— ГЕОХИМИЯ =

УДК 548.3+541.132(571.5)

ОЛИВИН-ХРОМШПИНЕЛЕВАЯ ОКСИТЕРМОБАРОМЕТРИЯ УЛЬТРАМАФИТОВ ЙОКО-ДОВЫРЕНСКОГО РАССЛОЕННОГО МАССИВА

© 2004 г. Е. В. Пушкарев, член-корреспондент РАН С. Л. Вотяков, И. С. Чащухин, Е. В. Кислов

Поступило 12.11.2003 г.

В последние годы накоплена обширная информация об окислительно-восстановительном состоянии ультрамафитов, включая перидотиты срединно-океанических хребтов и островных дуг, орогенные лерцолиты, мантийные нодули в щелочных базальтах и кимберлитах, ультрамафиты и хромититы офиолитовых комплексов, дуниты и связанные с ними хром-платиновые руды из концентрически-зональных дунит-клинопироксенитгаббровых комплексов Урало-Аляскинского типа, а также различные типы базальтов [1, 3, 8–12, 15 и др.]. Однако оценка редокс-состояния расслоенных ультрамафит-мафитовых интрузий современными методами окситермобарометрии до сих пор не проводилась. Настоящая работа посвящена изучению оливин-хромшпинелевого равновесия ультрамафитов Йоко-Довыренского расслоенного массива (Северное Прибайкалье) и на этой основе оценке температуры и фугитивности кислорода в момент завершения обменных субсолидусных реакций. Другой задачей данной работы была попытка оценить изменения флюидного режима становления пород при их взаимодействии с метаосадочными карбонатными породами явление известное и хорошо изученное на Йоко-Довыренском массиве [5, 7].

Йоко-Довыренский дунит-троктолит-габбровый массив, расположенный в 70 км к северу, северо-востоку от Нижнеангарска, образует крупное силлоподобное тело, залегающее субсогласно с вмещающими позднепротерозойскими карбонатно-терригенными отложениями осевой части Сыннырской рифтогенной структуры. Массив состоит из четырех горизонтов: плагиоперидотитового, дунитового, троктолитового, габбро-норито-

Институт геологии и геохимии

Геологический институт

вого (рис. 1). В верхней части дунитового горизонта в большом количестве встречаются ксенолиты магнезиальных скарнов, формирование которых связано с взаимодействием пикритобазальтового расплава с захваченными при внедрении фрагментами доломитов [7]. Ассимиляция ультраосновными породами карбонатного вещества приводит к образованию в околоскарновом пространстве зоны контаминированных ультрамафитов [14]. Подробно геологическая позиция и внутрен-

Рис. 1. Схема геологического строения Йоко-Довыренского дунит-троктолит-габбрового массива [4]. *1* – вмещающие осадочные породы Сыннырской рифтогенной зоны; 2 –плагиоперидотиты; *3* – плагиодуниты, дуниты, верлиты; *4* – дунит-троктолитовая расслоенная серия; *5* – оливиновое габбро, оливиновые габбро-нориты; *6* – гранофировые габбро-нориты; *7* – доломиты; *8* – разрывные нарушения; *9* – положение Йоко-Довыренского массива (на врезке).

Уральского отделения Российской Академии наук, Екатеринбург

Сибирского отделения Российской Академии наук, Улан-Удэ

Рис. 2. Схематический геологический разрез через дунитовый горизонт по долине ручья Большой [14] с нашими дополнениями. *1* – плагиоперидотиты подошвенной зоны; 2 – плагиодуниты и дуниты неконтаминированные; *3* – дуниты, пироксеновые дуниты и верлиты контаминированные; *4* – троктолиты; *5* – магнезиальные скарны (внемасштабно); *6* – хромититы (внемасштабно); *7–9* – положение изученных проб: *7* – неконтаминированные дуниты, *8* – контаминированные дуниты и верлиты, *9* – хромититы. Сплошными линиями показаны усредненные тренды вариаций состава хромшпинелида и оливина по разрезу дунитового горизонта по данным [14].

нее строение массива, состав слагающих его пород, характер сопутствующего оруденения, генетические модели его образования рассмотрены в монографии Е.В. Кислова [4].

Расчеты f_{O_2} и T выполнены нами на основе оливин-хромшпинелевого окситермобарометра Больхауза-Берри-Грина (BBG) [11], с использованием экспериментальных мёссбауэровских значений степени окисления железа в хромшпинелиде (вместо расчетных стехиометрических величин) и с учетом влияния титана в структуре хромшпинелида на расчет температуры равновесия последнего с оливином. Теоретическое и эмпирическое обоснования такой коррекции приведены в работах [1,9]. Химический состав оливина и хромшпинелида определен на рентгеновском микроанализаторе ЈХА-5 (аналитик В.Г. Гмыра). Мёссбауэровское исследование ионов железа в монофракциях хромшпинелида выполнено на спектрометре CM2201 (аналитик В.А. Семенкин) при постоянном ускорении в геометрии пропускания при комнатной температуре. Эффективная толщина образцов составляла 10 мг/см² железа в естественной смеси изотопов, что соответствует приближению тонкого поглоти-

ДОКЛАДЫ АКАДЕМИИ НАУК том 395 № 1 2004

теля; обработка экспериментальных данных выполнена с использованием программы Univem-4, НИИФизики Ростовского госуниверситета. Данные о составе минералов и параметры мёссбауэровских спектров приведены в табл. 1. Всего из дунитового горизонта по разрезу вдоль долины ручья Большого, пересекающего массив от троктолитовой зоны наверху до плагиоперидотитовой зоны в подошве тела, изучено 8 проб дунитов и хромититов, положение которых отмечено на рис. 2.

Составы оливина и хромшпинелида из неконтаминированных и контаминированных карбонатным веществом ультрамафитов существенно различаются между собой. Так, акцессорные хромшпинелиды из неконтаминированных дунитов характеризуются преобладанием хрома над алюминием и довольно существенной примесью титана (до 1.8% TiO₂) и могут быть классифицированы как алюмохромиты. Они сосуществуют с низкокальциевым относительно более железистым оливином (Fo₈₆). В хромшпинелидах из контаминированных ультрамафитов (пироксеновых дунитов и верлитов) резко возрастают концентрации алюминия, который становится главным

ПУШКАРЕВ и др.

Таблица 1. Химический состав хромшпинелидов (мас. %), магнезиальность сосуществующего оливина, мёссбауэровские параметры ионов железа и расчетные значения температуры и фугитивности кислорода

Компонент		Пе-341	Пе-342	Пе-386	Пе-395	Пе-355	Пе-356	Пе-357	Пе-357а
TiO ₂		1.75	1.61	0.14	0.25	0.34	0.34	0.31	0.30
Al ₂ O ₃		18.2	21.19	45.89	30.77	45.28	41.88	44.99	45.45
Cr ₂ O ₃		45.93	42.29	16.82	27.86	18.53	21.60	20.40	19.40
FeO*		24.0	24.56	16.35	24.92	17.23	16.55	15.95	16.70
MnO		0.29	0.33	0.17	0.2	0.28	0.30	0.28	0.26
MgO		7.96	8.74	19.86	14.26	17.73	18.41	17.57	18.04
Сумма		98.13	98.72	99.23	98.26	99.39	99.08	99.48	100.15
Коэффициенты кристаллохимических формул в пересчете на 3 катиона									
Ti		0.043	0.039	0.003	0.006	0.007	0.007	0.006	0.006
Al		0.705	0.802	1.463	1.080	1.464	0.368	1.458	1.458
Cr		1.194	1.073	0.360	0.656	0.402	0.473	0.443	0.418
Fe ³⁺		0.050	0.060	0.160	0.240	0.395	0.384	0.367	0.380
Fe ²⁺		0.610	0.600	0.210	0.380	0.725	0.761	0.720	0.732
Mn		0.008	0.009	0.004	0.005	0.161	0.155	0.146	0.163
Mg		0.390	0.418	0.801	0.633	0.235	0.229	0.220	0.217
Cr/(Cr+Al)		0.63	0.57	0.20	0.38	0.22	0.26	0.23	0.22
$Fe^{2+}/(Fe^{2+}+Mg)$		0.61	0.59	0.21	0.38	0.24	0.23	0.23	0.23
$Fe^{3+}/(Fe^{3+}+Fe^{2+})$		0.08	0.09	0.43	0.39	0.41	0.40	0.40	0.43
Mg/(Mg+Fe) ₀₁		0.86	0.86	0.91	0.88	0.89	0.90	0.90	0.89
Мёссбауэровские параметры ионов железа в хромшпинелиде									
Fe ³⁺	IS	0.279	0.276	0.319	0.320	0.316	0.342	0.343	0.341
	QS	0.719	0.694	0.727	0.675	0.703	0.651	0.640	0.658
	Г	0.202	0.228	0.292	0.290	0.313	0.310	0.290	0.316
	S	6.9	9.1	40.9	38.4	40.6	40.3	39.9	42.9
Fe ²⁺ (a)	IS	0.759	0.742	0.776	0.760	0.882	0.912	0.911	0.914
	QS	1.274	1.241	1.284	1.323	1.042	1.150	1.149	1.145
	Г	0.431	0.383	0.483	0.444	0.416	0.518	0.516	0.544
	S	44.7	37.6	34.3	29.1	22.7	34.3	37.7	35.0
Fe ²⁺ (б)	IS	1.085	1.057	1.103	1.073	0.929	0.897	0.878	0.871
	QS	1.313	1.307	1.382	1.390	1.717	1.946	1.956	1.962
	Г	0.472	0.480	0.418	0.490	0.532	0.446	0.385	0.437
	S	48.4	53.3	24.8	32.5	36.7	25.4	22.5	22.3
	χ^2	6.21	6.67	5.83	5.63	3.12	4.21	4.38	2.28
Расчетные данные по температуре и фугитивности кислорода									
<i>T</i> , °C		1000	960	1010	940	1040	1070	1020	1120
$\Delta {\rm lg} {f_{{\rm O}_2}} \; {\rm FMQ}$		-1.5	-1.0	1.5	1.6	1.11	1.11	1.08	1.01

Примечание. Пе-341, 342 – неконтаминированные дуниты; Пе-386, 395 – контаминированные ультрамафиты, дунит и верлит соответственно; Пе-355, 356, 357 и 357а – хромититы. FeO* – все железо в виде FeO. Параметры мёссбауэровских спектров: *IS* – изомерный сдвиг относительно нитропруссида натрия (мм/с); *QS* – квадрупольное расщепление (мм/с); Γ – ширина линии (мм/с); *S* – площадь соответствующего дублета в спектре (%), χ^2 – среднеквадратичное отклонение. Fe³⁺, Fe²⁺, Fe²⁺/(Fe²⁺+Mg), Fe³⁺/(Fe³⁺+Fe²⁺) рассчитаны на основе мёссбауэровских данных.

ДОКЛАДЫ АКАДЕМИИ НАУК том 395 № 1 2004

элементом, и уменьшаются содержания хрома и титана. По химическому составу к ним близки пикотиты и хромпикотиты, образующие рудные сегрегации в контаминированных ультрамафитах. Ассоциирующий с ними оливин характеризуется высококальциевым и магнезиальным составом Fo_{91-95} . Наиболее высокоглиноземистым и низкохромистым составом обладают шпинелиды магнезиальных скарнов, сосуществующие практически с чистым форстеритом Fo_{95-98} [4, 6]. Изменения составов минералов от подошвы к кровле дунитового горизонта через зону развития магнезиальных скарнов подробно охарактеризованы в работе [14], усредненные значения в виде вариационных линий показаны на рис. 2.

Температура оливин-хромитового равновесия, рассчитанная для неконтаминированных дунитов, соответствует интервалу 950–1000°С. Контаминированные дуниты и верлиты характеризуются близкой температурой 950–1050°С, хромититы фиксируют несколько более высокие значения температуры (1000–1150°С). В целом все полученные величины температур соответствуют условиям субсолидусного равновесия дунитов.

Отмеченная выше близость температур контаминированных и неконтаминированных ультрамафитов и хромититов делает особенно контрастной ситуацию с окислительно-восстановительными условиями формирования этих пород (табл. 1). Так, значения фугитивности кислорода для контаминированных ультрамафитов в среднем на полторы единицы $\lg f_{\mathrm{O}_2}$ превышают буфер FMQ, для хромититов этот показатель на единицу выше FMQ. По сравнению с ними значительно более низкой является фугитивность кислорода, рассчитанная для неконтаминированных дунитов из нижней части дунитового горизонта, для которых значения $\lg f_{\mathrm{O}_2}$ в среднем на единицу логарифма ниже буфера FMQ (см. рис. 3), что сопоставимо с условиями равновесия перидотитов сублитосферной мантии [11, 15]. Таким образом, различие в состоянии окисленности между неконтаминированными дунитами, с одной стороны, и контаминированными ультрамафитами и залегающими среди них хромититами - с другой, составляет более двух порядков. Мы предполагаем, что возрастание фугитивности кислорода в зоне контаминированных дунитов и верлитов связано с отгонкой СО₂ и других флюидов из карбонатных ксенолитов, захваченных основной магмой и превращенных в магнезиальные скарны. Согласно оценкам Н.Н. Перцева с соавторами, давление CO_2 в расплаве не превышало 100 бар при T = = 1000°C, 20-30 бар при 900°C или 10 бар при 870°С, что соответствует условиям равновесия минеральной ассоциации периклаз-мервинит, установленной в довыренских скарнах [6]. Фугитив-

Рис. 3. Зависимость $\lg f_{O_2} - T$ для оливин-хромшпине-

левых парагенезисов из ультраосновных пород различных генетических типов. *I*–*3* – Йоко-Довыренского расслоенного дунит-троктолит-габбрового массива: *I* – неконтаминированные дуниты, *2* – контаминированные дуниты, *3* – хромититы; поля (*I*–*VII*): *I*–*III* – дуниты Платиноносного пояса Урала [9]: *I* – Нижнетагильский массив, *II* – Йовское тело, Кытлымский массив, *III* – Сосновский увал, Кытлымский массив, *IV* – Уктусский массив [9], *V* – Кондерский массив, Алданский щит [8], *VI* – перидотиты сублитосферной мантии (массив Бени-Бушера) [15], *VII* – абиссальные перидотиты [12].

ность кислорода при образовании последних оценивается авторами качественно, на основе уравнения смещенного равновесия: Per + Ol_{Fa} + $O_2 \rightarrow Ol_{Fo}$ + + Mag. Они считают, что фугитивность кислорода при образовании скарнов должна быть ниже буфера Мад-Нет, но несколько превышать буфер Ni-NiO и быть при этом существенно выше, чем в дунитах и перидотитах. Температура формирования магнезиальных скарнов, по оценкам этих же авторов, должна превышать 820°С – минимальную температуру равновесия парагенези-са периклаз-мервинит [6]. По мнению А.А.Ефимова с соавторами, изучивших титанфассаит-перовскитовые скарны Йоко-Довыренского массива, температура их образования может превышать 900°С [2]. Наши расчетные данные по температуре оливин-хромитового равновесия в дунитах и хромититах (950–1150°С) в целом согласуются с представлениями большинства исследователей. Таким образом, можно утверждать, что магнезиальные скарны Иоко-Довыренского массива формируются при температурах, близких к температуре завершения субсолидусных обменных реакций в ультрамафитах, а фугитивность кислорода при их образовании примерно в 104-105 раз превышала фугитивность кислорода в момент кристаллизации неконтаминированных ультрамафитов.

Такая неравновесность условий, вероятно, связана с реакцией разложения доломитов, захваченных

ДОКЛАДЫ АКАДЕМИИ НАУК том 395 № 1 2004

в виде ксенолитов пикритобазальтовой магмой, и высвобождения большого объема СО₂ [5, 14], которая, как известно, является сильным окислителем. Значительный рост фугитивности кислорода в околоскарновом пространстве должен был привести к усилению кристаллизации в расплаве оксидных минералов. Это подтверждается обнаружением рудных сегрегаций хромшпинелидов именно в контаминированных ультрамафитах в верхней части дунитового горизонта. Как было показано выше, состав хромшпинелида из рудных сегрегаций и контаминированных ультрамафитов характеризуется высокоглиноземистым составом. Это согласуется с данными по уральским хромитовым месторождениям, на примере которых было показано, что глиноземистое хромитовое оруденение формируется в более окисленной обстановке по сравнению с высокохромистыми рудами [10].

Уровень окисленности оливин-хромитового парагенезиса в неконтаминированных дунитах Иоко-Довыренского массива, несмотря на гипабиссальные условия окончательной консолидации пород, соответствует значениям, характерным для перидотитов сублитосферной мантии [11, 15]. По сравнению с этими параметрами фугитивность кислорода, рассчитанная для платиноносных дунитов Урала [9] и Юго-Восточной Аляски, на 2-3 порядка выше, что рассматривается как признак их островодужного образования [11]. Однако сходными с уральскими редокс-условиями равновесия обладают и дуниты Кондерского массива на Алданском щите [10], где маловероятно существенное влияние субдукционного компонента. Вероятно, что окислительно-восстановительные условия отражают в первую очередь не геодинамические условия формирования комплексов, а состав флюида, участвующего в петрогенезисе, хотя между этими понятиями также может быть установлена определенная связь. Возможно, что разгадка низкой окисленности неконтаминированных йоко-довыренских дунитов кроется в составе первичного магматического флюида, который по данным [4, 13] имел восстановленный состав (CO, CH₄, H₂ и S), в то время как уральские или алданские породы, по-видимому, характеризуются существенно водным составом флюида, что доказывается присутствием амфибола в дунитах, широким развитием амфиболсодержащих пироксенитов и горнблендитов. Несомненно, что состав флюида и окислительно-восстановительные условия формирования пород должны отразиться на характере и составе сопутствующего оруденения.

Авторы благодарны Э.Г. Конникову (ИЭМ, Черноголовка) за содействие в проведении полевых работ и полезное обсуждение материалов.

Работа выполнена при финансовой поддержке РФФИ (гранты 04–05–64346, 04–05–96009– р2004Урал-2), грантов президента РФ "Поддержка ведущих научных школ" НШ–85.2003.5 и НШ– 2284.2003.5 и программы ОНЗ №10 "Экспериментальные исследования физико-химических проблем геологических процессов".

СПИСОК ЛИТЕРАТУРЫ

- 1. Вотяков С.Л., Чащухин И.С., Уймин С.Г., Быков В.Н. // Геохимия. 1998. № 8. С. 791–802.
- Ефимов А.А., Колясников А.А., Маегов В.И. и др. Ежегодник-1985. Екатеринбург: Институт геологии и геохимии УрО АН СССР, 1986. С. 92–94.
- Кадик А.А., Луканин О.А., Лапин И.В. Физико-химические условия эволюции базальтовых магм в приповерхностных очагах. М.: Наука, 1990. 346 с.
- 4. *Кислов Е.В.* Йоко-Довыренский расслоенный массив. Улан-Удэ: БНЦ СО РАН, 1998. 265 с.
- 5. Персиков Э.С., Вензель Т., Конников Э.Г. и др. Современные проблемы формационного анализа, петрология и рудоносность магматических образований. Новосибирск: СО РАН, 2003. С. 254–255.
- 6. Перцев Н.Н., Конников Э.Г., Кислов Е.В. и др. // Петрология. 2003. Т. 11. № 5. С. 512–523.
- Перцев Н.Н., Шабынин Л.И. Контактовые процессы и оруденение в габбро-перидотитовых интрузиях. М.: Наука, 1978. С. 85–96.
- Чащухин И.С., Вотяков С.Л., Ефимов А.А. и др. Ежегодник-2001. Екатеринбург: Институт геологии и геохимии УрО РАН, 2002. С. 147–156.
- 9. Чащухин И.С., Вотяков С.Л., Пушкарев Е.В. и др. // Геохимия. 2002. № 8. С. 846–863.
- 10. Чащухин И.С., Вотяков С.Л., Уймин С.Г., Быков В.Н. // Геохимия. 1998. № 9. С. 877–885.
- 11. *Ballhaus C., Berry R., Green D.* // Contribs. Mineral. and Petrol. 1991. V. 107. P. 27–40.
- Bryndzia T., Wood B. // Amer. J. Science. 1990. V. 290. № 10. P. 1093–1116.
- 13. Konnikov E.G., Meurer W.P., Neruchev S.S. et al. // Miner. deposita. 2000. V. 35. № 6. P. 526–532.
- 14. Wenzel T., Baumgartner L.P., Brugmann G.E. et al. // J. Petrol. 2002. V. 43. № 11. P. 2049–2074.
- 15. Woodland A., Kornprobst J., Wood B. // J. Petrol. 1992. V. 33. Pt. 1. P. 203–230.