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Abstract

An ellipse can be fit to an arbitrary shape using a linear least squares approach applied to boundary data. Alternatively, this problem can

also be solved by calculating the second moments of the entire region, a technique popular in image analysis applications. If the irregular

shape can be approximated by a polygon then Greens theorem allows efficient calculation of the second moments. If the shape is pixelated

then the second moments can be calculated by a simple summation process. By considering the behaviour of these fitting methods with

increasing deformation it is shown that as an arbitrary shape passively deforms, the best-fit ellipse also behaves as if it were deforming

passively. This implies that all techniques of strain analysis that were previously restricted to populations of elliptical objects may now be

applied to populations of arbitrary shapes, provided the best-fit ellipse is calculated by one of the methods described here. Furthermore it

implies that selective sampling based on shape or methods of weighting based upon shape are invalid and tend to bias the raw data.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

A large proportion of methods for strain analysis require

that the strain markers used are of approximately elliptical

shape, deform passively and that marker long axes were

initially uniformly distributed (Ramsay, 1967, pp. 202–209;

Dunnet, 1969; Elliott, 1970; Matthews et al., 1974;

Shimamoto and Ikeda, 1976; Lisle, 1977a, 1994; Mulchrone

and Meere, 2001; Mulchrone et al., 2003). However, in

reality, most natural strain markers are only poorly

approximated by an ellipse and therefore the accuracy of

strain estimations using ellipse-based methods may be

called into question. The primary objective of this paper is

to investigate the effect of ellipse fitting on these ellipse-

based methods. The results of these considerations are of

fundamental importance to strain analysis and its

applicability.

Methods of strain analysis based on the assumption of

passive behaviour of populations of strain markers remain

popular and have been applied in a broad range of

geological contexts over the years. For example, they

have been applied to oolitic limestones (Dunnet, 1969;

Elliott, 1970), pisolitic tuffs (Dunnet and Siddans, 1971;

Matthews et al., 1974), lapilli tuffs (Borradaile, 1987),

polymictic grits (Dunnet, 1969), modern and ancient pebble

conglomerates (Lisle, 1977b; Borradaile, 1987) and grains

in modern and ancient clastic sandstones (Paterson and Yu,

1994; Meere, 1995; Bresser and Walter, 1999; Mulchrone

and Meere, 2001; Mulchrone et al., 2003). More recently

Zulauf et al. (2002) applied the Rf/f technique to determine

finite strain using pebbles in metaconglomerates and ooids

in slates. Bhattacharyya and Hudleston (2001) used the

shapes of irregularly shaped feldspar aggregates to quantify

strain in shear zones, whereas Mazzoli et al. (2001) applied

the Rf/f technique to deformed sub-elliptical radiolarian

microfossils in limestone. Simancas et al. (2000) studied the

deformation of granites using sometimes irregularly shaped

quartz micrograin aggregates. It is important to know

whether the inherent assumption of strain marker ellipticity

has any bearing on the accuracy and applicability of these

commonly used methods.

There are also a smaller number of methods that do not

make any assumptions about shape. For example the

method of Robin (1977) assumes no preferred orientation

of the initial strain marker distribution, but requires an

independent estimate of the finite strain ellipse orientation.
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Mulchrone et al. (2003) have recently demonstrated that for

simulated data, the mean radial length of strain markers

accurately estimates the finite strain ellipse principal

extension axis. Therefore the requirement of an independent

estimate of the strain ellipse orientation is not very

prohibitive if the strain marker long axes are easily

identified. Fry-like strain analysis methods (Fry, 1979;

Erslev, 1988; Erslev and Ge, 1990; McNaught, 1994) and

the Delaunay triangulation nearest neighbour method

(DTNNM) of Mulchrone (2003) do not require any

particular shape for strain markers but do assume that strain

marker centroids are anti-clustered before deformation and

move relative to each other in a passive manner during

deformation.

2. Fitting an ellipse to an arbitrarily shaped region

2.1. Introduction

Fitting an ellipse to an arbitrarily shaped region has

received minor attention in the geological literature but is a

fundamental problem for automated image analysis and

computer vision techniques and has been studied in

considerable detail. There are two approaches to ellipse

fitting: methods based on (1) the boundary and (2) the

region. For regions that are fairly regular (i.e. almost

elliptical in shape) the two approaches are indistinguishable;

however, for irregular regions the results are different (see

Fig. 1). Region-based methods are affected less by boundary

irregularities (i.e. are more robust), whereas boundary-based

methods are strongly affected by irregularities. Furthermore,

complex regions, such as those with one or more holes, are

handled without difficulty by region-based methods,

whereas most boundary-based methods inherently assume

a single, outer boundary and do not consider the possibility

of internal boundaries. Because strain analysis methods are

generally concerned with shapes and how shapes change

during deformation, the more robust region-based method is

preferred here. For a review of the ellipse equation and

parameters see the appendices.

2.2. Boundary-based methods

Boundary methods consider that the arbitrary region

consists of a set of points sampled from the region

boundary. For example Hart and Rudman (1997) developed

a linear least squares fitting for the Cartesian equation of an

ellipse centred on the origin and a similar technique was

used by Erslev and Ge (1990). Workers in image analysis

and computer vision have employed a variety of techniques

including linear least squares, weighted least squares,

Kalman filtering and robust estimation methods (Zhang,

1997). Fitzgibbon et al. (1999) presented a direct ellipse-

specific fitting technique, which minimised the algebraic

distance subject to an ellipse-specific constraint and has

been greatly improved by Halir and Flusser (1998). All of

the mentioned boundary-based methods have been success-

fully applied in practice, although the method of Fitzgibbon

et al. (1999) has distinct advantages in that it always

produces an ellipse no matter how bad the input data.

Hart and Rudman (1997) used linear least squares to fit

the Cartesian equation of an ellipse centred on the origin

(data not naturally centred on the origin needs to be

transformed such that the centroid of the shape is located at

the origin where the centroid is calculated from the

moments as shown in the next section and in the appendix):

ax
2 þ bxyþ cy

2 ¼ r2 ð1Þ
where a, b, c and r are unknown parameters, so that for a set

of points (xi,yi) where i goes from one to n, the total number

of points, we wish to minimise:

Xn

i¼1

ax
2
i þ bxiyi þ cy

2
i 2 r2

� �2 ð2Þ

Alternatively the method of Fitzgibbon et al. (1999) or

Halir and Flusser (1998) can be employed for the general

equation of a conic (not necessarily centred on the origin):

ax
2 þ bxyþ cy

2 þ dxþ eyþ f ¼ 0 ð3Þ
where a, b, c, d, e and f are unknown parameters, subject to

the ellipse-specific constraint:

b
2
, 24ac ð4Þ

which ensures that the curve is an ellipse and not a

hyperbola or parabola. Introducing the notation:

Sxayb ¼
Xn

i¼1

x
a
i y

b
i ð5Þ

where a and bare integers, then for both methods the least

Fig. 1. Schematic illustration of the difference between region and

boundary-based ellipse fitting methods after Russ (1999, p. 553). (a)

Methods based on the moments of the entire region tend to be less affected

by irregular boundaries. (b) Methods based on the boundary shape are

disproportionally influenced by boundary irregularities.
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squares solution depends only on the following:

S1; Sx; Sy; Sx2 ; Sy2 ; Sxy; Sx3 ; Sy3 ; Sx2y; Sxy2 ; Sx4 ; Sy4 ;

£ Sx2y2 ; Sxy3 ; Sx3y

ð6Þ

where S1 ¼ Sx0y0 ¼ n. For exact details of the solutions, the

reader should refer to the original publications.

2.3. Region-based methods

Region-based methods use the moments of a shape in

estimating the best-fit ellipse and are extremely popular in

image analysis applications (Jain, 1989, pp. 392–394;

Jähne, 1997, pp. 509–512; Russ, 1999, p. 552). The best-fit

ellipse is used as a descriptive measure of shape even though

usually the shape is far from elliptical. As this method is

favoured here, it is described in detail (see Gonzalez and

Wintz, 1987, pp. 419–423). The moment of order p þ q

(where p and q are integers) of a 2D region (G) is calculated

by the following integral evaluated over the area of G:

mpq ¼
ðð

G
f ðx; yÞxpyqdxdy ð7Þ

The function f is used to describe situations where some

property varies around the area (such as physical density)

and in the present case no such variation is present because

all parts of the region are equally important, so that

f(x,y) ¼ 1. Physically, the zeroth moment is equal to the area

of G while
�
m10

m00
;

m01

m00

�

are the centroids of G. The central

moments are given by:

upq ¼
ðð

G
f ðx2 �xÞpðy2 �yÞqdxdy ð8Þ

where:

�x ¼ m10

m00

ð9Þ

�y ¼ m01

m00

ð10Þ

and can be written in terms of the moments, for example:

u00 ¼ m00 ð11Þ
u10 ¼ u01 ¼ 0 ð12Þ

u20 ¼ m20 2
m2

10

m00

ð13Þ

u02 ¼ m02 2
m2

01

m00

ð14Þ

u11 ¼ m11 2
m10m01

m00

ð15Þ

and the normalised central moments are defined as:

npq ¼
upq

u
g
00

ð16Þ

where

g ¼ pþ q

2
þ 1 ð17Þ

and utilised in some applications.

The central moments are then normally used to define the

best-fit ellipse (Hu, 1962; Teague, 1980) for the arbitrary

shape with semi-minor and major axes a and b, respectively,

and long axes oriented at f:

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4u211 þ ðu20 2 u02Þ2
q

ð18Þ

f ¼ 1

2
tan21 2u11

u20 2 u02

	 


ð19Þ

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðu20 þ u02 þ DÞ
u11

s

ð20Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðu20 þ u02 2 DÞ
u11

s

ð21Þ

A derivation of these equations is included in the

appendices. Most methods of strain analysis involving

elliptical strain markers are not concerned with the absolute

values of a and b but with the axial ratio R:

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u20 þ u02 þ D

u20 þ u02 2 D

s

ð22Þ

This method of ellipse fitting essentially equalises the

second moments of the shape and the ellipse (Jain, 1989, p.

394).

If the normalised central moments of an arbitrary shape

can be calculated then the best fitting ellipse may be

estimated using Eqs. (18)–(22). In reality, evaluating

integrals such as Eqs. (7) and (8) is not practicable, so

that typically arbitrary shapes are approximated by either a

polygonal representation of the boundary or as a pixelated

digital image. The moments of both representations are

easily calculated and details are presented in the appendices.

3. Relationship between an arbitrary shape and its fitted

ellipse during deformation

Methods of strain analysis based on elliptical strain

markers make several fundamental assumptions:

1. Strain markers are approximately elliptically shaped.

2. Deformation is homogeneous over the region of the

strain markers.
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3. The viscosity contrast between markers and matrix is

negligible leading to passive behaviour.

Hence in what follows it is assumed that points and

curves behave passively during deformation. A pure shear

deformation is considered whereby the long axis of the finite

strain ellipse is parallel to the Cartesian x-axis. This does not

affect the generality of the result due to the polar

decomposition theorem, which proves that any general

deformation is composed of a pure shear deformation and a

rotation (Mulchrone, 2002) and because all points and

curves behave passively the component of rotation does not

affect their relative distribution.

During this pure shear deformation points are modified as

follows:

x
0 ¼

ffiffiffi

Rs

p

x ð23Þ

y
0 ¼ y

ffiffiffi
Rs

p ð24Þ

where (x,y) is the point in the undeformed state and (x0,y0) is
the point in the deformed state and Rs is the axial ratio of the

strain ellipse. A region G in the undeformed state is

transformed into the region G0 in the deformed state. Hence

the moments of the shape in the deformed state are:

m
0
pq ¼

ðð

G0
x
0p
y
0qdx0dy0 ð25Þ

¼
ffiffiffiffi

R
p
s

p

ffiffiffiffi

R
q
s

p

ðð

G0
x
p
y
qdxdy ð26Þ

¼ R
p2q

2
s mpq ð27Þ

Clearly the same transformation rule applies to both the

central and normalised central moments, i.e.:

u
0
pq ¼ R

p2q

2
s upq ð28Þ

n
0
pq ¼ R

p2q

2
s npq ð29Þ

Eqs. (18)–(22) describe the best-fit ellipse to an arbitrary

shape but can also be used to describe an ellipse in terms of

moments. Clearly then application of the transformation in

Eq. (19) to Eqs. (18)–(22) describes how a, b, f and R

change during deformation, i.e. these are equations for the

passive behaviour of an ellipse during deformation. There-

fore as an arbitrary shape passively deforms, the best-fit

ellipse also behaves as if it were passively deforming (see

Fig. 2). This is an important result with implications for

strain analysis.

Furthermore, a similar argument applies to best-fit

ellipses calculated using boundary-based methods as the

best-fit ellipses depend on the values given in Eq. (6), which

also transform during deformation as follows:

S
0
xayb ¼ R

a2b
2

s Sxayb ð30Þ

4. Implications for strain analysis and a simulation study

The first implication is that existing methods for strain

analysis using elliptical strain markers can be applied to

materials containing assemblages of arbitrary shapes

provided that the ellipse parameters are measured using

either the moment-based best-fit ellipse method or the linear

least-squares boundary methods. Although this conclusion

may also be applied to other ellipse-fitting techniques, these

have not been checked. The basic assumptions of these

strain analysis techniques must still apply, so that in the

undeformed state the best-fit ellipse long-axis orientations

should be uniformly distributed and the axial ratio

distributions should be independent of orientation (Mul-

chrone et al., 2003). Previously, only the method of Robin

(1977) could be applied to arbitrary shapes.

Secondly, this result implies that data acquisition

strategies that tend to ignore non-elliptical objects (i.e. in

an attempt to avoid restrictions inherent in the method-

ologies themselves) actually tends to distort the results of

the analysis and produces a less accurate strain estimate by

artificially concentrating on a subset of the object

population. In other words this sampling approach intro-

duces a bias into the dataset for no good reason. This

Fig. 2. (a) An arbitrary shape with an ellipse fitted in the undeformed state.

After deformation the shape has changed and an ellipse is fitted to the

deformed shape. (b) If the ellipse, which was fit in the undeformed state,

was passively deformed it would coincide with the ellipse fit in the

deformed state, due to the way moments behave during passive

deformation. (c) The finite strain ellipse for the deformation.
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implication has been empirically verified by a simulation

study presented in brief in the next section, although the

effect of the bias is small.

The third implication is related to the previous one and is

that the accuracy of a strain estimate cannot be improved by

weighting the data according to how close an object is to an

ellipse. In fact by making such a hypothesis the author

discovered the result presented in this paper. The idea was

that by weighting the input data according to how good it

fitted to an ellipse, the strain estimate could be improved

upon. In actuality the converse is true as demonstrated by

the simulation study.

There are also practical implications to be considered. As

far as the author is aware, there is no published consensus on

how best to estimate ellipse parameters for strain markers.

In the author’s experience some people concentrate on

visually finding the longest line through a shape and then

take the longest length perpendicular to this direction (often

referred to as a callipers approach), whereas others may try

to imagine the best-fit ellipse and calculate the long and

short-axis of this mental ellipse. The result is that no two

geologists would ever produce the same set of data from a

particular sample. Using one of the ellipse-fitting methods

described above eliminates this type of subjectivity and

would allow for valid comparisons of results between

workers. However, the human fitting methods have the

advantage of being applicable in almost any situation, either

in the field or under the microscope. It is not feasible to

calculate the best-fit ellipse using the quantitative methods

described above in the field or under the microscope. The

ultimate resolution of this problem will come from digital

image analysis techniques, which seek to automatically

identify strain markers from field photographs or micro-

photographs (Ailleres and Champenois, 1994; Ailleres et al.,

1995; Heilbronner, 2000) combined with the quantitative

fitting techniques described here.

In order to empirically demonstrate the theoretical

considerations presented above a small simulation study

was carried out. Software was written in Microsoft Visual

Cþþ version 6.0, which does the following:

1. Generates a population of non-intersecting polygons

whose long axis orientations are uniformly distributed

(see Fig. 3a for an example).

2. Progressively strain the population (see Fig. 3b for an

example of a strained population).

3. For each imposed strain value (Rsact) the best-fit ellipse is

calculated for each polygonal object.

4. An estimate of the strain ellipse (Rscalc) along with

associated confidence intervals is calculated using the

bootstrap (Mulchrone et al., 2003) firstly by application

of a weighting according to goodness of fit (the better the

fit the higher the weight) and secondly by application of

no weighting at all.

The applied weighting should reflect how close a

particular shape is to its associated best-fit ellipse. Highly

irregular shapes should be given less weighting than those

that closely approximate an ellipse. To comply with these

requirements, the weighting is calculated as the ratio of total

shape area to the area of the overlap between the shape and

its best-fit ellipse. Therefore, if the overlap area is small (i.e.

the shape closely approximates the best-fit ellipse) the

weighting is large and vice versa. The values of the weights

may be normalised to lie between zero and one, although

this is unnecessary in the case of the method of Mulchrone

et al. (2003) due to the particular form of the equations used.

A small modification needs to be made to the method of

strain analysis devised by Mulchrone et al. (2003) in order

to incorporate weighting. The modified method involves the

following calculations for a population of n ellipses with

axial ratios Ri, orientations fi and weights wi, calculated as

described above. For each ellipse the following values are

calculated:

mi ¼
1

2
Ri 2

1

Ri

	 


ð31Þ

pi ¼
1

2
Ri þ

1

Ri

	 


ð32Þ

subsequently, the following averages may be determined:

qs ¼
1

n

Xn

i¼1

wipi ð33Þ

ts ¼
1

n

Xn

i¼1

wimicos 2fi

� �

ð34Þ

us ¼
1

n

Xn

i¼1

wimisin 2fi

� �

ð35Þ

and the strain ellipse parameters (axial ratio Rs and

orientation fs) calculated from:

tan 2fs

� �

¼ us

ts
ð36Þ

Rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qscosð2fsÞ þ ts

qscosð2fsÞ2 ts

s

ð37Þ

In the original method, weighting was not considered and

that was equivalent to letting each wi ¼ 1 in the modified

method.

The results of the simulation study are presented in

graphical form in Fig. 4 for a population of 100 polygons.

Errors tend to increase with increasing applied tectonic

strain (Rsact). The use of weighting does not decrease the

size of the error and in many cases the error increases

slightly by comparison with the unweighted data; however,

this effect is quite small in relation to the size of the overall

error. This is to be expected as the weighting is artificial and

introduces an unwarranted bias to the data.
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Fig. 3. (a) A set of arbitrarily shaped polygons and their best-fit ellipses in the undeformed state. (b) The same set after deformation (note that the polygons were

re-scaled to allow the diagram to fit on the page).

Fig. 4. A plot of error associated with calculating the axial ratio of the finite strain ellipse using the method of Mulchrone et al. (2003) against the imposed finite

strain axial ratio. Results for weighted and non-weighted data are illustrated and the application of a weighting based on goodness of fit tends to slightly

decrease the accuracy of the calculation.
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5. Conclusions

An ellipse can be fit to an arbitrary shape using a method

based on the second moments of the shape. By considering

the behaviour of the moments with strain it has been shown

that as an arbitrary shape passively deforms, the best-fit

ellipse also behaves as if it were deforming passively. This

implies that all techniques of strain analysis that were

previously restricted to populations of elliptical objects may

now be applied to populations of arbitrary shapes, provided

the best-fit ellipse is calculated by one of the methods

described above. Furthermore it implies that selective

sampling or methods of weighting based upon shape are

invalid and tend to bias the raw data.
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Appendix A

A.1. Calculating the moments of an arbitrary polygon

This section describes how to calculate the moments of

an arbitrary polygon using Green’s Theorem (Yang and

Albregtsen, 1996; Turkowski, 1997).

A.1.1. Parameterised representation of a line segment

It is convenient to represent the line segments that

make up the polygon using a parameterised formulation

as this simplifies some of the later calculations. Let our

polygon be defined by a set of points pi ¼ ðxi; yiÞ where
i goes from one to n, the total number of points and

that the points are ordered counter-clockwise around the

polygon. The polygon is composed of a set of line

segments with end points ( pi,pj), where j ¼ 1 þ %n and

% is the modulus operator. The parametric equation of

each line segment is:

xðtÞ ¼ xi þ tðxj 2 xiÞ

yðtÞ ¼ yi þ tðyj 2 yiÞ

where t is a parameter which varies from zero to one.

Additionally this means that:

dx ¼ ðxj 2 xiÞdt

dy ¼ ðyj 2 yiÞdt

A.1.2. Green’s Theorem

Green’s Theorem is a well-known result from vector

calculus. Let G be a bounded, closed region in the plane,

whose boundary is denoted by ›G andG can be decomposed

into a finite number of bounded, closed, simple regions.

Given two continuously differentiable functions P(x,y) and

Q(x,y) on G then Green’s Theorem states that:

ðð

G

›Q

›x
2

›P

›y

	 


dxdy ¼
þ

›G

Pðx; yÞdxþ Qðx; yÞdy
� �

This theorem allows us to replace an integral over the

entire region G with an integral around the boundary ›G,

which is usually much simpler to calculate.

A.1.3. The moments of a polygonal region

General formulation: In general the moments of a region

G are defined as:

mpq ¼
ðð

G
Fðx; yÞdxdy

where Fðx; yÞ ¼ xpyq in the present case and is continuously

differentiable on G. In order to apply Green’s Theorem in

evaluating the moment integral the following equation must

hold:

Fðx; yÞ ¼ ›Q

›x
2

›P

›y

If the form of F permits it, a variety of equivalent

expressions for the moment can be derived by choosing

different functional values for Q and P. For example, by

letting P(x,y) ¼ 0 then:

Fðx; yÞ ¼ ›Q

›x

and applying Green’s Theorem:

mpq ¼
þ

›G

ð

Fðx; yÞdx
� �

dy

We could also formulate this by letting Q(x,y) ¼ 0 and

Fðx; yÞ ¼ 2
›P
›x

or alternatively letting F(x,y) be divided

between ›Q
›x

and ›P
›y

if possible. Hence we could derive

many different but equivalent formulations for each

moment. The formulas presented below are the shortest

version in each case.

Zeroth moments: The zeroth moment is more commonly

K.F. Mulchrone, K. Roy Choudhury / Journal of Structural Geology 26 (2004) 143–153 149



known as the area and is denoted by m00 as:

m00 ¼
ðð

G
dxdy

where Fðx; yÞ ¼ 1 ¼ x0y0 and applying Green’s Theorem:

m00 ¼
þ

›G

xdy

For a single parameterised line segment this becomes:

¼
ð1

0
xi þ t xj 2 xi

� �� �

yj 2 yi

� �

dt ¼ 2
1

2
xi 2 xj

� �

yi 2 yj

� �

so that summing for every line segment in the polygon, the

area is:

m00 ¼
Xn

i¼1

2
1

2
xi þ xj

� �

yi 2 yj

� �

For the case of the zeroth moment we could also split

F(x,y) such that ›Q
›x

¼ 1
2

and ›P
›y

¼ 2
1
2
, giving the

equivalent, but more succinct:

m00 ¼
Xn

i¼1

1

2
xiyj 2 xjyi

� �

Higher order moments: The first moments give the

centroid of the polygon and are:

m10 ¼
ðð

G
xdxdy

m01 ¼
ðð

G
ydxdy

and applying the above analysis so that for a polygon we

have:

m10 ¼
Xn

i¼1

2
1

6
x
2
i þ xixj þ x

2
j

� �

yi 2 yj

� �

m01 ¼
Xn

i¼1

1

6
xi 2 xj

� �

y
2
i þ yiyj þ y

2
j

� �

The second moments are related to inertia and are given

by:

m20 ¼
ðð

G
x
2dxdy

m02 ¼
ðð

G
y
2dxdy

m11 ¼
ðð

G
xydxdy

and for a polygon may be calculated by:

m20 ¼
Xn

i¼1

2
1

12
x
3
i þ x

2
i xj þ xix

2
j þ x

3
j

� �

yi 2 yj

� �

m02 ¼
Xn

i¼1

1

12
xi 2 xj

� �

y
3
i þ y

2
i yj þ yiy

2
j þ y

3
j

� �

m11 ¼
Xn

i¼1

1

24
xi 2 xj

� �

� xi 3y
2
i þ 2yiyj þ y

2
j

� �

þ xj y
2
i þ 2yiyj þ 3y2j

� �� �

In practice we can optimise calculation of the moments

by first calculating x3i , x
2
i , y

3
i , y

2
i , x

3
j , x

2
j , y

3
j , y

2
j , x

2
i xj, xix

2
j , y

2
i yj,

yiy
2
j , etc. so that these quantities are not evaluated more than

once. Clearly the central and normalised central moments

may be calculated from mpq.

A.2. Calculating the moments of a pixelated region

This is a considerably simpler calculation but may be

more resource intensive. Suppose that the shape or region

for which we wish to calculate the moments has been

pixelated in a binary digital image (i.e. if a pixel is in the

shape it has value one, otherwise it has value zero). More

formally suppose the region of interest is totally enclosed in

a rectangular regionG of size n by m pixels. Let the function

b(i,j), where i goes from one to n and j goes from one to m,

have value one if the i,jth pixel is in the shape and zero

otherwise. Then the moment calculation reduces to:

mpq ¼
Xn

i¼1

Xm

j¼1

x
p
i y

q
j bði; jÞ

where (xi,yj) is the coordinate of the i,jth pixel.

Appendix B

B.1. General equation of an ellipse in two dimensions

From basic geometry the equation of the locus of a point

p0 ¼ (x0,y0) on the boundary of an ellipse, with centre

m ¼
�

m0
x;m

0
y

�

, l1 and l2 being the length of its major and

minor axes, respectively, and major axis parallel to the x0-
axis, is given by:

x0 2 m0
x

� �2

l21
þ

y0 2 m0
y

� �2

l22
¼ 1 ð38Þ
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In general the major axis makes at an arbitrary angle f
with the x0-axis and the equation of this more general ellipse

can be obtained from Eq. (38) by applying a rotation of the

co-ordinates of the point p0 ¼ (x0,y0) through an angle f. The
rotation produces new variables p ¼ (x,y) as follows:

x ¼ x
0cosf2 y

0sinf ð39Þ

y ¼ x
0sinf2 y

0cosf ð40Þ

or in vector-matrix notation

x

y

 !

¼
cosf 2sinf

sinf cosf

 !

x
0

y
0

 !

ð41Þ

Introducing this change of variables into Eq. (38)

produces a much bigger expression, which is often

represented by a general quadratic form in two variables:

ax
2 þ by

2 þ cxyþ dxþ eyþ f ¼ 0 ð42Þ

Eq. (42) is the form that is commonly used for fitting an

ellipse to points using boundary based methods, as outlined

in Section 2.2. However, for region based fitting, it is more

convenient to represent the equation in a vector-matrix

format. Notice that Eq. (38) can be written in this format as

follows:

x
0
2 m0

x y
0
2 m0

y

� � l
2
1 0

0 l
2
2

 !
x
0
2 m0

x

y
0
2 m0

y

0

@

1

A ¼ 1 ð43Þ

The change of variables can be introduced using the

matrix form of the rotation transformation in Eq. (41),

yielding:

x2 mx y2 my

� �

�
cosf 2sinf

sinf cosf

 !
21

l
2
1 0

0 l
2
2

 !21
cosf 2sinf

sinf cosf

 !
21

£

x2 mx

y2 my

 !

¼ 1 ð44Þ

where m ¼ (mx,my) are the rotated coordinates of the ellipse

centre. This is the matrix form of Eq. (42). If we designate

the central matrix as J 21, i.e.

J ¼
cosf 2sinf

sinf cosf

 !

l
2
1 0

0 l
2
2

 !
cosf 2sinf

sinf cosf

 !

ð45Þ

We get the general equation of an ellipse in two

dimensions (in matrix notation) as:

p2 m
� �TJ21

p2 m
� �

¼ 1 ð46Þ

Here
�

p2 m
�T¼

�

x2 mx y2 my

�

and T denotes matrix

transpose.

B.2. Fitting an ellipse to a region identified by points

In this section a method for fitting an ellipse E to a given

a region R containing n points pi ¼ (xi,yi), i ¼ 1,2,…,n, is

derived. An objective way of doing this is to define a

numerical criterion which measures how well, or how

closely, the ellipse E fits the region R, or equivalently, its

points. The best fitting ellipse E p is the one that minimises

this criterion. The closeness of a point to an ellipse E (as

represented in Eq. (46)) can be measured in terms of the

squared Euclidean distance between the point and the centre

of the ellipse, namely:

d pi;E
� �

¼ xi 2 mx

� �2þ yi 2 my

� �2 ð47Þ

This distance is minimised when the centre of the ellipse

E is the point itself. However, when there are many points in

the region to consider, it is impossible to minimise

individual distances. An aggregate distance must be

minimised and an obvious choice for this is the sum of

the individual distances across the different points, i.e.:

d1 p1;p2;…pn;E
� �

¼
Xn

i¼1

xi 2 mx

� �2þ yi 2 my

� �2
� �

ð48Þ

Criterion d1
�

p1;p2;…pn;E
�

can be viewed as a ‘least

squares’ approach to fitting the ellipse. Least squares

methods have been widely used to fit curves to points

since the time of Gauss in the 18th century. In many cases,

the solutions are simple to implement and their quality of fit

is also widely understood. In the case of d1
�

p1; p2;…pn;E
�

,

one can show with some simple differential calculus that the

centre of the best fitting ellipse Ep will be the centroid of the

points �p ¼
�

�x; �y
�

, where

�x ¼ 1

n

Xn

i¼1

xi and �y ¼ 1

n

Xn

i¼1

yi ð49Þ

are the averages across the co-ordinates of the points in the

region R. However, minimising the distance does not yield

any information about other parameters of the best fitting

ellipse, namely l1, l2 and f. This is because the distance does
not involve these parameters in measuring closeness, only

the centre. This suggests formulating a distance that

involves all these parameters.

One candidate that satisfies this requirement is the

following:

d2 p1;p2;…pn;E
� �

¼
Xn

i¼1

pi 2 m
� �TJ21

pi 2 m
� �

ð50Þ

Criterion d1
�

p1;p2;…pn;E
�

can be viewed as a variant of

d2
�

p1;p2;…pn;E
�

with J ¼ I, the identity matrix. Geome-

trically, d2
�

p1; p2;…pn;E
�

can be viewed as the Euclidean

distance computed on variables transformed in such a way

that the ellipse would appear as a circle in the transformed

space. From an ellipse fitting viewpoint, Eq. (45) tells us

that J incorporates l1, l2 and f. Therefore it should be
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possible to recover information about these parameters (in

addition to the centre) by minimising d2
�

p1; p2;…pn;E
�

.

However, minimising criterion d2
�

p1;p2;…pn;E
�

is not as

mathematically simple as minimising d1
�

p1;p2;…pn;E
�

. To

be precise, d2
�

p1; p2;…pn;E
�

can be minimised by choosing

the major and minor axes to be infinitely long (which makes

d2
�

p1;p2;…pn;E
�

¼ 0). The reason for this fallacious result

is the lack of a ‘scaling’ or ‘normalizing’ factor for the

matrix in the criterion. This normalizing factor will

counteract the effect of when it becomes too large or too

small, thus eliminating this absurd solution to the minimis-

ation problem. While many different scaling factors can be

proposed, for reasons described shortly, we choose n
2
log

�
�J
�
�

as the scaling factor. Thus our distance of choice becomes:

d3 p1;p2;…pn;E
� �

¼
Xn

i¼1

pi 2 m
� �TJ21

pi 2 m
� �

2
n

2
log Jj j ð51Þ

The reason for choosing this particular normalizing

factor is that it makes minimisation of the criterion

mathematically equivalent to the following well known

statistical problem: estimate the mean vector m and

dispersion matrix J of a bivariate Gaussian distribution,

given a sample of n data points. The solution to this problem

is given by the corresponding moments of the sample,

namely:

�p ¼ �x; �y
� �

and

U ¼
u20 u11

u11 u02

 !

where �x is the centroid as defined in Eq. (49) and

u20 ¼
1

n

Xn

i¼1

xi 2 �x
� �2 ð52Þ

u02 ¼
1

n

Xn

i¼1

yi 2 �y
� �2 ð53Þ

u11 ¼
1

n

Xn

i¼1

xi 2 �x
� �

yi 2 �y
� �

ð54Þ

are the second moments of the region. The proof of this

result is long and the reader is therefore referred to Theorem

3.2.1 of Anderson (1984) or any other book on multivariate

statistical analysis.

This result implies that the best fitting ellipse (in the

sense of minimising distance d3
�

p1;p2;…pn;E
�

) has a mean

vector m ¼ �p and matrix J ¼ U, which are defined by Eqs.

(49) and (52)–(54). At this stage, it remains to identify the

parameters l1, l2 and f that correspond to this closest fit.

These can be identified by substituting our solution for J in

Eq. (45), i.e.:

cosf 2sinf

sinf cosf

 !

l
2
1 0

0 l
2
2

 !
cosf 2sinf

sinf cosf

 !

¼ U

¼
u20 u11

u11 u02

 !

ð55Þ

Simplifying the matrix system in Eq. (55) yields the

following three equations:

l
2
1cos

2fþ l
2
2sin

2f ¼ u20 ð56Þ

l
2
1 2 l

2
2

� �

sinfcosf ¼ u11 ð57Þ

l
2
1sin

2fþ l
2
2cos

2f ¼ u02 ð58Þ
It remains to solve for three unknowns (l1, l2 and f) from

three equations. After a bit of algebraic and trigonometric

manipulation, we get the following solutions to these

equations:

f ¼ 1

2
tan21 2u11

u20 2 u02

	 


ð59Þ

l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 u20 þ u02 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4u211 þ ðu20 2 u02Þ2
q	 


u11

v
u
u
u
t ð60Þ

l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 u20 þ u02 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4u211 þ ðu20 2 u02Þ2
q	 


u11

v
u
u
u
t ð61Þ

Thus the best fitting ellipse to a region R can be found by

calculating the ellipse parameters using the formulae given

in Eqs. (49) and (52)–(54).
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