

МИНЕРАЛОГИЯ, ПЕТРОГРАФИЯ, ПЕТРОЛОГИЯ

УДК 552.43 (470.323)

МИНЕРАЛОГИЯ, ФАЗОВЫЕ РАВНОВЕСИЯ И УСЛОВИЯ МЕТАМОРФИЗМА ПОРОД ШЕМРАЕВСКОГО ЖЕЛЕЗОРУДНОГО МЕСТОРОЖДЕНИЯ КУРСКОЙ МАГНИТНОЙ АНОМАЛИИ

К.А. Савко, М.В. Поскрякова

Воронежский государственный университет

Породы раннепротерозойской железисто-кремнистой формации Шемраевского месторождения метаморфизованы в наиболее низкотемпературных условиях (биотитовая субфация фации зеленых сланцев) по сравнению с другими железорудными месторождениями Курской магнитной аномалии (KMA). На основании анализа фазовых равновесий во внутрирудных сланцах, содержащих парагенезисы Qtz+Ab+Bt+Ms_{Phn}+Kfs и Qtz-Chl-Cld, и хлорит-хлоритоидной термометрии, определены P-T параметры метаморфизма - 350 – 415 °C при 2 кбар.

В отличие от других месторождений КМА в Шемраевских железистых кварцитах широко распространены гематит и тетраферрибиотит, эгирин резко преобладает над рибекитом, карбонаты представлены только ферродоломитом. Стабильность эгирина относительно рибекита при температурах ниже 400 °C свидетельствует о высоких значениях фугитивности кислорода (выше Mag-Hem буфера) и высокой активности натрия в метаморфическом флюиде, вследствие чего происходит вытеснение рибекита эгирином при log[a(Na⁺)/a(H⁺)] > 6.5 при 350-400 °C.

ВВЕДЕНИЕ

Настоящая работа посвящена изучению процессов метаморфизма в породах железисто-кремнистой формации раннего протерозоя Шемраевского месторождения, находящегося в пределах Белгородского железорудного района КМА. Ранее подобные исследования были проведены для Михайловского и Новоялтинского месторождений Михайловского железорудного района (северная часть КМА) и для Приоскольского и Панковского месторождений Старооскольского железорудного района (Центральная часть КМА). Породы железисто-кремнистой формации в этих рудных районах отличаются друг от друга по минералогии железистых кварцитов и физико-химическим условиям метаморфизма. Данные по минеральным парагенезисам железистых кварцитов и внутрирудным сланцам Белгородского железорудного района, а также оценки условий метаморфизма до настоящего времени отсутствовали. Шемраевское месторождение находится на самом юге и замыкает ряд оцененных железорудных месторождений КМА, так как южнее и юго-западнее его начинается склон Днепрово-Донецкой впадины и резко возрастает мощность фанерозойского осадочного чехла.

Цель настоящей статьи интерпретировать изменения фазовых равновесий и реконструировать физико-химические условия метаморфизма тетраферрибиотит-селадонит-эгириновых железистых кварцитов и биотит-мусковитовых и хлорит-хлоритоидных внутрирудных сланцев Шемраевского месторождения.

ГЕОЛОГИЧЕСКАЯ СИТУАЦИЯ

Шемраевское месторождение находится на юго-восточной части Белгородского рудного района в Щебекинском административного районе Белгородской области. Докембрий в этом районе перекрыт фанерозойским осадочным чехлом мощностью до 400 м. В геологическом строении Шемраевского месторождения принимают участие осадочнометаморфические породы курской серии нижнего протерозоя, которая подразделяется на стойленскую и перекрывающую ее без видимого несогласия коробковскую свиты (рис. 1) [1].

Терригенно-осадочные породы стойленской свиты подстилают железорудную толщу коробковской свиты и делятся на две подсвиты. Нижняя подсвита сложена серыми и светло-серыми тонкозернистыми кварцевыми метапесчаниками. Мощность подсвиты не установлена из-за отсутствия перекрытых разрезов. Верхняя подсвита сложена углеродистыми сланцами, с прослоями метапесчаников и метаалевролитов. Мощность подсвиты колеблется от 15,7 до 177 м.

Коробковская свита на 95 % сложена железистыми кварцитами. Внутрирудные сланцы, составляющие в объеме коробковской свиты не более 5 %, представлены выклинивающимися прослоями выдержанной мощности (от 0,2 до 30 м). Мощность свиты на Шемраевском месторождении не менее 600 м. Особенностью Шемраевского месторождения, отличающего его от других месторождений

Рис. 1. Схематическая геологическая карта Шемраевского железорудного местрождения по [1]

КМА, является очень мощная кора выветривания на железистых кварцитах, достигающая 300 м.

В составе коробковской свиты выделяются две железорудные подсвиты и разделяющая их сланцевая подсвита. Нижняя железорудная подсвита представлена двумя примерно равновеликими горизонтами: нижний сложен переслаивающимися силикатно-магнетитовыми и магнетитовыми кварцитами с редкими прослоями кварцито-сланцев и сланцев, а верхний - магнетитовыми кварцитами с варьирующим содержаниями гематита, рибекита, эгирина, карбонатов, селадонита, тетраферрибиотита и характеризуется тонкополосчатой, линзовидно-полосчатой и неяснополосчатой текстурами, включает редкие прослои сланцев мощностью 0,4-8,3 м. Сланцевая подсвита выделена несколько условно, так как весьма невыдержанна по мощности и литологическому составу. Кроме кварц-хлорит-хлоритоидных и биотит-мусковитовых сланцев в её составе присутствуют кварцевые метапесчаники и кварциты. Верхняя железорудная подсвита сложена магнетитовыми кварцитами с редкими, прослоями сланцев мощностью от 0,2 до 4,6 м в нижней её части. С корой выветривания этих кварцитов связана мощная залежь богатых железных руд Шемраевского месторождения. Мощность подсвиты достигает 350 м.

Железистые кварциты прорваны маломощными дайками аплитовидных гранитов (скв. 3906) кварц-микроклин-альбитового состава.

В структурном плане месторождение представляет собой изолированную, опрокинутую на восток синклинальную складку, ядро которой сложено железистыми кварцитами коробковской свиты, а крылья - терригенно-осадочными метаморфизованными породами стойленской свиты. Шемраевская синклиналь характеризуется сравнительно пологим залеганием восточного крыла (угол падения 25-50°, преимущественно 45°) и более крутым падением опрокинутого крыла (угол падения 70°).

ПЕТРОГРАФИЯ

Железистые кварциты

Железистые кварциты коробковской свиты в пределах Шемраевского месторождения представляют собой тонко- и мелкозернистые породы серого и темно-серого цвета с тонкополосчатыми, иногда плойчатыми текстурами, которые обусловлены чередованием рудных (магнетитовых и гематитовых) и безрудных (кварцевых, карбонатных и силикатных) прослоев. Структура пород микрогранобластовая, микролепидогранобластовая. Среди прослоев встречаются: а) кварцевые с магнетитом (иногда мартитом), гематитом, карбонатом, б) силикатные с эгирином, селадонитом, тетраферрибиотитом, реже рибекитом. Мощность слойков непостоянна - от долей миллиметра до 2-3 см. Кварцевые прослои играют существенную роль и на 70-100 % сложены кварцем, кроме которого присутствуют карбонат, селадонит, тетраферрибиотит, эгирин или рибекит. Слюдистые прослои мощностью первые миллиметры имеют изумрудно-зеленую окраску и сложены преимущественно селадонитом и тетраферрибиотитом. Эгириновые прослои травяно-зеленого цвета могут достигать мощность до 5-10 см в раздувах. В них также могут присутствовать кварц, селадонит, тетраферрибиотит, карбонаты, но не рибекит.

Условные обозначения:

Минеральный состав железистых кварцитов	Шемраевского железорудного месторождения
---	--

Образец	Qtz	Mag	Hem	Sld	Bt	Chl	Ank-Fe-	Aeg	Rbk	Kfs
							Dol			
3907/708,5	+	+	+	ед.з.	-	+	+	+	-	-
3907/721	+	+	+	ВКЛ.	-	-	+	+	-	-
3907/745,1	+	+	+	+	ед.з.	-	+	-	-	-
3907/768	+	+	+	+	+	-	+	-	-	-
3907/831	+	+	+	+	+	-	+	+	-	+
3906/806	+	+	+	+	+	-	+	+	-	-
3906/814,2	+	+	+	+	+	-	-	-	-	-
3906/878	+	+	+	-	-	+	+	ед.з.	+	-
3911/701,4	+	+	+	-	+	-	+	+	-	-
3911/866,5	+	+	+	-	+	-	+	+	-	-
3911/880,1	+	+	+	ед.з.	+	-	+	+	ед.з.	+
3911/890,5	+	+	+	ед.з.	+	-	+	+	-	-
3911/927	+	+	ед.з.	+	+	-	+	+	-	-

Примечание: ед. з. – единичные зерна; вкл. - включения

Рибекитовые прослои в пределах Шемраевского месторождения встречаются редко, мощность их не превышает 2 мм, обычно – это почти мономинеральные темно-синие нитевидные прослои.

Таким образом, в пределах Шемраевского месторождения преобладают магнетит-гематитовые и гематит-магнетитовые кварциты, в которых обычно присутствуют карбонаты анкерит-ферродоломитовой серии, селадонит, тераферрибиотит и эгирин (табл. 1). Ферришамозит, рибекит и калиевый полевой шпат в железистых кварцитах встречаются значительно реже.

Внутрирудные сланцы

Сланцы в прослоях среди железистых кварцитов характеризуются серой и темно-серой окраской лепидобластовыми, иногда нематогранобластовыми структурами, сланцеватыми, полосчатыми, иногда плойчатыми текстурами. По минеральному составу выделяется два типа метапелитов: (1) биотитмусковитовые и (2) хлорит-хлоритоидные. Сланцы первого типа насыщены калием, содержат мусковит и калиевый полевой шпат, второго типа представлены высокоглиноземистыми метапелитами недосыщенными калием. Соответственно два основных типа минеральных парагенезисов в метапелитах представлены: Qtz+Ab+Bt+Ms+Kfs и Qtz+Chl+Cld. Биотит-мусковитовые сланцы очень мелкозернистые, размер минеральных агрегатов не превышает 0,3-0,5 мм. Хлорит-хлоритоидные сланцы тоже тонкозернистые, но в них отмечаются крупные порфиробласты до 1-2 мм хлорита и хлоритоида.

МЕТОДЫ ИССЛЕДОВАНИЯ

Около 50 образцов железистых кварцитов и 15 внутрирудных сланцев были отобраны из керна скважин, который предварительно был детально задокументирован при проведении полевых работ в Игуменской геологоразведочной партии ОАО «Белгородгеология». Шлифы, изготовленные из отобранных образцов, были изучены оптически. Локальные анализы минералов и снимки в отраженных электронах выполнены на электронном микроскопе "CamScan" с системой количественного энергодисперсионного анализа "Link" (Институт экспериментальной минералогии РАН). Точность анализов систематически контролировалась по природным и синтетическим эталонам. Кристаллохимические формулы магнетита рассчитаны на 4 атома кислорода, хлоритоида на 5, эгирина на 6, рибекита на 23, полевых шпатов на 8, слюд на 11, хлоритов на 14. Расчеты температур метаморфизма производились с помощью программы TPF [2].

МИНЕРАЛОГИЯ

Железистые кварциты

<u>Магнетит</u> является главным рудным и породообразующим минералом и встречается в виде отдельных зерен разного размера. Магнетит слагает самостоятельные прослои мощностью до нескольких миллиметров, а также отмечается в смешанных прослоях вместе с кварцем, гематитом, эгирином и слюдами. Магнетит присутствует во всех минеральных парагенезисах железистых пород. По составу это чистый магнетит с незначительными примесями TiO₂, SiO₂, MnO (табл. 2).

<u>Гематит</u> встречается во всех образцах в виде пластинок и чешуек различных размеров. Обычно мелкие чешуйки гематита группируются в прослои мощностью первые миллиметры параллельные слоистости. По количеству гематит обычно уступает магнетиту, хотя в отдельных образцах (например, 3907/708,5; 3907/745,1; 3911/866,5) он преобладает над магнетитом. Иногда гематит образует тонкие каймы вокруг магнетита (обр. 3907/708,5). Помимо кварца и магнетита гематит находится в тесной ассоциации с эгирином и селадонитом.

<u>Карбонаты</u> являются обычными минералами в железистых кварцитах Шемраевского месторождения и установлены почти во всех образцах. Карбонаты относятся к анкерит-ферродоломитовой серии. Карбонаты имеют полигональную форму зерен, иногда это удлиненные или неправильной формы

r									2007/021.0				
ком-		3	906/878,	0			<u>3907/768</u>			3	907/831,0	0	
понен- ты	Fe-Dol- 15	Fe-Dol- 16	Fe-Dol- 17	Fe-Dol- 18	Fe-Dol- 20	Fe-Dol- 10	Mag-9	Fe-Dol- 11	Mag-9	Fe-Dol-4	Fe-Dol-8	Fe-Dol- 10	Fe-Dol- 11
SiO ₂	0,16	0,01	0,35	0,13	0,50	0,15	0,93	0,15	0,28	0,24	0,31	0,41	0,43
Al_2O_3	-	-	-	0,19	-	0,05	0,02	-	0,38	-	0,31	-	0,12
TiO ₂	0,01	-	-	0,11	0,09	0,05	0,05	-	-	-	-	-	-
FeO	9,48	11,95	8,13	11,78	8,54	11,94	95,97	11,94	96,74	16,55	11,77	11,08	13,39
MnO	0,31	0,04	0,12	0,07	0,49	0,73	0,05	0,73	0,03	0,50	0,75	0,65	0,71
MgO	17,62	14,78	17,93	15,77	18,16	15,34	-	15,34	-	12,47	15,85	16,23	14,26
CaO	32,31	29,12	31,41	31,83	32,23	31,28	0,03	31,28	-	29,79	30,89	31,48	30,99
Na ₂ O	0,09	-	-	-	-	-	0,14	-	0,07	0,16	-	-	-
K ₂ O	-	-	-	-	-	0,02	0,05	-	0,07	-	-	-	-
Сумма	59,98	55,90	57,94	59,88	60,01	59,54	97,24	59,44	97,57	59,71	59,88	59,85	59,90
Si	-	-	0,01	-	0,01	-	0,03	-	0,01	-	0,01	0,01	0,01
Fe ²⁺	0,11	0,16	0,10	0,14	0,10	0,15	1,03	0,15	0,99	0,21	0,14	0,14	0,17
Fe ³⁺	-	-	-	-	-	-	1,91	-	1,97	-	-	-	-
Mn	-	-	-	-	0,01	0,01	-	0,01	-	0,01	0,01	0,01	0,01
Mg	0,38	0,35	0,39	0,34	0,39	0,34	-	0,34	-	0,28	0,35	0,35	0,32
Ca	0,50	0,49	0,50	0,50	0,49	0,50	-	0,50	-	0,49	0,48	0,49	0,49
X _{Fe}	0,22	0,31	0,20	0,29	0,20	0,31	-	0,31	-	0,42	0,29	0,29	0,31
Dol	50,00	40,00	53,85	42,86	53,85	40,00		40,00		31,25	46,66	46,67	37,50
Ank	50,00	60,00	46,15	57,14	46,15	60,00		60,00		68,75	53,34	53,33	62,50

Составы карбонатов и магнетита из железистых кварцитов Шемраевского железорудного месторождения КМА

Рис. 2. Составы карбонатов из железистых кварцитов Шемраевского месторождения

кристаллы размером 0,2-1,0 мм в тесной ассоциации с окислами железа, кварцем, селадонитом и эгирином. По составу карбонаты отвечают ферродоломиту с железистостью $[Fe^{2+}/(Fe^{2+}+Mg)] = 0,20-0,31$ (рис. 2, табл. 2). Отдельные кристаллы ферродоломита имеют зональное строение (рис. 3а). Центральные части кристаллов более железистые ($X_{Fe} = 0.29-0.31$), чем краевые ($X_{Fe} = 0.20-0.22$).

<u>Тетраферрибиотит</u> в отличие от других железорудных месторождений КМА является наиболее распространенной слюдой и количественно он в ряде образцов преобладает над селадонитом. Ранее он был встречен только в нескольких образцах из Михайловского месторождения КМА. Хотя безглиноземистый биотит считается редким минералом, в пределах Шемраевского месторождения он присутствует в большинстве образцов (табл. 1), образуя хорошо оформленные лейсты буровато-коричневого цвета размером до 1 мм по удлинению, часто в виде сростков с селадонитом (рис. 3 b-d). Тетраферрибио-

магнезиальным. Обр. 3906/878; b) взаимоотношения тетраферрибиотита и селадонита в магнетит-гематитовом прослое. Обр. 3907/831; c) относительно крупные идиоморфные лейсты селадонита секут кристаллы биотита. Обр. 3907/831; d) замещение тетраферрибиотита селадонитом в кварцевом матриксе. Обр. 3907/768; e) мелкие чешуйки ферришамозита в магнетитовом прослое в ассоциации с призматическими кристаллами рибекита. Обр.3906/878; f) крупные кристаллы эгирина, слагающие прослои различной мощности в тесной ассоциации с безглиноземистыми слюдами, магнетитом и ферродоломитом. Обр. 3907/831. Снимки в отраженных электронах. Номера точек месторождения: а) зональное строение зерна ферродоломита: центральная часть (более светлый тон) характеризуется более железистым составом, а краевые зоны более микрозондовых анализов соответствуют номерам анализов в таблицах 2-7

Рис. З. Точки микрозондовых анализов, минеральные парагенезисы и взаимоотношения минеральных фаз в железистых кварцитах Шемраевского

KMg₃[AlSi₃O₁₀](OH)₂

KFe₃[AlSi₃O₁₀](OH)₂

Аннит

Флогопит

Рис. 4. Составы тетраферрибиотитов на классификационной диаграмме. Составы тетраферрибиотитов: 1 - из железистых кварцитов Михайловского месторождения; 2 – из железистой формации Пенж (ЮАР); 3 –из железистой формации Дэйлс Жорж (Зап. Австралия); 4- железистых кварцитов Шемраевского месторождения

Таблица З

Составы тетраферрибиотитов из железистых кварцитов Шемраевского месторождения КМА

			39	07/831					3907/768		
компоненты	Bt-1	Bt-3	Bt-7	Bt-8	Bt-3-2	Bt-6	Bt-3-6	Bt-3-7	Bt-3	Bt-4	Bt-6
SiO ₂	38,87	38,66	38,62	37,06	39,00	37,57	38,21	37,90	36,28	36,47	36,32
Al ₂ O ₃	0,00	0,23	0,13	0,07	0,34	0,17	0,01	-	0,09	0,21	0,14
TiO ₂	0,07	-	0,06	-	-	-	0,02	0,08	-	-	-
FeO	37,42	37,54	38,12	39,52	37,18	39,18	37,72	38,14	40,26	38,47	39,53
MnO	0,07	0,02	0,06	0,01	0,19	0,21	-	-	0,22	0,09	0,20
MgO	10,51	10,11	10,24	9,93	10,28	8,99	10,48	10,01	9,93	11,06	9,93
CaO	-	0,06	0,33	0,06	0,10	0,14	-	-	0,05	0,26	-
Na ₂ O	0,14	0,30	0,10	0,05	-	0,06	0,27	0,40	0,05	-	-
K ₂ O	9,33	9,38	8,85	9,13	9,11	9,00	9,23	9,32	9,03	8,04	8,84
Сумма	96,41	96,30	96,51	95,83	96,20	95,32	95,94	95,85	95,91	94,60	94,96
110											
Si	3,16	3,17	3,14	3,05	3,18	3,13	3,13	3,13	2,99	2,99	3,01
Al	-	0,02	0,01	0,01	0,03	0,02	-	-	0,02	0,02	0,01
Fe ³⁺	0,84	0,81	0,85	0,94	0,79	0,85	0,87	0,87	1,00	0,99	0,98
Σ	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Ti	-	-	-	-	-	-	-	0,01	-	-	-
Fe ³⁺	-	-	-	-	-	-	-	-	0,05	0,13	0,06
Fe ²⁺	1,67	1,76	1,75	1,78	1,74	1,87	1,72	1,76	1,72	1,52	1,70
Mn	0,01	-	-	-	0,01	0,02	-	-	0,02	0,01	0,01
Mg	1,28	1,23	1,24	1,22	1,25	1,11	1,28	1,23	1,21	1,35	1,23
Σ	2,96	2,99	2,99	3,00	3,00	3,00	3,00	3,00	3,00	3,01	3,00
Ca	-	0,01	0,03	0,01	0,01	0,01	-	-	-	0,02	-
Na	0,02	0,05	0,02	0,01	-	0,01	0,04	0,07	0,08	-	-
K	0,97	0,98	0,92	0,96	0,95	0,96	0,97	0,98	0,88	0,84	0,93
Σ	0,99	1,04	0,97	0,98	0,96	0,98	1,01	1,05	0,96	0,86	0,93
X _{Fe}	0,57	0,59	0,58	0,59	0,58	0,63	0,57	0,59	0,59	0,53	0,58

титы характеризуются очень низкой глиноземистостью (содержания Al_2O_3 не превышают 0,34 мас. %) по сравнению с тетраферрибиотитами Михайловского месторождения ($Al_2O_3 = 0,53-2,60$ мас. %) (рис. 4; табл. 3). Железистость их находится в интервале 0,52-0,62 ат. %. Содержания фтора и хлора в сумме не превышают 0,1 мас. %. Также очень низкие и содержания титана.

<u>Селадонит</u> – изумрудно-зеленая слюда встречается в виде небольших хорошо оформленных лейст размером от десятых долей до 1,0 мм преимущественно в магнетитовых прослоях (рис. 3 b) в

Составы селадонитов из железистых кварцитов Шемраевского железорудного месторождения КМА

	3	907/76	8,0			3907/831											
компонен- ты	I-pIS	Sld-2	Sld-5	Sld-7	SId-8	Sld-2	Sld-4	6-pIS	Sld-11	Sld-5	SId-7	Sld-5	SId-8	6-pIS	Sld-10	Sld-13	Sld-14
SiO ₂	49,50	48,89	49,13	48,26	49,33	48,03	48,81	50,46	50,39	49,57	48,32	48,65	48,30	48,34	49,75	48,01	48,91
Al ₂ O ₃	0,20	0,19	0,14	0,19	0,26	0,03	0,27	0,31	0,35	0,25	0,10	0,02	0,10	0,55	0,49	0,17	1,02
TiO ₂	-	-	0,03	-	-	0,08	0,05	-	0,08	0,07	0,06	0,16	-	-	-	-	-
FeO	27,67	26,92	27,32	27,53	27,82	27,71	25,62	25,60	25,59	27,54	28,42	28,23	29,30	27,73	27,54	30,77	28,45
MnO	0,09	-	0,03	0,11	0,04	-	-	-	-	-	0,05	-	0,04	-	-	-	-
MgO	4,90	4,87	5,16	4,69	5,17	5,13	4,98	5,87	5,25	5,11	4,74	4,74	4,67	5,09	5,69	4,84	5,75
CaO	0,13	0,01	0,04	0,13	-	-	-	0,04	-	0,07	0,12	-	-	-	-	-	-
Na ₂ O	-	-	-	0,22	0,06	0,12	0,17	-	0,15	0,04	0,02	0,01	0,28	0,41	-	-	-
K ₂ O	10,20	9,96	10,02	10,06	10,29	10,04	9,87	9,54	10,16	10,20	10,06	10,18	10,21	9,65	10,15	10,20	9,86
F	-	-	-	0,51	-	-	-	-	-	-	-	-	-	н.о.	н.о.	н.о.	Н.О.
Cl	-	0,08	0,07	-	-	-	-	0,04	0,01	0,01	-	0,02	0,02	н.о.	н.о.	н.о.	Н.О.
Σ	92,69	90,92	91,80	91,70	92,97	91,14	89,77	91,86	91,97	92,86	91,89	92,01	92,92	91,77	93,62	93,99	93,99
								11	0								
Si	3,97	3,94	3,91	3,97	3,92	3,96	3,99	3,99	3,98	3,97	3,96	3,98	3,93	3,94	3,98	3,97	3,98
Al	0,01	0,02	0,01	0,02	0,02	-	0,02	0,03	0,03	0,02	0,01	-	0,01	0,05	0,04	0,01	0,09
Fe ³⁺	0,02	0,04	0,08	0,01	0,06	0,05	0,01	0,02	0,02	0,02	0,03	0,02	0,06	0,01	-	0,02	-
Σ	4,00	4,00	4,00	4,00	4,00	4,01	4,00	4,04	4,03	4,01	4,00	4,00	4,00	4,00	4,02	4,00	4,07
Ti	-	-	-	-	-	-	0,02	-	-	-	-	0,02	-	-	-	-	-
Fe ²⁺	0,20	0,24	0,20	0,11	0,13	0,09	0,19	0,30	0,21	0,18	0,17	0,19	0,06	0,10	0,14	0,10	0,12
Fe ³⁺	1,51	1,26	1,45	1,61	1,54	1,62	1,51	1,28	1,37	1,52	1,60	1,59	1,71	1,64	1,56	1,79	1,63
Mn	0,01	-	-	0,01	-	-	-	-	-	-	-	-	-	-	-	-	-
Mg	0,55	0,55	0,58	0,53	0,57	0,58	0,57	0,66	0,59	0,57	0,54	0,53	0,52	0,57	0,63	0,54	0,63
Σ	2,27	2,05	2,23	2,26	2,24	2,29	2,29	2,24	2,17	2,27	2,31	2,33	2,29	2,31	2,33	2,43	2,38
Ca	0,01	-	-	0,01	-	-	-	-	-	0,01	0,01	-	-	-	-	-	-
Na	-	-	-	0,03	0,01	0,02	0,03	-	0,02	0,01	-	-	0,04	0,06	-	-	-
K	0,98	0,97	0,97	0,98	0,98	0,97	0,96	0,91	0,97	0,97	0,97	0,98	0,98	0,93	0,96	0,97	0,93
Σ	0,99	0,97	0,97	1,02	0,99	0,99	0,99	0,91	0,99	0,99	0,98	0,98	1,02	0,99	0,96	0,97	0,93
X(Fe)	0,27	0,30	0,26	0,17	0,19	0,13	0,25	0,31	0,26	0,24	0,24	0,26	0,10	0,15	0,18	0,16	0,18

K(Mg Al□)[**Si**₄O₁₀](OH)₂ "Лейкофиллит"

K(Fe²⁺ Al)[Si₄O₁₀](OH)₂

"Ферролейкофиллит"

Рис. 5. Составы селадонитов из пород железисто-кремнистой формации КМА

тесной ассоциации с магнетитом, тетраферрибиотитом и ферродоломитом. По составу селадонит характеризуется низкой глиноземистостью (содержания Al_2O_3 не превышают 0,35 мас. %) и железистостью ($X_{Fe} = 0,10-0,30$) (рис. 5; табл. 4). На рис. 3 с и d показаны срастания тетраферрибиотита и селадонита, где кристаллы селадонита имеют более правильные кристаллографические формы и секут лейсты тетраферрибиотита.

<u>Ферришамозит</u> установлен в двух образцах и представлен чешуйками неправильной формы размером до 0,5 мм зеленовато-бурого цвета, которые

компоненты				3906/878,0			
	Fe-Shm-4	Fe-Shm-5	Fe-Shm-6	Fe-Shm-7	Fe-Shm-11	Fe-Shm-12	Fe-Shm-13
SiO ₂	29,18	30,44	28,81	28,36	28,96	28,46	27,60
Al ₂ O ₃	2,96	3,84	2,47	3,12	3,24	2,97	3,22
TiO ₂	0,01	0,05	0,04	0,04	0,01	-	-
FeO	40,82	36,86	41,94	40,72	39,63	40,95	42,85
MnO	-	0,17	0,25	0,25	-	0,11	0,11
MgO	15,09	16,50	14,95	14,92	14,78	14,63	13,65
CaO	0,12	0,10	0,24	0,02	0,16	0,50	0,27
Na ₂ O	0,11	0,24	-	0,07	0,30	0,04	0,04
K ₂ O	0,65	0,56	0,04	0,24	0,40	0,18	0,17
Cl	0,05	0,09	0,02	0,08	0,04	0,05	0,06
Сумма	88,99	88,85	88,76	87,82	87,52	87,89	87,97
			140				
Si	3,38	3,43	3,35	3,32	3,36	3,34	3,28
Al ^{IV}	0,40	0,51	0,34	0,43	0,44	0,41	0,45
Fe ³⁺	0,22	0,06	0,31	0,25	0,20	0,25	0,27
Σ	4,00	4,00	4,00	4,00	4,00	4,00	4,00
Fe ²⁺	2,49	2,36	2,67	2,57	2,52	2,61	2,72
Fe ³⁺	1,05	0,93	0,93	1,01	1,00	0,98	1,08
Mn	-	0,02	0,03	0,03	-	0,01	0,01
Mg	2,61	2,77	2,59	2,61	2,56	2,56	2,42
Σ	6,15	6,08	6,22	6,22	6,08	6,16	6,23
Ca	0,02	0,01	0,03	-	0,02	0,06	0,03
Na	0,03	0,05	-	0,02	0,07	0,01	0,01
K	0,10	0,08	0,01	0,04	0,06	0,03	0,03
Cl	0,01	0,02	-	0,01	-	0,01	0,01
X _{Fe}	0,49	0,46	0,51	0,50	0,50	0,50	0,53

Составы ферришамозитов из железистых кварцитов Шемраевского железорудного месторождения КМА

(Na+K)₄ **0.50;** (Mg+Fe²⁺+Mn²⁺) > 2.5; Na_B ≥ 1.50 Si (формульные ед.)

- Рибекиты Шемраевского месторождения
- Рибекиты Панковского месторождения
- Рибекиты Михайловского месторождения

Рис. 6. Составы рибекитов из пород железистокремнистой формации КМА

тяготеют к магнетитовым прослоям (рис. 3 е). Хлорит имеет очень низкоглиноземистый состав (Al_2O_3 = 2,96-3,84 мас. %) и относительно умеренную железистость (X_{Fe} =0.46-0.53) (табл. 5). Ферришамозиты ранее были установлены нами в пределах Михайловского и Новоялтинского месторождений в пределах Михайловского железорудного района. Они характеризуются большей железистостью (X_{Fe}=0.54-0.89) и меньшей глиноземистостью (содержание Al₂O₃ < 1,62 мас. %) [3, 4].

Рибекит в пределах Шемраевского месторождения встречается намного реже, чем эгирин. Это мелкие призматические кристаллы и сноповидные агрегаты голубого цвета с заметным плеохроизмом от бесцветного до темно-синего размером до 0,5 мм (рис. 3 е). Как правило, рибекит образует прослои мощностью первые миллиметры среди железистых кварцитов и крайне редко находится в ассоциации с эгирином (табл. 1). По составу рибекиты из железистых кварцитов Михайловского месторождения достаточно магнезиальные – X_{Fe} = 0.27-0.51 (табл. 6) и отвечают магнезиорибекитам по классификации Б.Е. Лика с соавторами [5] (рис. 6). Содержания MgO находятся в интервале 7,2-11,1 мас. %, что выше, чем в рибекитах из других железорудных месторождений КМА.

<u>Эгирин</u> в породах железистой формации Шемраевского месторождения встречается в виде призматических кристаллов размером до 2 мм по длинной оси, слагающих прослои травяно-зеленого цвета мощностью до 1-2 см в раздувах до 7 см среди железистых кварцитов (рис. 3f). Эгирин тяготеет к магнетит-гематитовым прослоям (рис. 3f), иногда

Таблица 6 Составы рибекитов из железистый кварцитов Шемраевского железорудного месторождения КМА

	3906/878,0									
компо- ненты	Rbk-I	Rbk-2	Rbk-3	Rbk-8	Rbk-14	Rbk-19				
SiO ₂	55,72	55,42	54,81	56,11	55,22	55,74				
FeO	24,45	25,59	28,10	24,56	22,89	26,47				
MnO	-	-	-	-	0,01	-				
MgO	9,84	9,52	7,19	9,72	11,13	8,65				
CaO	0,03	0,06	-	-	0,03	0,06				
Na ₂ O	7,22	7,08	7,25	7,26	7,27	6,96				
K ₂ O	0,62	0,25	0,13	0,24	1,23	0,12				
Cl	-	-	-	-	0,06	-				
Сумма	97,88	97,92	97,48	97,89	97,84	98,00				
			230							
Si	7,97	7,92	8,00	8,00	7,89	7,98				
Σ	7,97	7,92	8,00	8,00	7,89	7,98				
Fe ²⁺	1,08	0,96	1,65	1,06	0,86	1,03				
Fe ³⁺	1,85	2,10	1,78	1,87	1,88	2,14				
Mn	-	-	-	-	-	-				
Mg	2,10	2,03	1,57	2,07	2,37	1,85				
Σ	5,03	5,09	5,00	5,00	5,11	5,02				
Ca	0,01	0,01	-	-	0,01	0,01				
Na	2,00	1,96	2,05	2,01	2,01	1,86				
K	0,11	0,05	0,02	0,04	0,22	0,02				
Σ	2,12	2,02	2,7	2,50	2,50	1,90				
Cl	-	-	-	-	0,02	-				
X _{Fe}	0,34	0,32	0,51	0,34	0,27	0,37				

Составы эгиринов из железистых кварцитов Шемраевского железорудного месторождения КМА

компо-		3906/878,0)	3907/831,0
ненты	Aeg-9	Aeg-21	Aeg-22	Aeg-22
SiO ₂	52,37	52,64	53,39	52,72
Al ₂ O ₃	-	-	-	-
TiO ₂	0,12	-	-	0,14
FeO	32,07	32,23	31,94	32,42
MnO	0,17	-	-	-
MgO	0,39	0,38	0,24	0,22
CaO	0,63	0,45	0,27	0,39
Na ₂ O	13,72	14,07	14,09	13,80
K ₂ O	0,01	-	-	-
F	0,41	-	-	-
Cl	-	-	0,03	0,11
Сумма	99,89	99,77	99,96	99,80
	6	0		
Si	2,02	2,02	2,04	2,02
Al	-	-	_	
n 2+				-
Fe	-	-	-	-
$\frac{Fe^{3+}}{Fe^{3+}}$	- 0,93	- 0,93	- 0,92	- 0,94
Fe ³⁺ Mn	- 0,93 0,01	- 0,93 -	- 0,92 -	- - 0,94 -
Fe ³⁺ Mn Mg	- 0,93 0,01 0,02	- 0,93 - 0,02	- 0,92 - 0,01	- 0,94 - 0,01
Fe ³⁺ Mn Mg Ca	- 0,93 0,01 0,02 0,03	- 0,93 - 0,02 0,02	- 0,92 - 0,01 0,01	- 0,94 - 0,01 0,02
Fe ³⁺ Mn Mg Ca Na	- 0,93 0,01 0,02 0,03 1,02	- 0,93 - 0,02 0,02 1,05	- 0,92 - 0,01 0,01 1,04	- 0,94 - 0,01 0,02 1,03
Fe ³⁺ Mn Mg Ca Na K	- 0,93 0,01 0,02 0,03 1,02 -	- 0,93 - 0,02 0,02 1,05 -	- 0,92 - 0,01 0,01 1,04 -	- 0,94 - 0,01 0,02 1,03 -
Fe ³⁺ Mn Mg Ca Na K F	- 0,93 0,01 0,02 0,03 1,02 - 0,01	- 0,93 - 0,02 0,02 1,05 -	- 0,92 - 0,01 0,01 1,04 -	- 0,94 - 0,01 0,02 1,03 -

содержит включения ферродоломита. Вместе с эгирином в рудных прослоях почти всегда присутствует гематит.

Эгирин в своем составе содержит незначительные примеси TiO_2 (до 0.12 мас. %), CaO (0,27-0,63 мас. %), MgO (до 0,24-0,39 мас. %), MnO (до 0.17 мас. %) (табл. 7) и отвечает конечному члену ряда эгирин - авгит.

Из акцессорных минералов чаще всего встречается апатит, который может образовывать довольно крупные кристаллы.

Внутрирудные сланцы Насыщенные калием метапелиты

<u>Мусковит</u> представлен очень мелкими чешуйками (от 20 до 50 мкм). Его количество достигает 20-30 модальных %. Мелкие лейсты мусковита вместе с биотитом образуют прослои в кварцальбитовом матриксе мощностью до 0,5 мм (рис. 7 а). По составу мусковиты характеризуются значительной примесью фенгитового компонента Ms₅₉Pg₂. ₃Phn₃₈₋₃₉ (табл. 8).

<u>Биотит</u> встречается во внутрирудных сланцах в виде очень мелких чешуек и лейст, которые часто развиваются по мусковиту, иногда образуя очень тонкие каймы (рис. 7 а). По количеству он значительно уступает мусковиту. По составу биотит характеризуется умеренной железистостью ($X_{Fe} = 0.51-0.54$) и достаточно высокой титанистостью (содержание TiO₂ от 2,18 до 2,52 мас. %) (табл. 8). Содержание истонит-сидерофиллитового минала в биотитах составляет около 50 % (рис. 8), что характерно для очень низкотемпературных условий.

Кроме кварца в насыщенных калием сланцах присутствуют полевые шпаты, представленные мелкими до 0,1 мм кристаллами почти чистого альбита $(Ab_{99}An_1)$ и микроклина $(Ort_{98}Ab_2)$ (табл. 9).

Недосыщенные калием метапелиты

Недосыщенные калием метапелиты представляют собой кварц-хлорит-хлоритоидные сланцы.

<u>Хлорит</u> является преобладающим минералом в этих породах, его количество достигает 50 модальных %. встречается в виде пластинчатых кристаллов размером до 2 мм и характеризуется довольно постоянным составом с довольно высокой железистостью 74-76 ат. % и обычной для хлоритов глиноземистостью (табл. 10).

<u>Хлоритоид</u> встречается в виде крупных порфиробласт размером до 2-3 мм в мелкозернистом кварц-хлоритовом матриксе. Это пластинчатые кристаллы с ясным плеохроизмом в голубых тонах и совершенной спайностью с закономерно расположенными включениями углеродистого вещества в результате вращения кристаллов при росте (рис. 7 б). Его количество в отдельных образцах не превышает 10 модальных процентов. Хлоритоид характеризуется железистостью 92-95 ат. % и содержаниями марганца 0,26-0,38 мас. % MnO (табл. 11).

HV: 20.0 kV VAC: HiVac DATE: 12/06/03 200 µm Device: MV2300 Vega ©Tescan RSMA Group IEM RAS

Рис. 7. Снимки участков шлифов в отраженных электронах из железистых кварцитов Шемраевского железорудного месторождения: а) тонкозернистый биотит-мусковитовый сланец. Фенгитовый мусковит резко преобладает над биотитом. Немногочисленные чешуйки биотита развиваются по мусковиту, образуя тонкие каймы Обр. 3906/830; b) Крупный порфиробласт хлоритоида с закономерно ориентированными включениями углеродистого вещества. Обр. 3911/732

ИНТЕРПРЕТАЦИЯ МИНЕРАЛЬНЫХ РАВНОВЕСИЙ Метапелиты

Присутствие в недосыщенных калием высокоглиноземистых внутрирудных сланцах парагенезиса Qtz+Chl+Cld и насыщенных калием - Qtz+Ab+

Составы биотитов и мусковитов из внутрируд-
ных сланцев Шемраевского железорудного
месторождения КМА

Таблица 8

компо-			3906/830,0)	
ненты			Ι	~	4
	Bt-1	Bt-5	8t-1	As	AS-4
			E	V	V
SiO ₂	36,64	36,66	39,24	48,37	48,71
Al_2O_3	14,53	15,06	15,28	29,09	29,15
TiO ₂	2,32	2,52	2,18	0,95	1,20
FeO	20,56	21,29	19,73	2,73	2,92
MnO	0,02	0,08	0,04	-	-
MgO	10,67	10,08	10,71	2,26	2,09
CaO	-	0,05	0,07	-	0,11
Na ₂ O	0,13	-	0,05	0,16	0,24
K ₂ O	10,11	9,74	8,66	11,41	11,56
F	-	0,24	-	-	-
Cl	-	0,10	0,04	-	-
Сумма	94,98	95,82	96,00	94,97	95,98
		11	10		
Si	2,84	2,82	2,94	3,27	3,27
Al	1,16	1,18	1,06	0,73	0,73
Σ	4,00	4,00	4,00	4,00	4,00
Al ^{VI}	0,16	0,19	0,29	1,59	1,57
Ti	0,14	0,15	0,12	0,05	0,06
Fe ²⁺	1,33	1,37	1,24	0,15	0,16
Fe ³⁺	-	-	-	-	-
Mn	-	0,01	-	-	-
Mg	1,23	1,16	1,20	0,23	0,21
Σ	2,86	2,88	2,85	2,02	2,00
Ca	-	-	0,01	-	0,01
Na	0,02	-	0,01	0,02	0,03
Κ	0,99	0,96	0,83	0,98	0,99
Σ	1,01	0,96	0,85	1,00	1,03
F	-	0,02	-	-	-
Cl	-	0,01	-	-	-
X_{Fe}	0,52	0,54	0,51	0,39	0,43
Si/Al	2,15	2,06	2,18	1,41	1,42
	ŀ	Сомпонент	тный соста	lB	
Sdph	0,18	0,22	0,34	-	-
East	0,16	0,18	0,33	-	-
Ann	0,34	0,32	0,17	-	-
Phl	0,32	0,27	0,17	-	-
Ms	-	-	-	0,59	0,59
Phn	-	-	-	0,39	0,38
Pg	-	-	-	0,02	0,03

+Bt+Ms_{Phn}+Kfs позволяет нам отнести их к биотитовой субфации зеленосланцевой фации метаморфизма по С.П. Кориковскому [6]. Ее низкотемпературная граница определяется по появлению первых биотитов в малоглиноземистых породах, высокотемпературная – по образованию железистых гранатов за счет распада хлоритов. В пределах биотитовой субфации зеленосланцевой фации С.П. Кориковским [6] были также выделены температурные ступени для высокоглиноземистых пород Патомского нагорья: пирофиллит-хлоритовая, пирофиллитхлорит-хлоритоидная и кианит (андалузит)-хлоритоидная, которым соответствуют биотит-хлорит-

Рис. 8. Компонентный состав биотитов в породах зеленосланцевой фации: 1 - биотиты из внутрирудных сланцев биотитовой субфации Шемраевского железорудного месторождения; 2 - биотиты из пород биотитовой субфации Вермонт, США [31]; 3 - биотиты из пород зоны граната Вермонт, США [31]; 4 - биотиты из пород гранатовой зоны воронцовской серии Воронежского кристаллического массива [14]

Таблица 9
Составы полевых шпатов из внутрирудных
сланцев Шемраевского железорудного
месторожления

компо-		3906	/830,0	
ненты	Kfs-2	Pl-6	Pl-7	Pl-9
SiO ₂	64,67	68,57	68,14	68,35
Al ₂ O ₃	18,15	19,26	19,09	18,93
TiO ₂	0,01	0,02	0,04	0,10
FeO	0,25	0,04	0,22	0,18
MnO	0,04	0,04	0,03	-
MgO	-	-	-	-
CaO	-	0,01	0,10	0,12
Na ₂ O	0,23	11,71	12,05	11,98
K ₂ O	16,49	0,08	0,07	0,10
Сумма	99,84	99,73	99,74	99,76
		80		
Si	3,00	2,99	2,99	3,00
Al	0,99	0,99	0,99	0,98
Ti	-	-	-	-
Fe ²⁺	0,01	-	0,01	0,01
Fe ³⁺	-	-	-	-
Mn	-	-	-	-
Mg	-	-	-	-
Ca	-	-	0,01	0,01
Na	0,02	0,99	1,02	1,02
K	0,98	-	-	0,01
	Комп	юнентный с	остав	
Ab	0,02	0,99	0,99	0,99
An	-	0,01	0,01	0,01
Ort	0,98	-	-	-

стильпномелан-микроклиновая, биотит-хлорит-микроклин-фенгитовая и биотит-хлорит-фенгитовая в насыщенных калием и недосыщенных глиноземом метаосадках.

Низкоглиноземистые насыщенные калием сланцы

Характерной особенностью метаосадков биотитовой зоны является ограниченная устойчивость биотита, обусловленная литологическими и парагенетическими факторами. В условиях биотитовой субфации биотит появляется только в породах с низким отношением Al/(Mg+Fe), и стабильны лишь его среднежелезистые разности. В железистой области составов вместо биотита устойчив парагене-

Таблица 10 Составы хлоритов из внутрирудных сланцев Шемраевского железорудного месторождения

компонен-	3911/732,0					
ты	Chl-1	Chl-2	Chl-4	Chl-9		
SiO ₂	22,58	23,01	22,88	22,69		
Al ₂ O ₃	22,97	22,01	22,56	22,72		
TiO ₂	0,10	0,27	-	0,20		
FeO	35,85	36,42	36,48	36,08		
MnO	0,19	0,19	0,06	0,11		
MgO	7,03	6,91	6,76	6,84		
CaO	0,04	0,05	0,09	-		
Na ₂ O	-	0,08	0,07	-		
K ₂ O	0,08	-	0,04	0,03		
Cl	0,01	0,04	0,05	0,04		
Сумма	88,98	89,00	88,99	88,80		
		140				
Si	2,49	2,55	2,53	2,51		
Al ^{IV}	1,51	1,45	1,47	1,49		
Σ	4,00	4,00	4,00	4,00		
Ti	0,01	0,02	-	0,02		
Fe ²⁺	3,31	3,37	3,38	3,34		
Al ^{VI}	1,48	1,42	1,48	1,47		
Mn	0,02	0,02	0,01	0,01		
Mg	1,16	1,14	1,12	1,13		
Σ	5,98	5,97	5,99	5,97		
Ca	0,01	0,01	0,01	-		
Na	-	0,02	0,02	-		
Κ	0,01	-	0,01	-		
Cl	-	-	0,01	0,01		
X _{Fe}	0,74	0,75	0,75	0,76		

зис Phn+Mag(Hem), а в магнезиальной - Phn+ +Mgs(Ta). Поэтому в биотитовой субфации мусковит и хлорит в количественном отношении значительно преобладают над биотитом. К примеру, в высокоглиноземистых метапелитах хребта Таконик (США) [7] и поясе Санбагава (Япония) [8] биотит впервые появляется в глубине зоны граната.

В пределах зеленосланцевой фации глиноземистость биотита зависит от степени метаморфизма. Чем ниже температура его образования, тем ниже его предельная глиноземистость, и появление чистых истонит-сидерофиллитов возможно только в альмандин-хлорит-хлоритоидной субфации (зона граната). Это ясно проиллюстрировано С.П. Кориковским [6] на примере нескольких регионов, где установлены породы, метаморфизованные в условиях биотитовой субфации.

С увеличением температуры уменьшается также фенгитовость мусковитов в парагенезисе $Bt+Ms_{Phn}+Kfs$ от 100 до 25 % в результате реакции Phn $\rightarrow Ms_{Phn}+Bt+Kfs+Qtz+H_2O$, хотя верхний предел зависит только от состава породы [9]. Более того, образование биотита происходит раньше в породах, содержащих более фенгитовый мусковит: $Ms_{Phn}++Chl\rightarrow Ms_{Phn}+Bt+Qtz+H_2O$ [10], [11].

Возникновение парагенезиса Bt+Ms_{Phn} могло произойти в низкотемпературной части биотитовой субфации на биотит-хлорит-стильпномелан-микроклиновой ступени в результате реакции Stp+Chl+

	•	11
1 an	пипя	

3911/732,0							
компоненты	Cld-5	Cld-6	Cld-7	Cld-8	Cld-10	Cld-11	Cld-12
SiO ₂	25,24	24,59	24,83	24,29	24,82	24,87	25,11
Al ₂ O ₃	39,40	40,82	40,42	41,11	40,88	4088	41,02
TiO ₂	-	0,14	0,04	0,14	-	0,03	-
FeO	27,54	27,89	29,41	27,81	28,88	28,30	28,32
MnO	0,26	0,34	0,31	0,38	0,27	0,32	0,27
MgO	1,28	1,02	0,85	0,92	0,84	1,15	1,05
CaO	0,07	0,08	0,06	0,01	0,12	0,05	0,05
Na ₂ O	-	0,03	0,02	0,27	0,07	-	0,10
K ₂ O	0,07	-	-	-	0,04	-	-
Cl	0,04	0,03	0,02	0,07	-	0,01	-
P_2O_5	0,09	-	-	-	0,09	-	-
SO ₃	-	0,04	0,02	-	-	-	0,08
Сумма	93,99	94,98	95,98	95,00	96,01	95,61	96,00
			50	0			
Si	2,08	2,01	2,02	1,99	2,01	2,02	2,03
Al	3,83	3,93	3,88	3,96	3,91	3,91	3,91
Ti	-	0,01	-	0,01	-	-	-
Fe ²⁺	1,89	1,91	2,00	1,90	1,96	1,92	1,91
Mn	0,02	0,02	0,02	0,03	0,02	0,02	0,02
Mg	0,16	0,12	0,10	0,11	0,10	0,14	0,13
Ca	0,01	0,01	0,01	-	0,01	-	-
Na	-	0,01	-	0,04	0,01	-	0,02
K	0,01	-	-	-	-	-	-
Cl	0,01	0,01	-	0,01	-	-	-
Р	0,01	-	-	-	0,01	-	-
S	-	0,01	-	-	-	-	0,01
X _{Fe}	0,92	0,94	0,95	0,94	0,95	0,93	0,94

Составы хлоритоидов из внутрирудных сланцев Ш	емраевского
железорудного месторождения КМА	

Рис. 9. Равновесия во внутрирудных сланцах Шемраевского месторождения (биотитовая субфация фации зеленых сланцев)

+Кfs+Hem (Mag) \rightarrow Bt + Ms_{Phn}+Qtz+H₂O, которую называют «первой изоградой биотита» [6]. До появления биотита в метапелитах обычно широко развит парагенезис хлорита с микроклином [10, 12]. Низкая глиноземистость биотитов, содержащих 14,5-15,3 мас. % Al₂O₃ (39,5-48,5 % истонит-сидерофиллитового минала), при железистости 51-54 % свидетельствует о протекании во внутрирудных сланцах Шемраевского месторождения реакции Chl+Kfs \rightarrow Bt+Ms_{Phn}+Qtz+H₂O (рис. 9), которая считается изоградной для биотита [10] или второй изоградой биотита [6]. В результате, среднежелезистый биотит, содержащий до 50 % истонит-сидерофиллитового минала, становится устойчив с фенгит-мускови-

товой слюдой. При этом калиевый полевой шпат остается в избытке. Распад хлорит-микроклинового парагенезиса и устойчивость Bt+Ms_{Phn} (рис. 9) свидетельствуют о переходе к высокотемпературной ступени биотитовой субфации [6].

Высокоглиноземистые низкокалиевые сланцы

Парагенезис Qtz+Chl+Cld дает нам возможность приблизительно определить низкотемпературную границу метаморфизма. За нее можно принять изоградную реакцию образования хлоритоида: Chl₁₀₀+Prl \rightarrow Cld₁₀₀+Qtz+H₂O, которая соответствует второй изограде биотита в высококалиевых породах. С увеличением температуры стабильность хлоритоида расширяется, и снижается его железистость до 90-85 % в результате реакции Cld_{Fe}+Chl+Prl \rightarrow Cld_{Mg-Fe}+Qtz+H₂O.

В то же время полное отсутствие железистого граната свидетельствует о том, что температуры метаморфизма не достигли его истинной изограды, которой считается реакция $Chl_{Fe}+Qtz \rightarrow Grt_{Fe}+H_2O$. Однако отсутствие граната может привести к ошибочным выводам при отнесении метапелитов к гранатовой или к биотитовой субфации. Дело в том, что спессартиновые гранаты устойчивы в биотитовой субфации (например, в Тим-Ястребовской структуре КМА [13]), а в пределах гранатовой зоны метаморфических комплексов андалузитового типа стабильность граната сужается из-за смещения в железистую область интервала его устойчивых составов [6]. Гранат может встречаться очень редко, а то и вовсе отсутствовать в среднежелезистых метапелитах как, например, в зональном метаморфическом комплексе воронцовской серии на востоке Воронежского кристаллического массива [14]. Однако весьма железистый состав хлоритов и хлоритоидов из внутрирудных сланцев Шемраевского месторождения предполагает, что условия «зоны граната» достигнуты не были.

Железистые кварциты

При анализе фазовых равновесий внутрирудных сланцев мы установили, что породы железистокремнистой формации Шемраевского месторождения относятся к биотитовой субфации фации зеленых сланцев. Из всех изученных ранее железорудных месторождений КМА – это наиболее низкотемпературные условия. Это дает нам возможность сопоставить фазовые равновесия железистых кварцитов Шемраевского месторождения с близкими по минералогии породами Михайловского железорудного района, которые претерпели несколько более высокотемпературный метаморфизм.

Кроме кварца магнетита и гематита в железистых кварцитах Шемраевского месторождения широко распространены ферродоломит, безглиноземистые натровые (рибекит и эгирин) и калиевые (селадонит, тетраферрибиотит) силикаты. По минералогии железистые кварциты Михайловского и Шемраевского месторождений очень близки и отличаются от ранее изученных Новоялтинского, Панковского и Приоскольского месторождений. Нами установлены следующие отличия в фазовых равновесиях от других железорудных месторождений КМА:

1) широко распространен гематит, хотя по количеству в большинстве образцов он все же уступает магнетиту; отмечаются каймы гематита по магнетиту;

 эгирин является главным натровым силикатом, рибекит же встречается редко и только (за исключением двух образцов) в прослоях без эгирина;

3) широко распространен тетраферрибиотит и по количеству в отдельных образцах он не уступает селадониту; кристаллы селадонита более идиоморфные и в некоторых случаях, они, по-видимому, замещают тетраферрибиотит (рис. 3 с, d);

4) карбонаты представлены только ферродоломитом; сидерит и кальцит в железистых кварцитах Шемраевского месторождения не встречены.

При увеличении степени метаморфизма составы карбонатов анкерит-доломитовой серии смещаются в магнезиальную сторону в результате реакциий окисления карбонатов с образованием магнетита: $Dol_{Fe} + O_2 \rightarrow Dol_{Mg-Fe} + Mag + CO_2$. Как показано на рис. За крупное зерно ферродоломита имеет зональное строение: центральные части его более железистые ($X_{Fe} = 29-31$ мол. %), чем краевые ($X_{Fe} = 20-22$ мол. %), находящиеся в контакте с магнетитом. Ферродоломиты устойчивы с кварцем и новообразованных грюнерита и актинолита за счет их реакции (14Fe-Dol+16Qtz+2H₂O \rightarrow Act+Gru+14Cal+14CO₂) не установлено.

Структуры замещения тетраферрибиотита селадонитом с образованием оксидов железа предполагают окисление тетраферрибиотита в результате реакций:

 $\begin{array}{l} Bt + Qtz + 1/2O_2 \rightarrow Sld + Hem \\ K(Fe^{2+}, Fe^{3+})_3[Fe^{3+}Si_3O_{10}](OH)_2 + SiO_2 + 1/2O_2 \\ \rightarrow KFe^{3+}Fe^{2+}[Si_4O_{10}](OH)_2 + Fe_2O_3 \ Bt + Qtz + 1/3O_2 \\ \rightarrow Sld + 2/3Mag\ (2) \end{array}$

 $K(Fe^{2+}, Fe^{3+})_3[Fe^{3+}Si_3O_{10}](OH)_2 + SiO_2 + 1/3O_2$ → $KFe^{3+}Fe^{2+}[Si_4O_{10}](OH)_2 + 2/3Fe_3O_4$, причем в зависимости от значений фугитивности кислорода в отдельных прослоях в правой части равновесия образуется гематит (более высокие значения fO_2) или магнетит (менее высокие значения fO_2).

ФИЗИКО-ХИМИЧЕСКИЕ ПАРАМЕТРЫ МЕТАМОРФИЗМА Метапелиты

На основании рассмотрения фазовых равновесий в насыщенных калием метапелитах, содержащих парагенезис фенгитового мусковита, биотита с низким содержанием истонит-сидерофиллитового минала, микроклина, альбита и кварца, был сделан

Плагиоклаз-	Р	V	Р	S	HH	WS	PP	T _{cp.}
калишпатовая пара	(кбар)							
Pl(6)-Kfs(2)	2			248	181	298	248	244
	3			255	189	305	255	251
Хлорит-								
хлоритоидная пара								
Chl(1)-Cld(7)		433	351					
Chl(2)-Cld(10)		443	360					
Chl(4)-Cld(8)		517	394					
Chl(9)-Cld(6)		517	414					

Таблица 12 Оценки температур метаморфизма внутрирудных сланцев Шемраевского железорудного месторождения

Примечание. Номера анализов и составы минералов полевошпатовых и хлорит-хлоритоидных пар приведены в табл. 9-11. В таблице приняты следующий сокращения геотермометров: двуполевошпатовый геотермометр: S – Stormer (1975); HH - Haselton, Howies et al. (1983); WS - Whitney, Stormer (1977); PP - Powell M., Powell R. (1977); хлоритхлоритоидный геотермометр: P – Perchuk (1989); V – Vidal, Coffe et al (1999)

вывод о том, что условия их метаморфизма соответствуют биотитовой субфации фации зеленых сланцев. Их высокотемпературной границей является изограда альмандинового граната, низкотемпературной появление первых биотитов за счет распада фенгитовых мусковитов. Появление существенно альмандинового граната в результате реакции Chl_{Fe}+Qtz=Alm+H₂O возможно лишь при температуре, близкой к условиям образования ставролита [15], но она снижается при уменьшении соотношения парциального давления воды и общего давления в системе. На основании расчетов кривых дегидратации минералов среднее значение P_{H2O} в условиях фации зеленых сланцев оценивается в 0,7-0,8 Робщ. [16], и температура образования железистого граната равна около 500 °C. На петрогенетической сетке С.П. Кориковского [6] реакция Chl_{Fe}+Qtz=Alm+H₂O происходит при температурах чуть ниже 400 °C. К сожалению, для многих реакций, происходящих в интервале зеленосланцевой фации (например, для Chl+Kfs→Bt+Ms_{Phn}+Qtz+H₂O) нет согласованных термодинамических данных, что приводит к большому разбросу оценок температур их реализации.

Нижнюю температурную границу можно определить исходя из равновесий низкокалиевых высокоглиноземистых сланцев, содержащих парагенезис Chl+Cld+Qtz. Первое появление хлоритоида в результате реакции Chl+Prl \rightarrow Cld+Qtz+H₂O происходит 340-350 °C [6].

Определив по фазовым равновесиям температурный интервал метаморфизма внутрирудных сланцев Шемраевского месторождения как 340-400 °С, воспользуемся минеральной термометрией. По хлорит-хлоритоидного ланным термометра Л.Л. Перчука [17] значения температур метаморфизма попадают в интервал 351-414 °С (табл. 12), что отлично согласуется с результатами анализа Эмпирический фазовых равновесий. хлоритхлоритоидный термометр О. Видаля с соавторами [18] дает оценки температур от 433 до 517 °C, и, по нашему мнению, завышает истинные значения, поскольку в этом температурном интервале уже должен быть устойчив ставролит. Двуполевошпатовая термометрия дает нереально низкие температуры (менее 300 °C) [19-22]. Таким образом, на основании анализа фазовых равновесий и хлорит-хлоритоидной термометрии можно сделать вывод, что температура метаморфизма внутрирудных сланцев составляла 350 – 415 °C.

К сожалению, количественные оценки давлений мы получить не можем, однако отсутствие кианита, образующегося в низкотемпературной области (350-400 °C) за счет пирофиллита, предполагает, что они не превышали 2,5 кбар [15].

Железистые кварциты

Селадонит является наиболее широко распространенной слюдой в слабо метаморфизованных кварцитах КМА. Он устойчив, по крайней мере, до температур около 500 °С в пределах Михайловского железорудного района [3, 4]. Его высокотемпературные эквиваленты (безглиноземистые, калиевые магнезиально-железистые силикаты) не известны. Возможно, он распадается с образованием необычных безглиноземистых калий содержащих натровых амфиболов, встреченных на Лужковском участке Михайловского железорудного района (неопубликованные данные).

Широкое распространение тетраферрибиотита в железистых кварцитах объясняется относительно низкотемпературными условиями метаморфизма. В пределах КМА в незначительных количествах он был установлен только в железистых кварцитах Михайловского месторождения [3]. По-видимому, с ростом температуры он вытесняется из парагенезисов селадонитом. Например, К. Клейн [23] отнес феррианнит к минералам позднедиагенетических или очень низкотемпературных железистых формаций. Ранее феррианнит в небольших количествах был встречен в железистых формациях Пенж (ЮАР) метаморфизованной при 420-460 °С и 2,5 кбар в контакте Бушвельдским интрузивным комплексом [24] и бассейна Хамерсли (Западная Австралия) [25], характеризующейся метаморфизмом в условиях низкотемпературной части зеленосланцевой фации (до 300 °С) [25-27].

Рис. 10. Поля устойчивости эгирина на диаграммах а) $Log[a(Na^+)/a(H^+)]$ -T °C; б) $Log[f(O_2)]$ -T °C - серой заливкой показаны области стабильности эгирина при давлении 2.5 кбар и $a(H_2O)$ =1.0 по [24]

По-видимому, такие минералы как ферродоломит, рибекит, тераферрибиотит, селадонит и ферришамозит были образованы на стадиях позднего диагенеза или очень низкотемпературного метаморфизма и после этого подверглись только перекристаллизации.

Широкое развитие эгирина относительно рибекита при низких температурах метаморфизма является необычным. Следовательно их взаимоотношения в значительной степени определяются другими факторами метаморфизма, а именно режимом кислорода и составом метаморфического флюида. Летучесть кислорода в метаморфических железистых породах зависит от его первичного содержания [28-30] и мало изменяется при метаморфизме вследствие его инертного поведения. Режим фугитивности кислорода задается условиями седиментации и диагенеза, а также буферными реакциями. Эгирин в железистых формациях при низких температурах (до 500 °C) образуется за счет разложения рибекита в результате реакции его окисления: $4Rbk + 3O_2 \rightarrow$ 8Aeg + 6Hem + 16Qtz + 4H₂O, траектория которой на диаграмме Т °С- logfO₂ в температурном интервале 350-400 °С несколько выше линии магнетитгематитового буфера (рис. 10). Таким образом, стабильность эгирина относительно рибекита при температурах 350-420 °С предполагает высокие значения фугитивности кислорода – выше магнетитгематитового буфера. Это подтверждается постоянным присутствием гематита и образованием в некоторых образцах тонких гематитовых кайм вокруг магнетита. В то же время широкое развитие магнетита в ассоциации с эгирином предполагает высокую активность натрия в метаморфическом флюиде, вследствие чего происходит вытеснение рибекита эгирином в результате реакции: Rbk+4Hem+ +23Na⁺=4Aeg+3Mag+2H⁺ (рис. 10). В этом случае значения активности натрия log[a(Na⁺)/a(H⁺)] превышают 6.5 при 400 °С.

ЗАКЛЮЧЕНИЕ

Железистые кварциты Шемраевского месторождения КМА подверглись наиболее низкотемпературному метаморфизму по сравнению с другими железорудными месторождениями КМА. Внутрирудные сланцы представлены двумя петрохимическими типами метапелитов: насыщенные калием и недосыщенные калием насыщенные алюминием, которые содержат парагенезисы Qtz+Ab+Bt+ +Ms_{Phn}+Kfs и Qtz+Chl+Cld соответсвенно, которые относятся биотитовой субфации фации зеленых сланцев. На основании анализа фазовых равновесий и хлорит-хлоритоидной термометрии определены Р-Т параметры метаморфизма метапелитов 350 – 415 °C при около 2 кбар.

В отличие от других месторождений КМА в Шемраевских железистых кварцитах широко распространены гематит и тетраферрибиотит, эгирин резко преобладает над рибекитом, карбонаты представлены только ферродоломитом. Стабильность эгирина относительно рибекита при температурах ниже 400 °C свидетельствует о высоких значениях фугитивности кислорода (выше Mag-Hem буфера) и высокой активности натрия в метаморфическом флюиде, вследствие чего происходит вытеснение рибекита эгирином при log[a(Na⁺)/a(H⁺)] > 6.5 при 400 °C.

Авторы благодарят главного геолога ОАО «Белгородгеология» Е.И. Дуная за помощь при проведении полевых работ.

Работа выполнена при финансовой поддержке грантов РФФИ (проект № 03-05-64071), Президента РФ (проект МД-248.2003.05), ФЦП "Интеграция" (проект Э0348), Минобразования России (№А03-2.13-3350).

ЛИТЕРАТУРА

- 1. Железные руды КМА. Ред. В.П Орлов и др.- М., 2001. -616 с.
- Fonarev V.I., Graphchikov A.A., Konilov A.N. A consistent system of geothermometers for metamorphic complexes // Int. Geol. Review. -1991. -V. 33, № 8. -P. 743-783.
- Савко К.А., Поскрякова М.В. Рибекит-эгирин-селадонитовые железистые кварциты Михайловского железорудного месторождения Курской магнитной аномалии: фазовые равновесия и условия метаморфизма // Петрология. –2003. -Т. 11, №5. -С. 471-490.
- Савко К.А., Поскрякова М.В. Минералогия, фазовые равновесия и условия метаморфизма пород Новоялтинского железорудного месторождения КМА // Вестн. Воронеж. ун-та. Геология. -2003. -№ 2. -С. 113-131.
- Leake B.E., Woolley A.R., and 20 members of the Subcommittee on Amphiboles. Nomenclature of amphiboles. Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names // Eur. J. Mineral. –1997. -V. 9. -P. 623-651.
- Кориковский С.П. Фации метаморфизма метапелитов. – М., 1979. – 260 с.
- Wang P., Spear F.S. A field and theoretical analysis of garnet+chlorite+chloritoid+biotite assemblages from tristate (MA, CT, NY) area, USA // Contrib. Mineral. Petrol. -1991. -V. 106. -P. 217-235.

- Enami M. Pressure-temperature path of Sanbagawa prograde metamorphism deduced from grossular zoning of garnet // J. Metamorphic. Geol. -1998. -V. 16. -P. 97-106.
- Кориковский С.П. Изменения состава мусковитфенгитовых слюд при метаморфизме // Фазовые равновесия и процессы минералообразования. -М., 1973. -С. 71-94.
- Mather J.D. The biotite isograd and the lower greenschists facies in the Dalradian rocks of Scotland // J. Petrol. -1970. -V. 11. -№ 2. -P. 253-275.
- Dempster T.J., Fallick A.E., Whittemore C. J. Metamorphic reactions in the biotite zone, eastern Scotland: high thermal gradients, metasomatism and cleavage formation // Contrib. Mineral. Petrol. -2000. -V. 138. -P. 348-363
- Полякова Т.Н., Скрябин В.Ю. Зеленосланцевая фация метаморфизма метапелитов Тим-Ястребовской структуры // Вестн. Воронеж. ун-та. Сер. геол. -2002. -№ 13. -С. 107-123.
- Polyakova T.N., Savko K.A., Skryabin V.Yu. Evolution of Early Proterozoic metamorphism within Tim-Yastrebovsky Paleorift, Voronezh crystalline massif, East-European Platform: metapelite systematics, phase equilibrium, and P-T conditions. In (ed. H. Thomas) "Granulite Facies Metamorphism and Crustal Evolution" (Felicitation Volume of Professor S.R. Sharma) Publishers: Jointly by OXFORD IBH New Dehli & Balkema. -P. 245-274.
- 14. Савко К.А. Низкотемпературные породы в метаморфической зональности воронцовской серии ВКМ // Геология и геофизика. –1994. -№ 3. -С. 50-59.
- Spear F.S., Cheney J.T. A petrogenetic grid for pelitic schists in the system SiO₂-Al₂O₃-FeO-MgO-K₂O-H₂O // Contrib. Mineral. Petrol. -1989. -V. 101. -№ 29. -P. 149-164.
- Добрецов Н.Л., Соболев В.С., Хлестов В.В. Фации регионального метаморфизма умеренных давлений. -М., 1972. -286 с.
- Перчук Л.Л. Взаимосогласование некоторых Fe-Mg геотермометров на основе закона Нернста: ревизия // Геохимия. -1989. -№ 5. -С. 611-622.
- Vidal O., Coffe B., Bousquet R., Parra T. Calibration and testing of an empirical chloritoid-chlorite Mg-Fe exchange thermometer and thermodynamic data for daphnite // J. metamorphic Geol. -1999. -V. 17. -P. 25-39.
- Haselton H.T., Howies G.L., Hemingway B.S., Robie R.A. Calorimetric investigation of the excess entropy of mixing in analbite-sanidine solid solutions: lack of evidence for Na, K short- range order and implications for two-feldspar thermometry// Amer. Miner. -1983. -V.68. -P. 394-413.
- Powell M., Powell R. Plagioclase alkali feldspar geothermometry revisited// Mineral. Mag. -1977. -V. 41, № 318. -P. 253-256.
- 21. Stormer J.C., Jr. A practical two- feldspar geothermometer // Amer. Mineral. -1975. -V. 60, № 7/8. -P. 667-674.
- 22. Whitney J.A., Stormer J.C.,Jr. The distribution of NaAlSi₃O₈ between coexisting microcline and plagioclase and its effect on geothermometric calculations // Amer. Mineral. -1977. -V. 62. -№ 7/8. -P. 687-691
- Klein C. Diagenesis and metamorphism of Precambrian iron formations. In Trendall A.F., Morris R.C. (eds.) "Iron formations: facts and problems". -Amsterdam, 1983. -P. 417-469.
- 24. Miyano T., Beukes N. J. Mineralogy and petrology of the contact metamorphosed amphibole asbestos-bearing Penge iron formation, Eastern Transvaal, South Africa // J.Petrol. -1997. V. 38, №5. -P. 651-676.

- Miyano T., Miyano S. Ferri-annite from the Dales George Member iron-formations, Wittenoom area, Western Australia // Amer. Mineral. -1982. -V. 67. -P. 1179-1194.
- Klein C., Gole M. J. Mineralogy and petrology of parts of the Marra Mamba Iron-Formation, Hamersley Basin, Western Australia // Amer. Mineral. –1981. -V. 66. -P. 507-525.
- Miyano T., Klein C. Conditions of riebeckite formation in the iron-formation of the Dales Gorge Member, Hamersley Group, Western Australia // Amer. Mineral. -1983. -V. 68. -P. 517-529.
- Коржинский Д.С. Факторы минеральных равновесий и минералогические фации глубинности. -М., 1940. -Вып.12. -№5. -100 с.
- Маракушев А.А. Проблемы минеральных фаций метаморфических и метасоматических пород. -М., 1965. -327 с.
- Фонарев В.И. Минеральные равновесия железистых формаций докембрия. -М.: 1987. -296 с.
- 31. Grawford M.N. Composition of plagioclase and associated minerals in some schists from Vermont, VSA, and South Westland, New Zealand // Contribs Min. and Petr. -1966. -№ 3. -P. 13.

УДК 549+551.2/.3] (470.11)

ОСОБЕННОСТИ СОСТАВА ХРОМШПИНЕЛИДОВ ТРУБОК ВЗРЫВА ИЖМОЗЁРСКОГО ПОЛЯ АРХАНГЕЛЬСКОЙ АЛМАЗОНОСНОЙ ПРОВИНЦИИ КАК ОТРАЖЕНИЕ ГЕОДИНАМИКИ ИХ ФОРМИРОВАНИЯ

А.В.Еременко

Воронежский государственный университет

В работе подробно изучен состав хромшпинелидов, являющихся главным акцессорным минералом диатрем Ижмозёрского поля. В результате проведённых исследований среди трубок взрыва были выделены две группы тел, различающиеся по составу хромшпинелидов, что указывает на происхождение их из разных магматических очагов. Установлено присутствие в одних и тех же трубках хромшпинелидов, образованных при различных РТ-параметрах, что указывает на участие в строении диатрем вещества разных уровней глубинности.

Ижмозёрское поле оливиновых мелилититов после распада СССР оказалось самым малоизученным из всех полей ААП, что в полной мере определяет актуальность проведённых исследований в области геологического строения и вещественного состава диатрем данного поля.

Ижмозёрское поле расположено в 30 км к югу от Золотицкого поля и в 30 км к северо-востоку от г. Архангельска и насчитывает в себе шесть трубок: Летняя, Ижмозёрская, Озёрная, Весенняя, Апрельская и Чидвинская (с юга на север), образующих цепочку длиной 20 км с направлением на север-северо-восток, аналогичным направлению цепочки Золотицкого поля (рис. 1.). Расстояние между трубками варьирует от 250 м до 12 км.

Размеры трубок варьируют от средних (Апрельская, Весенняя, Летняя) до весьма крупных (трубка Чидвинская). Форма их поверхности в плане и внутреннее строение также разнообразны. Трубки Апрельская, Весенняя и Летняя являются однофазными с относительно простым внутренним строением, трубки Чидвинская, Ижмозёрская и Озёрная относятся к категории двухфазных тел, и имеют сложное строение. Породы кратерной фации присутствуют только на Чидвинской, Апрельской и Озёрной диатремах. На Чидвинской и Озёрной трубках они полностью перекрывают жерло, а на Апрельской вскрыты одной скважиной.

Рис. 1. Схема размещения трубок взрыва Ижмозёрского поля