphthalene under similar conditions (below), con-
firming that exchange of aromatic hydrogen is significantly
faster than in aiphatic compounds.

Larcher et a. (1986) used GC/MS to measure the incorpo-
ration of D into isoprenoid acids at 160°C after incubation on
D,0O-hydrated montmorillonite. They report the relative abun-
dances of mono-, di-, and trideuterated molecules both for the
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Fig. 3. Reaction half-times for hydrogen exchange in icosane incu-
bated on clean montmorillonite (circles) or microcrystalline silica (tri-
angles). Filled symbols indicate minimum estimates of exchange half-
time based on no measured change in 6D. Data for silica are offset
dlightly to the right for visual clarity.

molecular ions and for a rearranged fragment ion that includes
the carboxyl group and «-carbon. From their data, we have
calculated hydrogen exchange rate constants (Table 7) using
Egn. 2 by assuming F; = 0.000124 (corresponding to 8D
= —200%o0), F, = 1.0, and that all of the deuterium in the
rearranged ion is located on the a-carbon atom. As noted by
Larcher et al., exchange at the «-carbon is very rapid, while
exchange in the hydrophobic tail is even slower than for
pristane incubated under identical conditions. They hypothe-
sized that the presence of a polar carboxyl group preferentially
orients the molecule on the highly polarized clay mineral
surfaces, and thus effectively deactivates the aliphatic tail with
respect to hydrogen exchange.

4.4.2. Tritium label experiments

Robert Alexander and coworkers pioneered the study of
hydrogen exchange in hydrocarbons over 20 years ago by
employing molecules labeled with tritium at specific molecular
positions. The loss of tritium due to hydrogen exchange was
monitored via scintillation counting. As for GC/MS measure-
ments, the approach provides information about exchange at a
specific molecular position but with relatively poor sensitivity.
For typica tritium concentrations leading to count rates of
~10® dps, uncertainties in the measurement of specific activity
can amount to half a percent or more. Accurate determination
of rate constants thus requires experimental conditions that
produce exchange over a period of days to weeks, not millen-
nia. Such conditions include activated substrates, high temper-
atures, and potent catalysts.

The results of Alexander et al. (1981, 1982) are summarized
in Figure 4. Tritiated naphthalene and 2-methoxynaphthalene
were incubated on a variety of substrates, including powdered
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Fig. 4. Reaction half-times for hydrogen exchange in naphthalene
incubated on various substrates. All data are from tritium label exper-
iments by Alexander et a. (1981, 1982). Symbols represent:
[1-*H]naphthalene on Na-bentonite (solid squares), [2-*H]naphthalene
on Na-bentonite (solid diamond), [1-*H]naphthalene on Al-bentonite
(%), [3-°*H]2-methoxynaphthalene on Na-bentonite (open sguares),
[1-3H]2-methoxynaphthalene on Na-bentonite (open diamond), and
[1-3H]2-methoxynaphthalene on powdered shale (open circles). Data
for 2-methoxynaphthalene have been converted to naphthalene equiv-
alents using the ratio of rate constants of 4800:1 measured by Alex-
ander at al. (1982). Note that the y-axis is logarithmic.

shales and bentonite clay. Where 2-methoxynaphthalene was
studied, the resulting rate constants have been converted to
equivalent values for naphthalene in Figure 4 (see figure cap-
tion) for ease of comparison with naphthalene data. The results
show clearly that the rate of exchange in naphthalenes is
affected by 1) temperature; 2) the surface acidity of minera
catalysts; and 3) the presence of electron-donating substituents
on the aromatic ring system. For clay minerals, the surface
acidity is primarily afunction of mineralogy and the identity of
interlayer cations, with Na producing the weakest acidity.

Replicate incubations of 2-methoxynaphthalene on a variety
of shale samples at a constant temperature produced t,,, values
ranging over 2 orders of magnitude (Fig. 4). Rates of exchange
were not correlated with the concentration of organic carbon in
the shale. Control samples lacking any mineral substrate pro-
duced no measurable exchange. These results demonstrate the
important—and potentially variable—influence of mineralogy
on exchange rates in natural samples.

Extrapolation of rates measured at temperatures of 177—
275°C indicates exchange half-times for naphthalene of ~4500
yr at 50° and ~25 yr at 100°C on dry Na-bentonite (Alexander
et a., 1982). These values are similar to the fastest (naphtha-
lene-equivalent) rates for methoxynaphthalene incubated on
dry, crushed shales. Alexander et al. (1982) further showed that
the effective surface acidity of dry clay is several times that of
wet clay. Their results for naphthalene therefore represent
maximum rates of exchange that should be expected for aro-
matic compounds under natural conditions.
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4.4.3. Measurements of sedimentary lipids

The ability to estimate hydrogen exchange in geologic sam-
ples has been limited, until very recently, by the ambiguity
inherent in measuring D/H ratios of bulk organic matter. Two
recent reports using compound-specific measurements are now
available, in addition to our new data. Andersen et a. (2001)
measured 8D values of n-docosane and 5a-cholestane from
organic-rich marls deposited in the Mediterranean Sea during
the Messinian (~6 Ma). Hoping to select analytes minimally
affected by exchange, they examined only compounds ex-
tracted from the sulfur-bound organic fraction. With one ex-
ception, they found that the difference in 8D between those two
compounds was consistently 55-90%. (cholestane has more
negative 8D values). This offset is indistinguishable from that
observed between n-alkanes and sterols in al modern plants
observed thus far (Sessions et a., 1999), so Andersen et al.
(2001) concluded that the differencesin 6D are consistent with
little or no exchange having occurred over the last 6 million
years.

Yang and Huang (2003) measured 6D values of n-alkanes,
n-alcohoals, and n-acids preserved in fossil leaves and surround-
ing sediments from the Miocene (15-20 Ma) Clarkia Forma-
tion, aswell as from modern relatives of the fossil trees. Values
of 8D were also measured for pore waters extracted from
sediments surrounding the fossils, and for surface waters near
the modern trees. The authors argue that hydrogen exchange in
these samples was negligible based on the following lines of
evidence: 1) large variability, up to 120%o, in 6D values of
individual lipids extracted from the same sample, and of lipids
extracted from closely spaced samples, 2) large offsetsin 8D of
~100%. between organic hydrogen and water, and 3) similar
organic/water differences in 8D for the fossil and modern
analogs.

It appears likely that hydrogen exchange is indeed minimal
in the compounds examined by both of these studies. However,
basing such conclusions on the relative D/H ratios of organic
molecules and water without considering the magnitude of
equilibrium fractionations is ambiguous. For example, as dis-
cussed above icosane will be depleted relative to water by
~70%0 at equilibrium at 30°C. This value is close to the
~100%o offset measured by Yang and Huang (2003). Simi-
larly, 8D values for docosane and cholestane, both in isotopic
equilibrium with water having 6D = 0%., would be roughly
—70%0 and —160%o., respectively. The difference between the
two of ~90%o is indistinguishable from those measured by
Andersen et a. (2001). In both cases therefore, the large shifts
in 8D values between adjacent sedimentary layers (Andersen et
a., 2001) and between homologous n-alkanes (Yang and
Huang, 2003) provide much more robust evidence for the lack
of exchange.

While demonstrating a lack of exchange can be quite diffi-
cult, demonstrating the occurrence of exchange is straightfor-
ward. Acyclic isoprenoid hydrocarbons extracted from several
ancient bitumen and petroleum samples (Table 3) have 6D
values that are identical or dightly more positive than those of
coexisting n-alkyl hydrocarbons. Assuming that biosynthetic
processes have always produced isoprenoid and n-alkyl lipids
with distinctly different values of 6D (Estep and Hoering, 1980;
Sessions et a., 1999, 2001; Chikaraishi and Naraoka, 2003)

these data represent compelling evidence for isotopic exchange.
An alternative explanation might be that isotopic fractionation
(due to kinetic, not equilibrium isotope effects) of isoprenoids
during thermal maturation leads to an increase in the D/H ratios
of those compounds. But to produce virtualy identical 6D
values in isoprenoid and n-alkyl molecules from every sample,
regardless of age and maturity, would require extreme coinci-
dence and is implausible.

Similar evidence for exchange is observed in reservoired oils
from the Otway Basin of Australia (Schimmelmann et a.,
unpublished data) and from the Williston Basin of Canada (Li
et al., 2001). Calculated equilibrium fractionation factors indi-
cate that when phytane and icosane—representative examples
of the isoprenoids and n-alkanes reported in Table 4—equili-
brate with the same water at 30°C, phytane should become
depleted in D by ~40%o relative to icosane. The fact that this
pattern is not observed might indicate that isotopic equilibrium
was not reached, or that it was reached at a higher temperature
where fractionations are smaller. It is doubtful, however, that
differences of 40%. are significant given the uncertainties re-
ported in Table 6.

The mechanisms and timing for exchange in these ancient
samples are till unknown. Schimmelmann et al. (2001) have
shown unequivocally that water H is incorporated into the
hydrocarbons generated during hydrous pyrolysis of kerogen,
so catagenesis may be partially responsible. On the other hand,
75 samples from 4 separate Australian petroleum basins show
no correlation between 8D values of petroleum alkanes and
formation waters (Schimmelmann et al., unpublished data).
This suggests that wholesale exchange with environmental
water is not occurring, although minor amounts of exchange
cannot be excluded. A possible reconciliation of theseresultsis
that catagenesis involves extensive scrambling of hydrogen
between organic compounds, but little exchange with water.

At the opposite end of the time spectrum, Hebting et al.
(2003) have shown that the thiol analog of phytol, a possible
intermediate in phytol diagenesis, readily participates in free-
radical reactions with the potential for constitutional exchange
of at least 11 out of 42 hydrogens. More generally, any process
involving allylic thiols, which may be intermediates in the
formation and decomposition of S-linked macromolecules, has
a high likelihood of H exchange. Because of rapid isomeriza-
tion around the tertiary carbon centers in isoprenoid com-
pounds, this mechanism is likely to cause more extensive
exchange in isoprenoids than in n-alkyl lipids. Such diagnetic
reactions are conceivably responsible for some of the similarity
in 6D values between ancient isoprenoid and n-alkyl hydrocar-
bons, although the magnitude of theisotopic shift indicates they
are not solely responsible.

4.5. Stereochemistry as a Proxy for Hydrogen Exchange

The preceding sections outline numerous difficulties in as-
sessing the extent of hydrogen exchange in sedimentary or-
ganic compounds on the basis of isotopic data. Given the
mechanistic similarities between stereochemical and pure hy-
drogen exchange, we consider here the possibility that stereo-
chemical configuration can serve as a proxy for hydrogen
exchange. Such an approach would be convenient because most
natural products are synthesized with very specific and well-



Isotopic exchange of carbon-bound hydrogen 1555

T (°C)
250 200 150 100°C
L 1 1 1
1 | T
808" 1
o
) ocQ? I
104+ X +
o i
()]
Q
a E
9 .
L 0-- 1
10 © 8
18
1 o
po®
e S Y E—
1.8 22 2.6 3.0
1000/T (K"

Fig. 5. Rates of stereochemical inversion at C-6 and C-10 in pristane
incubated on shale plus elemental sulfur (squares; Abbott et al., 1985),
at C-22 in hopanes incubated on shale (diamonds; MacKenzie et dl.,
1981), and in steranes (circles) and hopanes (triangles) extracted from
North Sea and Pannonian Basin sediments (MacKenzie and McKenzie,
1983). The x represents the rate of bulk hydrogen exchange estimated
for pristane incubated on shale (as described in the text).

known stereochemistry, and changes can be observed with
great sensitivity via established GC/M S techniques.

Two laboratory studies of stereochemica inversion in
pristane (Abbott et al., 1985) and hopanes (Mackenzie and
McKenzie, 1983) are available. Abbott et al. (1985) incubated
mesopristane with powdered shale plus elemental sulfur, which
was added as afree-radical initiator and possible catalyst. Over
the temperature range 224-261°C, they measured half-times
for stereochemical inversion ranging from 5.6 to 40 h (Fig. 5).
Mackenzie and McKenzie (1983) measured rates of stereo-
chemica inversion for hopanes produced during laboratory
maturation of shale at 203 and 253°C, and obtained results
approximately 2 orders of magnitude slower than those of
Abbott et a. (1985; Fig. 5). Mackenzie and McKenzie aso
measured stereochemical inversion a C-20 in steranes and
C-22 in hopanes obtained from Pannonian Basin and North Sea
shales. By reconstructing the thermal history of the sediments,
they were able to calculate rates of stereochemical inversion
over the temperature range 72-125°C (Fig. 5).

For comparison, we estimate the rate of hydrogen exchange
in pristane under similar conditions asfollows. From the data of
Alexander et a. (1984), a weighted-average exchange rate for
all pristane hydrogen of 4.5 X 10~ h~* on Al-montmorillonite
was calculated. Comparison of Al-montmorilloniteto shale was
based on naphthalene incubated on Al-montmorillonite at
120°C (k = 0.122 h™*; Alexander et al., 1982) and 2-me-
thoxynaphthalene on shale at 138°C (k = 0.15 h™*, the mean
value from Alexander et al., 1981, converted to naphthalene
equivalent of k = 3.0 X 107> h™* using the ratio for me-
thoxynaphthal ene/naphthalene of 4800). The ratio of rates on
Al-montmorillonite versus shale is then ~4070, leading to a

predicted average exchange rate for pristane (on shale, 160°C)
of 1.1 X 1078 h™* (t,,, = 7200 yr; Fig. 5).

The estimated rate of hydrogen exchange in pristane falls
midway between experimental and empirical measurements of
stereochemical inversion rates. The reasons for the very large
discrepancies are not known. Possibilities include the impor-
tance of different reaction mechanisms at higher temperatures
(and for hopanes versus pristane), the presence of catalysts in
experimental measurements, and difficulties in integrating the
thermal history of natural sediments. The results of Alexander
et al. (1984) indicate that bulk exchange in pristane should be
at least 10-fold faster than that at tertiary carbon centers alone
(stereochemical inversion involves only tertiary positions), be-
cause exchange at positions adjacent to tertiary centersis more
rapid than at the 3° carbon itself. This is consistent with the
pattern observed for natural sediments but not for laboratory
incubations. In summary, the possibility of using stereochem-
istry to gauge isotope exchange appears quite promising, but
much more quantitative information on the relationship is
needed.

4.6. Hydrogen Exchange during Structural
Rearrangements

Changes in molecular structure, such as the migration of
double bonds, provide an opportunity for constitutional ex-
change of hydrogen. They do not guarantee exchange. Thus
useful isotopic information may be available even in molecules
which do not retain the structure of their parent biomolecule.
New data regarding the incorporation of D by cholest-4-ene
and other isomerization products during incubations with D,O
alow us to assess this hypothesis directly.

Comparison of the deuterium labeling pattern for cholest-4-
ene (A% and cholest-5-ene (A®) reveals that the A* compound,
in which the double bond had migrated, incorporated ~0.5
deuterium atoms per molecule (Fig. 6).This distribution cannot
easily be reconciled with a simple ionic mechanism for the
isomerization of A® to A%, which should result in exactly one D
on every molecule of A%, We hypothesize that hydrogen from
C-4 is, with high probability, transferred to C-6 during double-
bond migration. Observed differences in D incorporation dur-
ing isomerization on various substrates can then be rationalized
as due to differences in the efficiency of this transfer by
different catalysts. For example, silica consistently produced
less A* than did montmorillonite, yet A* produced on silica
contains more D than that produced on montmorillonite. The
addition of XAD resin to montmorillonite dramatically de-
creased both the amount of A* produced, as well as the amount
of deuterium in the A* product.

Diacholestenes contained between 0 and ~12 D atoms per
molecule (Fig. 7).Thisis less than half the level of enrichment
observed for the same reaction occurring in deuterated acetic
acid with toluene-p-sulfonic acid by Akporiaye et al. (1981).
As with cholestene, montmorillonite produced a higher abun-
dance of diasterenes than did silica, but diasterenes produced
on silicaincorporated more deuterium. Up to 50% of diasterene
molecules produced on montmorillonite + XAD contained no
measurable deuterium (Fig. 7), a stunning result considering
the extent of rearrangement involved. An important question is
whether the presence of XAD inhibits exchange by altering the
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Fig. 6. Relative distribution of deuterium in cholest-5-ene (gray) and
cholest-4-ene (white) in four representative samples. Abundances are
normalized to give 100% for the sum of all isotopologues, and are
calculated from the m/z 370 fragment. Sample numbers are explained
in Table 4.

reaction mechanism, or whether organic hydrogen from the
polymer replaces water as the source of hydrogen during geo-
metric exchange. These different modes of action cannot cur-
rently be resolved, though their implications for preservation of
D/H ratios are quite different.

Incorporation of deuterium into the 20R and 20S diasterene
isomers was very similar, with the exception of those incubated
onsilica(Fig. 7). In silicasamples, the 20S isomer contains ~1
extra deuterium relative to the 20R isomer. Since the first
product of sterene rearrangement is the 20R diasterene (Kirk
and Shaw, 1975; Peakman et a., 1988), subsequent chiral
inversion should lead to the 20S isomer with one additional D.
Two alternative explanations are that 1) inversion at C-20 is
accompanied by exchange only on silica, or 2) exchange at
C-20 occurs during rearrangement on substrates other than
silica, hence no additional labeling is observed during subse-
guent inversion.

Our results for cholestenes and diacholestenes indicate that
for double-bond migration, carbon-skeletal rearrangement, and
possibly for stereochemical inversion, the number of hydrogens
which exchange during rearrangement is significantly less than
the number of C-H bonds that are broken. This exchange
‘efficiency’ ranged from ~50% for clean silica, the most ef-
fective catalyst for hydrogen exchange, to <10% for montmo-
rillonite + XAD resin. Our results also show that conditions
which produced substantial amounts of diasterenes resulted in
very little exchange (<1 atom) in the remaining parent cholest-
5-ene. These results lead to a number of predictions. First, the
absence of rearranged diasterenes in sediments is probably a
good indicator that little hydrogen exchange has occurred. Even
when diasteranes are present, exchange in primary sterols or
sterenes may be limited. Finadly, it is conceivable that under
certain conditions even highly rearranged diasterenes could
preserve the hydrogen-isotopic ratio of the parent biomolecule.

af—L L 11111
1 G60-88 |
0.24 — L
OU _IDD] - _I- IDU]DD]-E e — " Jp— -
1 1 1 1 1 1 1 1 1 | 1
M AN A L
0.2 M60-88 C
0.1 4 ” -
00 =111 ||]|]|DD|==|__I__1"_|—
| 1 1 1 1 1 1 1 1 1
8 oy Il !
g B $60-88 [
o . L
c
5 : L
< 0.1 L
g ] I] ” ” ” [
£ . [
g 00 ln_ln-ll]_l =T Dl T T T 1
IS N S N TN NN SR S S
i X6035 [
0.2 —
0.0 : IDDI IH[]IDDIDDI-E = T [
0 2 4 6 8 10

Deuterium Atoms in Molecule

Fig. 7. Distribution of deuterium in 20R- (gray) and 20S-diacho-
lestene (white) in four representative samples. Abundances are normal-
ized to give 100% for the sum of al isotopologues, and are calculated
from the nvz 355 fragment.

4.7. Hydrogen |sotope Ratios during the Diagenesis of
Sterols

A wide array of processes can lead to hydrogen exchange in
organic molecules. An important question concerns the net
effect of these processes on the D/H ratio of a molecule. Asan
example, we have estimated changes in the 8D value of cho-
lesterol through a series of hypothetical diagenetic reactions
(Fig. 8). These calculations are intended not as an accurate
prediction of isotopic compositions but as an illustration of the
types of changes that might be observed. The results also
highlight several opportunities that might be exploited. Sterols
were chosen as an example both because of the variety of
processes affecting them, and because of the source specificity
that can make sterol-based records so useful. The example also
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Fig. 8. Hypothetical example of changes in 6D of products derived
from cholesterol through a sequence of typical diagenetic reactions.
White symbols are acohols, gray symbols are akenes, and black
symbols are akanes. Circles are molecules with the 10,13-dimethyl
configuration of sterenes; diamonds have the 5,14-dimethyl configura-
tion of diasterenes.

helps to identify important gaps in our knowledge of hydrogen
exchange and fractionation processes.

The reactions shown in Figure 8, and their sequence, are
representative rather than definitive. The starting compound is
assumed to have 8D = —250%., typical of sterol compounds
measured by Sessions et al. (1999) for organisms growing in
seawater with 6D ~ 0%o. Because no detailed information is
available, we further assume that no intramolecular isotopic
ordering exists. Equilibrium fractionation factors from Table 6
were used to calculate the 8D of exchanged hydrogens.

Before any structural changes, exchange of hydrogen at C-2,
C-3 and C-4 is possible on short time-scal es because the acidity
of these positions is greatly increased by proximity to the
electron-withdrawing hydroxyl group. No information about
the rate of exchange at such positionsis currently available, so
we assume that all five hydrogens have exchanged in Figure 8.

One of thefirst diagenetic reactions affecting cholesterol will be
dehydration to form the A** diene, in which no hydrogen is gained
but a previoudy-exchanged hydrogen a C-4 is lost (de Leeuw et
al., 1989). Laboratory studies of the hydrogen isotope effect on
catalytic dehydration of acohols consistently measure values of
k. /ko~ 2, regardless of temperature (Dabbagh et a., 1991) and
catalytic substrate (Shi et al., 2002). The measured isotope effect
refersto hydrogen on carbon atoms adjacent to the hydroxyl group
and indicates that elimination of H—rather than loss of OH—is
the rate-limiting step. Assuming a similar isotope effect for the
therma dehydration of sterols, the hydrogen remaining a C-4
would be enriched in D by a factor of 2, equivaent to a 750%o
increase if the molecule started with 8D = —250%o.. Thisisavery
large effect, even when averaged across the 45 hydrogens in a
cholesterol molecule, and should be directly observable in com-
parisons of sterols and steradienes.

Next, selective hydrogenation of the A® position produces
the AS-sterene with the addition of two hydrogens. A recent

report by Andersen et al. (unpublished data) compared 8D
values for carotane, derived from B-carotene by the saturation
of 11 double bonds, with pristane to estimate the isotopic
composition of added hydrogen at —590%o. This value is quite
sensitive to the assumption that pristane and B-carotene had the
same initial isotopic compositions, which is in turn rather
uncertain (e.g., Sessions et a., 1999).

Cholestene will slowly isomerize between the A* and A® forms,
potentialy exchanging one hydrogen with each flip of the double
bond. If this process is repeated, al hydrogens on C-4 and C-6
could eventually exchange. Isomeric equilibrium between A* and
AS cholestene does not, however, imply isotopic equilibrium as
indicated by our observation that <50% of cholest-4-ene obtained
a deuterium label in incubation experiments. There may aso be
steric effects which govern whether axial or equatoria positions
are both equally subject to exchange. Figure 8 assumes that dll
hydrogen a C-4 and C-6 has exchanged, an assumption which
leads to replacement of the strongly D-enriched hydrogen a C-4
resulting from dehydration.

An dternative pathway to A®, endorsed by Peakman and
Maxwell (1988) and others, is hydrogenation of cholesterol to
cholestanol, dehydration to A? cholestene, then isomerization
via A® and A% to AS. An important uncertainty in this pathway
iswhether the hydrogen at C-2, which is strongly enriched in D
as a result of fractionation during dehydration, is subject to
exchange during double-bond migration. Figure 8 assumes that
it is not, with the result that the 6D value of cholest-4-ene is
slightly heavier when following this pathway.

Rearrangement of the sterene to diasterene results, on average,
in the exchange of five additiona hydrogens. The number of
positions affected may vary substantially with the reaction condi-
tions, but our data suggest that the extent of this constitutiona
exchange is relatively constant for a given minera substrate.
Inversion a C-20 can result in stereochemica exchange of one
additional hydrogen, and hydrogenation of the double bond will
add two additiond, strongly depleted hydrogens. Following these
diagenetic dterations, al of the hydrogen on cholestane and dia-
cholestane is till subject to pure exchange, dbeit on uncertain
timescales. Based on datain Table 6, we estimate 6D = —160%o
for a sterane (and diasterane) in isotopic equilibrium at 30°C with
water having 8D = 0%o.

Several conclusions can be drawn from Figure 8. First, the
change in 6D values across the entire sequence of diagenetic
products is relatively small. Out of 48 hydrogen atoms in
diacholestane, three were added by hydrogenation, approxi-
mately twelve exchanged with water, and 33 remain from the
parent cholesterol. Thus any of the steroid products may serve
as crude indicators of primary D/H ratios. When intact sterols
(as opposed to sterenes or stanols) are found, the number of
hydrogen atoms subject to exchange drops to five, with none
due to addition and none fractionated by dehydration.

Second, sterene molecules represent potentially problematic
targets for developing paleoclimatic records. The extent of hydro-
gen exchange resulting from isomerization cannot be determined
from ratios of A%/A® molecules. Identical molecules produced by
adifferent series, or even adifferent order, of diagenetic reactions
might have different 8D values. Similar problems exist for isomer-
ization of A and A sterenes, and possibly for isomerization
of A7 and A% (de Leeuw et al., 1989).

Third, because diagenetic changes in 6D are not large, it is
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conceivable that different sterane skeletons (or steranes and
hopanes) deriving from different biologic sources might pre-
serve large differencesin 8D. Because the reactions depicted in
Figure 8 are essentially unidirectional, any downcore conver-
gence in 6D values between those molecules would then pro-
vide evidence for ongoing hydrogen exchange.

5. CONCLUSIONS

Coincident values of 8D in n-alkyl and isoprenoid carbon
skeletons extracted from bitumen and petroleum samples sug-
gest that exchange of carbon-bound hydrogen is extensive in
many ancient (>340 Ma) rocks. Similar studies on young (<20
Ma), immature sediments suggest little hydrogen exchange
(Andersen et a., 2001; Yang and Huang, 2003). The signifi-
cance of hydrogen exchange in samples of intermediate age
remains unexplored. Experimental and empirical dataregarding
exchange rates are scarce, and uncertainties cover several or-
ders of magnitude. Available evidence indicates that both tem-
perature and lithology are likely to be important variables in
determining exchange rates.

Several tests have been proposed for identifying the effects
of exchange in geologic samples. Comparison of 6D values for
isoprenoid and n-alky! lipids is a potentially useful, but prob-
ably insensitive, assay. Comparison of 8D values for lipids and
water can only be used when the distribution of D in organic
matter and water started far from equilibrium. Identification of
large differences in 6D between homologous compounds or
consecutive samples is currently the most promising approach,
athough it can never exclude the possibility that some ex-
change has occurred. A possibility that deserves further inves-
tigation is that structural changes, such as stereochemical in-
version or rearrangement of sterenes to diasterenes, could serve
as a proxy for hydrogen exchange.

The likelihood that hydrogen exchange is significant over geo-
logic timescales increases both the richness and complexity of
information recorded in isotopic records of ancient organic matter.
It also provides many new opportunities. For example, differentia
rates of exchange might be used either as a chronometer, or to
determine—with temporal resolution—the isotopic compositions
of fluids. Where complete exchange is achieved, the temperature
dependence of equilibrium isotope effects could be exploited. In
this context, we should not be concerned that, unlike carbon,
hydrogen isotopic compositions of primary products are not well
preserved over long timescales. Rather, we should view organic
hydrogen as a continuoudy evolving system that can provide
information about geologic conditions and processes during its
buria in sedimentary rocks.
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