УДК 553.435

АРСЕНОКОЛУСИТ В СЕРНОКОЛЧЕДАННЫХ РУДАХ САУМСКОГО МЕДНО-ЦИНКОВО-КОЛЧЕДАННОГО МЕСТОРОЖДЕНИЯ, СЕВЕРНЫЙ УРАЛ

© 2021 г. Н. Р. Аюпова^{*a*, *}, В. В. Масленников^{*a*}, А. С. Целуйко^{*a*}, А. В. Степанов^{*b*}, Д. А. Артемьев^{*a*}, Е. В. Белогуб^{*a*}, В. А. Котляров^{*a*}, А. В. Бутняков^{*b*}

^аЮжно-Уральский федеральный научный центр минералогии и геоэкологии УрО РАН, г. Миасс, Челябинская обл., 456317 Россия ^bУральский филиал АО "Полиметалл УК", г. Екатеринбург, Свердловская обл., 620100 Россия *e-mail: aupova@mineralogy.ru Поступила в редакцию 20.07.2020 г. После доработки 16.09.2020 г. Принята к публикации 22.10.2020 г.

Серноколчеданные руды на флангах Саумского медно-цинково-колчеданного месторождения относятся к интенсивно преобразованным в условиях кислотного диагенеза рудокластическим отложениям. Колусит в рудах приурочен к тонкозернистым пиритовым обломкам, окруженным каймой из агрегатов более позднего мелкокристаллического пирита. Колусит образует тонкую вкрапленность (1–3 мкм) и крупные изометричные выделения (до 50–100 мкм), содержит включения сульванита, по химическому составу относится к арсеноколуситу (мас. %): As 12.62–14.87, Sb 0.19–0.64, Sn 0.29–1.46, V 3.05–3.23 и Fe 1.51–3.20. ЛА-ИСП-МС-анализ тонкозернистого пирита выявил в составе арсеноколусита присутствие незначительных содержаний Ga, Ge, In и Se, связанных корреляционными зависимостями с химическими элементами колусита, согласно с изоморфными замещениями в его формуле. В ассоциации с колуситом в тонкозернистом пирите установлены галенит, теллуровисмутит, самородное золото, молибденит, рутил, монацит, уранинит и Ва-содержащий мусковит. Взаимодействие сульфидных отложений с морской водой привело к обогащению их гидрогенными элементами (V, Mo и U), что вызвало отложение колусита в ассоциации с молибденитом и уранинитом из насыщенных элементами-примесями диагенетических флюидов при их дегидратации.

Ключевые слова: арсеноколусит, пиритовые рудокластиты, диагенез, Саумское медно-цинково-колчеданное месторождение, Северный Урал

DOI: 10.31857/S0016777021010032

введение

Среди минералов группы колусита известны мышьяковистая (арсеноколусит), германиевая (германоколусит), оловянистая (некрасовит), сурьмянистая (стибиоколусит), германий-молибденовая (майканит) и германий-вольфрамовая (овамбоит) разновидности (Спиридонов и др., 1992: Спиридонов, 2003; Spry et al., 1994; Wagner, Monecke, 2005). Их разнообразие обусловлено сложной кристаллохимией, проявляющейся в различных типах изоморфных замещений в формуле $Cu_{24+x}V_2(As, Sb, Ge, Sn, W)_6S_{32}$, где $0 \le x \le 2$ (Orlandi et al., 1981; Spry et al., 1994; Frank-Kamenetskaya et al., 2002). Присутствие минералов группы колусита в ассоциации с различными сульфидами, сульфосолями и теллуридами в рудах месторождений различных генетических типов рассматривается как результат их образования в условиях повышенного окислительного потенциала рудообразующих флюидов при высокой активности меди по сравнению железом (Спиридонов и др., 1992; Spry et al., 1994; Wagner, Monecke, 2005).

На колчеданных месторождениях колусит, содержащий Ge, Sn, Sb, Zn и Fe, описан в борнитсодержащих рудах (Kase et al., 1994; Hannington et al., 1999; Komuro, Kajiwara, 2004; Wagner, Monecke, 2005; Cvetkovic et al., 2013). На уральских колчеданных месторождениях находки колусита также связаны с борнитсодержащими рудами, где он ассоциирует с редкими сложными As–Ge–Sn сульфидами (Пшеничный и др. 1975; Юшко-Захарова и др., 1982; Молошаг и др., 2005; Новоселов и др., 2007; Молошаг, Викентьев, 2009; Maslennikov et al., 2019). Принципиально новым является выявление арсеноколусита в интенсивно преобразованных кластогенных пиритовых рудах на флангах Саумского медно-цинково-колчеданного месторождения на Северном Урале, не содержащих борнитовую минерализацию. В связи с этим условия локализации минералов группы колусита в рудах могут быть использованы для выявления особенностей формирования рудных залежей на флангах колчеданных месторождений.

МЕТОДЫ ИССЛЕДОВАНИЙ

Исследован керновый материал скважин, пробуренных Уральским филиалом АО "Полиметалл УК" в пределах Саумского месторождения. Оптико-микроскопические исследования сульфидных минералов проводились на микроскопе Olymриs BX51 с цифровой приставкой Olympus DP 12. Для выявления особенностей внутреннего строения пирита применено травление аншлифов концентрированной HNO₃ + CaF₂.

Химический состав колусита и других ассоциирующих с ним минералов установлен с помощью сканирующего электронного микроскопа Tescan Vega 3 sbu с энергодисперсионным анализатором Oxford Instruments X-act и растрового электронного микроскопа РЭММА-202М. Пределы обнаружения содержаний химических элементов не превышают 0.2 мас. %. Воспроизводимость определений составляет от 1 до 15 отн. %.

Рентгеновские исследования выполнены на дифрактометре Shimadzu XRD-6000 (Си-*K*α излучение с графитовым монохроматором). Скорость съемки 1°/мин, для получения рентгенограммы с микроколичеств использована подложка из бездифракционного кремния.

Для выявления невидимых включений в колуситсодержащем пирите выполнен ЛА-ИСП-МС анализ на масс-спектрометре Agilent 7700х, оборудованном приставкой для лазерной абляции New Wave Research UP-213. Диаметр лазерного пучка составлял 12–30 мкм со скоростью 10–15 мкм/с, с энергией 3–4 Дж/см² и частотой 7 Гц. Для градуировки и расчета использовались международные стандарты: прессованный сульфид USGS MASS-1 и стекло USGS GSD-1g. Несущий газ – Не 0.6 л/мин и Ar 0.95 л/мин.

КРАТКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

Саумское колчеданное месторождение располагается в северной части Ивдельского рудного района на Северном Урале в пределах Тагило-Магнитогорской палеоостроводужной металлогенической зоны Урала. Месторождение приурочено к Саумской палеовулканической структуре, расположенной между Чистопольским и Помурским интрузивными массивами (Медноколчеданные ..., 1985). Рудная зона протягивается в северо-северо-восточном направлении и разбита поздними разрывными нарушениями на отдельные рудные тела, которые связаны между собой зонами сульфидной вкрапленности (фиг. 1а). Рудные тела локализованы в дацит-риодацитовой толще шемурской свиты О₃-S₁ возраста (Медноколчеданные ..., 1985) (фиг. 1б). Надрудная толща представлена породами непрерывной базальт-андезит-риодацитовой формации павдинской свиты (S_1). Мощность рудных тел варьирует от 1–2 до 51 м (по материалам АО Полиметалл УК). Саумское месторождение отнесено к уральскому медно-цинково-колчеданному типу (Медноколчеданные..., 1985). В настоящее время месторождение готовится к разработке карьерным способом. Главные компоненты руд – Си, Zn, Au и Ag.

Главное рудное тело Саум-1, достигающее по падению 250 м и по простиранию 150 м, приурочено к контакту субвулканического тела риолитов с перекрывающими слоистыми вулканомиктовыми отложениями. Основные минералы медно-цинковых и цинково-медно-колчеданных руд представлены пиритом, халькопиритом и сфалеритом, среди редких установлены галенит, теннантит, фрейбергит, арсенопирит, гессит, теллуровисмутит, айкинит, германит, самородное золото. Содержания в рудах: Си 3.17%, Zn 3.36%; Au 1.97 г/т, Ag 44.4 г/т, Cd 113.5 г/т, Bi 52.2 г/т, Ge 0.5 г/т, Pb 1.8% (по данным АО Полиметалл УК). Латеральным продолжением рудного тела Саум-1 на флангах рудной зоны являются линзообразные рудные тела Саум-2 и Саум-3 в слоистых вулканомиктовых породах, перемещенные вдоль пострудных разрывных нарушений в юговосточном и в южном направлениях соответственно (см. фиг. 1а). За пределами контуров этих рудных тел в вулканомиктовой толще отмечаются горизонты слоистых руд в виде ритмичного чередования существенно пиритовых и нерудных слоев (мощность слоев до 1 см) и участки локального обогащения халькопиритом. Колуситсодержащие руды характерны для рудного тела Саум-3.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Позиция и минеральный состав колуситсодержащих руд

Рудное тело Саум-3 представляет собой частое чередование тонкозернистых обломковидных серноколчеданных руд с примесью халькопирита и сфалерита, и вулканомиктовых пород с фрагментами колчеданных руд. Мощность рудного тела на севере составляет около 35 м и постепенно уменьшается в южном направлении до полного выклинивания (см. фиг. 1). Колуситсодержащие руды установлены в керновом материале скважин, пробуренных в центральной и юго-восточ-

2021

Фиг. 1. Схема расположения рудных тел (а) и продольный геологический разрез (б) Саумского медно-цинково-колчеданного месторождения (по материалам АО "Полиметалл УК").

1, 2 – павдинская свита (S₁pv): 1 – вулканомиктовые породы смешанного состава, 2 –плагиофировые и пироксен-плагиофировые долериты; 3, 4 – шемурская свита (O₃–S₁šm₂): 3 – кварц-плагиофировые риолиты и риодациты, их лавобрекчии, 4 – слоистые вулканомиктовые породы риодацитового состава; 5 – альбит-хлорит-серицит-кварцевые метасоматиты; 6 – колчеданные рудные тела (а – проекция рудных тел на поверхность; б – разрез); 7, 8 – проекции контуров вкрапленной минерализации (7) и окисленных руд (8) на поверхность; 9 – окисленные руды; 10 – линия разреза, 11 – кора выветривания; 12 – разрывные нарушения.

ной частях рудного тела, и прослежены до глубин 111.5 и 165 м соответственно.

Колуситсодержащие руды сложены кристаллически-зернистыми агрегатами пирита, в которых с помощью травления установлено зональное строение: (1) фрагментами зональных кристаллов, обрастающих более поздним незональным пиритом (фиг. 2а); (2) субгедральными кристаллами с пористым ядром и включениями халькопирита и широкой однородной внешней оторочкой (фиг. 2б) и (3) обломками тонкозернистого пирита (Py-1), окруженными мелкозернистыми агрегатами пирита (Pv-2) (фиг. 2в). Редко присутствуют сегрегации раскристаллизованных фрамбоидальных агрегатов и зональные колломорфно-почковидные обособления пирита. В основной нерудной массе отмечаются ксеноморфные выделения сфалерита, халькопирита, теннантита, галенита, редкие кристаллы и зерна молибденита (фиг. 2г), барита, рутила и монацита.

Колусит установлен в тонкозернистом ядре (Py-1) пиритовых обособлений с наружной зоной из более поздних агрегатов мелкозернистого пирита (Py-2) (см. фиг. 2в), размер которых достигает 0.5 мм. В большинстве случаев колусит образует тонкую вкрапленность (1–3 мкм), которая часто разрастается и образует более или менее крупные изометричные выделения размером до 50–100 мкм с дугообразными границами (фиг. 2д). Колусит в отраженном свете характеризуется однородным серовато-кремовым цветом; изотропен, без спайности и внутренних рефлексов. В колусите обнаружены идиоморфные включения сульванита размером до 5 мкм (фиг. 2е).

Для колусита характерна повсеместная ассоциация с рутилом (размер до 10–15 мкм) (см. фиг. 2в, д). В тесной ассоциации с колуситом также обнаружены включения Se-содержащего галенита (до 1.99 мас. % Se), теллуровисмутита, самородного золота (4.29–6.27 мас. % Ag), молибденита, монацита и Ва-содержащего (до 3.5 мас. %) мусковита (фиг. 2ж–3).

Химический состав и рентгеновские характеристики колусита

По химическому составу минерал относится к арсеноколуситу (мас. %): As 12.62–14.87, Sb 0.19– 0.64, Sn 0.29–1.46, V 3.05–3.23 и Fe 1.51–3.20 (табл. 1). В отраженных электронах зерна арсеноколусита однородны (фиг. 2и), но состав в пределах одного зерна изменяется: 0.5–1.0 мас. % для Cu, S, As, Fe и 0.1–0.5 мас. % для V, Sn и Sb. Между содержаниями Cu и Fe, As и Fe, Sn и As в колусите существуют отрицательные корреляции.

На рентгенограмме аккуратно отобранного участка пирита-1 размером около 80 мкм, содержащего обильную вкрапленность колусита, помимо набора отражений пирита (Å) (3.12, 2.70,

Фиг. 2. Минеральный состав колуситсодержащих руд Саумского месторождения. а – обломки зональных кристаллов пирита с каймой незонального пирита (черное – кварц); б – субгедральные кристаллы пирита с пористым пиритом в ядре и более плотной незональной пиритовой оторочкой; в – тонкозернистый пирит с включениями колусита, рутила и галенита с наружной оторочкой из плотных агрегатов субгедрального пирита; г – пластинки молибденита в кварц-мусковитовой массе; д – ксеноморфный колусит в тонкозернистом пирите ядра пиритовых обособлений; е – включения усовитовой массе; д – ксеноморфный колусит в тонкозернистом пирита (ж) и самородного золота (з) в ассоциации с колуситом в тонкозернистом пирите; и – колусит с характерными округлыми ограничениями, черные точки – места анализа его химического состава. Ру-1 – тонкозернистый пирит ядра пиритовых обособлений; Ру-2 – внешняя кайма тонкозернистого пирита; Cls – колусит; Мо – молибденит; Au – самородное золото; Мпz – монацит; Sulv – сульванит; Mus – мусковит; Qtz – кварц; Rt – рутил. Отраженный свет (а–в, д, з) и СЭМ-фото (г, е, ж, и).

2.42, 2.20, 1.92, 1.634), проявлено максимальное отражение колусита 3.06 Å (www.mindat.org).

Элементы-примеси в пирите

Тонкозернистый пирит-1 (Ру-1), ассоциирующий с колуситом, характеризуется высокими (>1000 г/т) содержаниями Cu, As, Ti, Al и Si, повышенными (>100 г/т) – V, Co, Pb, P и K, умеренными (>10 г/т) – Mn, Ni, Zn, Ga, Se, Ag, Sn, Sb, Te, W, Bi и Ba и низкими (<10 г/т) – Cr, Ge, Mo, In, Au, Tl, Th и U (табл. 2). Высокие содержания Си и Si в пирите-2 (Ру-2), оконтуривающем пирит-1, сохраняются. Содержания Со, Ni, Se, Ba и Р в пирите-1 и -2 сопоставимы. Содержания других элементов в пирите-2 на один-два порядка ниже, чем в пирите-1.

ОБСУЖДЕНИЕ

Формирование колуситсодержащих пиритовых руд

Рудное тело Саум-3 является продолжением главного рудного тела Саум-1, смещенного блока

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 63 № 1

№ 1 2021

№ п/п	Cu	Fe	>	As	Sn	Sb	S	Сумма	Кристаллохимическая формула
1	48.41	1.51	3.20	14.58	0.47	0.37	31.80	100.34	$Cu_{24,58}Fe_{0.87}V_{2.03}(As_{6.27}Sn_{0.13}Sb_{0.1})_{6.50}S_{32}$
2	47.94	1.64	3.05	14.87	0.29	0.37	31.84	100.00	$Cu_{24,31}Fe_{0.95}V_{1.93}(As_{6.27}Sn_{0.08}Sb_{0.1})_{6.45}S_{32}$
3	47.43	2.17	3.20	14.21	06.0	0.24	31.86	100.00	$Cu_{24,04}Fe_{1.25}V_{2.02}(As_{6.10}Sn_{0.24}Sb_{0.06})_{6.50}S_{32}$
4	48.26	2.26	3.16	12.85	0.80	0.35	32.07	100.08	$Cu_{24,30}Fe_{1,29}V_{1,98}(As_{5,48}Sn_{0,22}Sb_{0,09})_{5,79}S_{32}$
5	47.79	2.48	3.13	12.98	0.99	0.41	32.02	18.66	$Cu_{24,10}Fe_{1,42}V_{1,97}(As_{5,55}Sn_{0,27}Sb_{0,11})_{5,93}S_{32}$
9	47.4	2.91	3.09	13.07	0.73	0.50	31.68	99.39	$Cu_{24,16}Fe_{1.69}V_{1.96}(As_{5.65}Sn_{0.20}Sb_{0.13})_{5.98}S_{32}$
7	47.39	1.92	3.11	14.19	0.57	0.45	31.72	99.48	$Cu_{24,13}Fe_{1.11}V_{1.97}(As_{6,12}Sn_{0.16}Sb_{0.12})_{6.40}S_{32}$
8	48.07	1.86	3.13	12.76	1.07	0.37	31.77	99.03	$Cu_{24,43}Fe_{1.08}V_{1.98}(As_{5.50}Sn_{0.29}Sb_{0.1})_{5.89}S_{32}$
6	48.13	2.16	3.21	12.65	0.76	0.59	32.00	99.59	$Cu_{24,29}Fe_{1.24}V_{2.02}(As_{5.41}Sn_{0.21}Sb_{0.16})_{5.78}S_{32}$
10	47.49	2.48	3.10	13.17	0.77	0.49	32.07	99.58	$Cu_{23.9l}Fe_{1.42}V_{1.95}(As_{5.62}Sn_{0.2l}Sb_{0.13})_{5.96}S_{32}$
11	48.40	2.34	3.09	13.05	0.85	0.25	32.01	99.59	$Cu_{24,22}Fe_{1.34}V_{1.94}(As_{5.58}Sn_{0.23}Sb_{0.07})_{5.88}S_{32}$
12	47.99	2.65	3.15	12.64	0.67	0.19	32.17	99.47	$Cu_{24,09}Fe_{1.51}V_{1.97}(As_{5.38}Sn_{0.18}Sb_{0.05})_{5.61}S_{32}$
13	47.50	2.54	3.13	12.64	0.93	0.33	31.99	90.06	$Cu_{23.98}Fe_{1.46}V_{1.97}(As_{5.41}Sn_{0.25}Sb_{0.09})_{5.75}S_{32}$
14	46.95	3.20	3.15	13.08	0.91	0.26	31.88	99.44	$Cu_{23.78}Fe_{1.84}V_{1.99}(As_{5.61}Sn_{0.25}Sb_{0.07})_{5.93}S_{32}$
15	48.44	1.76	3.10	12.72	0.93	0.49	32.08	99.53	$Cu_{24,38}Fe_{1.01}V_{1.95}(As_{5,43}Sn_{0.25}Sb_{0.13})_{5.81}S_{32}$
16	48.02	2.12	3.09	12.76	1.01	0.35	31.71	90.06	$Cu_{24,46}Fe_{1.23}V_{1.96}(As_{5.51}Sn_{0.28}Sb_{0.09})_{5.88}S_{32}$
17	47.99	2.45	3.10	12.62	1.46	0.34	31.75	99.70	$Cu_{24,41}Fe_{1.42}V_{1.97}(As_{5.44}Sn_{0.40}Sb_{0.09})_{5.93}S_{32}$
18	47.83	2.37	3.16	13.01	0.64	0.45	31.79	99.24	$Cu_{24,30}Fe_{1,37}V_{2,00}(As_{5,60}Sn_{0,17}Sb_{0,12})_{5,89}S_{32}$
19	47.68	2.37	3.23	12.88	0.98	0.54	32.06	99.74	$Cu_{24,02}Fe_{1.36}V_{2.03}(As_{5.50}Sn_{0.26}Sb_{0.14})_{5.90}S_{32}$
20	47.27	2.72	3.13	13.07	0.90	0.64	31.89	99.62	$Cu_{23.94}Fe_{1.57}V_{1.98}(As_{5.61}Sn_{0.24}Sb_{0.17})_{6.02}S_{32}$
Примечание. Кр	исталлохимич	неские форг	мулы рассчи	ттаны на 32 ат	oma S.				

Таблица 1. Химический состав (мас. %) арсеноколусита Саумского месторождения

92

ГЕОЛОГИЯ РУДНЫХ МЕСТОРОЖДЕНИЙ том 63 **№** 1

2021

АРСЕНОКОЛУСИТ В СЕРНОКОЛЧЕДАННЫХ РУДАХ

	V	Cr	Mn	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Mo	Ag	In	Sn
						Пири	т-1 (п	= 16)			1				
Среднее	414	7.94	32	211	17	4348	50	17	4.12	1404	47	4.50	12	0.58	71
Максимум	1271	12	81	277	29	15090	198	51	23	4890	94	57	19	2.06	323
Минимум	4.46	1.80	1.56	130	11	364	0.67	0.82	0.40	8.30	29	0.01	5.00	0.00	0.35
Ст. откл.	361	3.20	24	45	4.53	4207	67	15	6.77	1423	17	14	3.72	0.61	92
Медиана	381	9.10	39	208	16	3420	16	13	1.16	1143	42	0.34	11	0.38	43
						Пири	т-2 (п	= 29)							
Среднее	0.39	0.60	2.57	134	14	1040	6.99	0.51	0.53	12	34	1.37	2.38	0.01	0.29
Максимум	1.81	2.25	8.1	227	41	1748	73	5.20	1.16	40	99	15	5.42	0.12	1.4
Минимум	0.02	0.02	0.03	65	1.89	403	0.49	0.02	0.26	3.23	10.7	0.00	0.03	0.00	0.06
Ст. откл.	0.44	0.56	2.25	45	7.71	325	14	1.11	0.18	10	21	3.49	1.74	0.01	0.32
Медиана	0.17	0.42	2.17	134	14	1036	2.60	0.07	0.51	5.81	28	0.32	2.27	0.02	0.18
						Пири	т-1 (п	= 16)							
<i>n</i> = 16	Sb	Te	W	Au	Tl	Pb	Bi	Al	Si	Р	K	Ti	Ba	Th	U
Среднее	31	23	16	2.73	0.97	211	33	1048	1899	244	243	24507	29	0.09	0.21
Максимум	111	40	143	4.44	1.76	569	56	3350	4940	430	1460	39200	226	0.21	0.69
Минимум	0.25	3.26	0.30	0.75	0.27	23	9	307	710	131	109	1060	6.50	0.01	0.10
Ст. откл.	32	12	34	1.11	0.48	175	13	705	1001	69	332	13674	53	0.06	0.18
Медиана	22	24	7.38	3.01	0.91	166	33	916	1760	241	142	32500	15	0.07	0.17
Пирит-2 (<i>n</i> = 29)															
Среднее	0.21	2.64	0.10	0.49	0.13	19	5.52	348	1471	218	85	94	15	1.22	0.08
Максимум	1.44	13	1.52	0.94	0.58	69	12	1619	2630	428	573	850	214	25.5	0.70
Минимум	0.00	0.16	0.00	0.01	0.00	1.5	0.27	0.38	450	142	0.30	2.56	0.00	0.00	0.00
Ст. откл.	0.29	2.57	0.32	0.27	0.14	15	3.49	428	624	54	152	226	44	5.08	0.15
Медиана	0.13	1.99	0.01	0.51	0.10	18	5.86	192	1310	218	26	7	1.27	0.05	0.02

Таблица 2. Элементы-примеси (г/т) в пирите рудной залежи Саум-3 по результатам ЛА-ИСП-МС-анализа

руды вдоль пострудного разрывного нарушения субширотного направления, что хорошо фиксируется на проекции рудного тела в плане (см. фиг. 1). В пределах рудного тела установлено многократное чередование интенсивно преобразованных тонкозернистых пиритовых руд с сохранившимися признаками обломочного строения и вулканомиктовых пород, содержащих фрагменты руд. Исчезновение контрастности обломков в некоторых рудных горизонтах, вероятно, связано с незначительным количеством цементирующего нерудного материала. Наличие подобных сульфидных руд на флангах месторождения может свидетельствовать о разрушении холмообразной сульфидной постройки на морском дне с образованием шлейфа рудокластических отложений и их интенсивного преобразования в условиях диагенеза (Maslennikov et al., 2019). Считается, что формирование руд, сложенных, в основном, пиритом, утратившим обломочное строение, рассматривается как результат протекания диагенетических процессов в кислых условиях при быстром захоронении рудокластических отложений (Maslennikov et al., 2019). Свидетельством кислых условий диагенеза колуситсодержащих руд Саумского месторождения (рН 3–5) является присутствие в рудах мусковита (Дриц, Коссовская, 1991) и молибденита (Crusius et al., 1996).

Ассоциации элементов-примесей в пирите

Корреляционный анализ данных ЛА-ИСП-МС методом максимального корреляционного пути для пирита-1 выявляет ассоциации элементов, соответствующих включениям минералов, обнаруженным при электронно-микроскопических исследованиях (кроме уранинита): (I) (Cu^{1.00}As^{0.98}Sb^{0.98}In)^{0.96}(Sn^{0.97}Ge^{0.88}Se)^{0.86}(Ga^{0.97}V) –

2021

колусита; (II) ($Te^{0.95}Au^{0.95}Bi^{0.79}Ag$) — теллуровисмутита и самородного золота; (III) ($Ti^{0.92}Cr$) — рутила; (IV) ($Mn^{0.75}P$) — монацита (редкоземельные элементы в пирите не проанализированы); (V) $Cd^{0.66}W^{0.41}Zn^{0.94}Pb$ — сфалерита и галенита; (VI) $Ba^{0.99}K^{0.84}Al^{0.71}Si$ — Ва-содержащего мусковита; (VII) $Mo^{0.50}Th$ — молибденита; (VIII) $U^{0.78}Tl$ — уранинита (нановключения?); (IX) $Co^{0.66}Ni$ — отражает изоморфное вхождение в структуру пирита. Следует отметить, что в начале корреляционного пути находится ассоциация элементов колусита, согласно доказанным изоморфным замещениям в его формуле (Orlandi et al., 1981; Spry et al., 1994; Frank-Kamenetskaya et al., 2002).

Известно, что перемещенный на фланги месторождения рудокластический материал при взаимодействии с морской водой подвергается растворению как с выносом (например, легкоподвижных Zn, Cd), так и с накоплением элементов сульфидной ассоциации, а также обогащается элементами морской воды (V, U, Mo) и фонового вулканокластического материала (Si, Al, K, Ti) (Butler, Nesbitt, 1999; Maslennikov et al., 2019). Образование аутигенных минеральных ассоциаций является результатом их отложения из диагенетических флюидов, насыщенных этими элементами-примесями, при дегидратации обломочных сульфидных отложений.

В пирите-2 ассоциации элементов колусита и уранинита исчезают и возникают более сложные ассоциации, вероятно соответствующие нановключениям: (I) (In^{0.98}Zn^{0.97}Cd) ^{0.74} (II) Pb^{0.86}Tl) – сфалерита и галенита; (III) Se^{0.55}(Te^{0.94}Sb) ^{0.64} (IV) $(\dot{B}i^{0.95}Au^{0.85}Ag^{0.69}As^{0.64}Mn) -$ недиагностированных сульфосолей Bi и As; (V) Cu^{0.65}Ni^{0.54}Co – халькопирита; (VI) (Ba^{0.96}Ga) – барита; (VII) U^{0.89}Th^{0.83}P^{0.62}Ge – монацита: (VIII) V^{0.88}(Al^{0.95}K^{0.72}W^{0.82}Sn)^{0.51}Si – мусковита, кварца, (IX) $Ti^{0.61}Cr$) – рутила, (X) Мо – молибденита. Крайне низкие содержания элементов-примесей в пирите-2 (см. табл. 2) свидетельствуют об образовании наружной каймы тонкозернистых пиритовых обособлений по мере возрастания интенсивности процессов диагенеза при уменьшающем количестве флюидов.

Колусит в рудах колчеданных месторождений

Литературные данные свидетельствуют, что находки колусита на колчеданных месторождениях связаны исключительно с борнитовыми рудами, которые обычно залегают в кровле рудных тел или встречаются на флангах рудных залежей (Hannington et al., 1999; Komuro, Kajiwara, 2004; Wagner, Monecke, 2005; Maslennikov et al., 2019). В этих рудах колусит образует включения в сфалерите или борните. Характерной особенностью химического состава колусита является присутствие Ge, содержание которого варьирует от 1.30 до 5.15 мас. %, в некоторых случаях Zn (до 5.25 мас. %) и Sn (до 12.00 мас. %) (Пшеничный и др., 1975; Новоселов и др., 2007; Hannington et al., 1999; Komuro, Kajiwara, 2004; Wagner, Monecke, 2005; Cvetkovic et al., 2018; Maslennikov et al., 2019). Во всех случаях в составе колусита отмечаются незначительные примеси Sb и Fe. Временные соотношения между борнитом и колуситом не всегда однозначны, тем не менее присутствие борнита может ограничить химическую среду, необходимую для образования минералов группы колусита. В зависимости от температуры минерализации и общей концентрации серы в рудообразующих флюилах фазовые равновесия в системе Cu-Fe-S-O-Н обычно предполагают умеренно окислительные условия для образования борнитовых руд (Hannington et al. 1999). Сравнительно высокое соотношение Cu : Fe в рудообразующих флюидах является необходимым условием для отложения колусита, что отражается в довольно низких содержаниях Fe в его составе (Hannington et al., 1999; Wagner, Monecke, 2005).

На Саумском месторождении арсеноколусит обнаружен в кластогенных пиритовых рудах, локализованных на флангах рудного тела, вне ассоциации с борнитом. В составе колусита при электронномикроскопических исследованиях обнаружены незначительные примеси Sn и Sb. Высокие корреляционные связи элементов-примесей в пирите-1 по ЛА-ИСП-МС-анализам также позволили установить в его составе присутствие Ga, Ge, In и Se. Для арсеноколусита характерна ассоциация с теллуровисмутитом, самородным золотом и галенитом, обычно присутствующими в кластогенных рудах преимущественно пиритового состава (Maslennikov et al., 2019). Редкие As-Ge-Sn сульфосоли, характерные для борнитовых руд, в изученных рудах не обнаружены. Отличительной особенностью арсеноколусита также является тесная связь с молибденитом, рутилом, монацитом и, вероятно, уранинитом, что сходно с рудами стратиформного полиметаллического месторождения Хусиб Спрингс в Намибии (Melcher et al., 2006).

Источник V для образования колусита

Ванадий, наряду с U и Mo, входит в группу гидрогенных элементов (Crusius et al., 1996; Butler, Nesbitt, 1999). Считается, что обогащение V осадков происходит во время раннего диагенеза. В этих условиях присутствующий в морской воде

метаванадат-анион (VO_3^-) восстанавливается до ванадил-катиона (VO^{2+}) и легко сорбируется осадками, в основном органическим веществом (Brumsack, 1986). Фиксация V в осадках происходит при дестабилизации комплексов V в диагенетических флюидах из-за резких вариаций рН в процессах дегидратации (Crusius et al., 1996). Как правило, в современных и древних сульфидсодержащих отложениях наблюдается комплексное обогащение гидрогенными элементами (U, V и Mo) и ассоциирующим с ними P (Mills et al., 1994; Ayupova et al., 2018). Предполагается, что источником V для образования колусита в рудах месторождений Куроко также служит взаимодействие руд с морской водой и осаждение V при участии организмов (Komuro, Kajiwara, 2004).

Микроскопические исследования и ЛА-ИСП-МС-анализы пирита показывают, что арсеноколусит характерен для ранних тонкозернистых обособлений пирита-1 и не связан с поздними агрегатами пирита-2. Такая связь указывает на взаимодействие первичных рудокластических отложений с морской водой, что могло привести к обогашению V. Не исключается возможность высвобождения ванадия из вулканокластического материала при формировании рудных слоев (Ayupova et al., 2018). Появление молибденита в ассоциации с арсеноколуситом и повышенные содержания U в пирите-1, обусловленные вероятным присутствием уранинита, подтверждают участие морской воды при формировании рудокластических отложений. Появление фосфатного минерала — монацита — в этой же ассоциации не исключает участие биогенного фактора, осаждение которого инициировалось органическими комплексами, способствовавшими мобилизации и транспортировке РЗЭ в поровых флюидах при разложении вулканокластического материала. В связи с тем, что восстановленный V в кислых средах малорастворим и стремится перейти в самое стабильное свое состояние V^{4+} (Brumsack, 1986), происходило его концентрирование в рудокластических отложениях и связывание с Си с образованием колусита при диагенетических процессах.

ЗАКЛЮЧЕНИЕ

Впервые для колчеданных месторождений установлено присутствие арсеноколусита в рудокластических отложениях преимущественно пиритового состава. Выявлено, что арсеноколусит в пирите ассоциирует с теллуровисмутитом, самородным золотом, галенитом, молибденитом, монацитом и рутилом, а редкие As-Ge-Sn-сульфосоли, характерные для ассоциации колусита в борнитовых рудах, отсутствуют. Использование ЛА-ИСП-МС-анализов пирита позволило предположить в составе колусита незначительную изоморфную примесь Ge, Ga, In. Аутигенные минералы руд отлагались из диагенетических флюидов, содержащих элементы-примеси первичных рудокластов, морской воды и вулканокластического материала. Предположительным источником V для образования арсеноколусита считается морская вода, что подтверждается присутствием

молибденита и предполагаемого уранинита в тонкозернистом пирите-1. Обилие фосфатного материала в рудах не исключает роль органического вещества в накоплении V. Формирование пиритовых руд является результатом кислотного диагенеза кластогенных руд, приведших к частичному растворению халькопирита и сфалерита с образованием серноколчеданных руд, утративших обломочное строение.

Хотя основные рудные минералы многих колчеданных месторождений хорошо изучены, все еще существует значительная потребность в микроаналитических исследованиях редких минералов в колчеданных рудах. Применение ЛА-ИСП-МСанализа, дополняя минералогические методы, позволяет выявить не только наличие редких минеральных включений в сульфидах, но и скорректировать их химический состав.

ФИНАНСИРОВАНИЕ

Работа выполнена при финансовой поддержке государственного задания № АААА-А19-119061790049-3 Института минералогии ЮУ ФНЦ МиГ УрО РАН.

СПИСОК ЛИТЕРАТУРЫ

Дриц В.А., Коссовская А.Г. Глинистые минералы: слюды и хлориты. М.: Наука, 1991. 176 с.

Медноколчеданные месторождения Урала. Геологические условия размещения / Под ред. В.А. Прокина и др. Свердловск: УНЦ АН СССР, 1985. 288 с.

Молошае В.П., Викентьев И.В., Гуляева Т.Я., Тесалина С.Г. Борнитовые руды колчеданных месторождений Урала // Литосфера. 2005. № 3. С. 99–116.

Молошае В.П., Викентьев И.В. Новые данные о германий-оловянной минерализации колчеданных месторождений Урала. Ежегодник–2008. ИГГ УрО РАН, 2009. С. 220–223.

Новоселов К.А., Белогуб Е.В., Котляров В.А. Минералы германия в сульфидных рудах месторождений Александринского района // Уральский минералогический сборник. 2007. № 14. С. 1–10.

Пшеничный Г.Н., Шадлун Т.Н., Вяльсов Л.Н., Тронева Н.В., Басова Г.В. Сульфиды олова, меди и железа в колчеданных рудах Южного Урала // Геология руд. месторождений. 1972. Т. 14. № 5. С. 106–111.

Спиридонов Э.М. Майканит и овамбоит – новые минералы колчеданно-полиметаллических руд // ДАН. 2003. Т. 393. № 6. С. 809–812.

Спиридонов Э.М., Бадалов А.С., Ковачев В.В. Стибиоколусит Cu₂₆V₂(Sb, Sn, As)₆S₃₂ – новый минерал // ДАН. 1992. Т. 324. № 2. С. 411–414.

Юшко-Захарова О.Е., Беляева И.Д., Дубакина Л.С. Присутствие минеральных форм германия в колчеданных рудах // ДАН СССР. 1982. Т. 267. С. 444–445.

Ayupova N.R., Melekestseva I.Yu., Maslennikov V.V. et al. Uranium accumulation in modern and ancient Fe-oxide sediments: examples from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic ridge) and Yubileynoe massive sulfide deposit (South Urals, Russia) // Sed. Geology. 2018. V. 367. P. 164–174.

Brumsack H.-J. Geochemistry of recent TOC-rich sediments from the Gulf of California and black Sea // Geol. Rundsch. 1989. V. 78(3). P. 851–882.

Butler I.B., Nesbitt R.V. Trace element distribution in the chalcopyrite wall of a black smoker chimney: insights from laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) // Earth Planet. Sci. Lett. 1999. V. 167. P. 335–345.

Crusius J., Calvert S., Pedersen T., Sage D. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition // Earth Planet. Sci. Lett. 1996. V. 145. P. 65–78.

Cvetković L., Paćevski A., Tončić T. Occurrence of Sn-bearing colusite in the Ore body "T" of the Bor Copper Deposit, Serbia // Geol. Ore Deposits. 2013. V. 55. № 4. P. 298–304.

Frank-Kamenetskaya O.V., Rozhdestvenskaya I.V., Yanulova L.A. New data on the crystal structures of colusites and arsenosulvanites // J. Struct. Chem. 2002. V. 43. P. 89–10.

Hannington M.D., Bleeker W., Kjarsgaard I. Sulfide mineralogy, geochemistry, and ore genesis of the Kidd Greek deposit. II. The bornite zone // Econ. Geol. Monogr. 1999. V. 10. P. 225–266.

Kase K., Yamamoto M., Mitsuno C. Germanium-bearing colusite from the Yanahara mine, Japan, and its significance to ore genesis // Resour. Geol. 1994. V. 44. P. 33–38.

Komuro K., Kajiwara Y. Germanium-bearing Colusite in Siliceous Black Ore from the Ezuri Kuroko Deposit, Hokuroku District, Japan // Resour. Geol. 2004. V. 54(4). P. 447– 452.

Mills R.A., Thomson, J., Elderfield, H. et al. Uranium enrichment in metalliferous sediments from the Mid-Atlantic Ridge // Earth Planet. Sci. Lett. 1994. V. 124(1). P. 35–47.

Maslennikov V.V., Ayupova N.R., Safina N.P. et al. Mineralogical features of ore diagenites in the Urals massive sulfide deposits, Russia // Minerals. 2019. V. 3. N_{2} 3. 150 p.

Melcher F., Oberthur T., Rammlmair D. Geochemical and mineralogical distribution of germanium in the Khusib Springs Cu–Zn–Pb–Ag sulfide deposit, Otavi Mountain Land, Namibia // Ore Geol. Rev. 2006. V. 28. P. 32–56.

Orlandi P., Merlino S., Duchi G., Yezzalini G. Colusite: a new occurrence and crystal chemistry // Can. Mineral. 1981. V. 19. P. 423–427.

Spry P.G., Merlino S., Wang S. et al. New occurrences and refined crystal chemistry of colusite, with comparisons to arsenosulvanite // Am. Mineral. 1994. V. 79. P. 750–762.

Wagner T., Monecke T. Germanium-bearing colusite from the Waterloo volcanic-rock-hosted massive sulfide deposit, Australia: crystal chemistry and formation of colusite-group minerals // Can. Mineral. 2005. V. 43. P. 655–669.

htpp//www.midat.org. Colusite: Mineral information, data and localities.