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S U M M A R Y
This is an attempt to study 3-D wave propagation in a general anisotropic poroelastic medium.
Biot’s theory is used to derive a modified Christoffel equation for the propagation of plane
harmonic waves in an anisotropic fluid-saturated porous solid. This equation is solved further
to obtain a biquadratic equation, the roots of which represent the phase velocities of all the
four quasi-waves that may propagate in such a medium. These phase velocities vary with the
direction of phase propagation. Expressions are derived to calculate the group velocities of
all the four quasi-waves without using numerical differentiation. The eigensystem of modified
Christoffel equation is used to calculate the polarizations of all the quasi-waves. The particle
motion of each wave is a function of the direction of phase propagation. Some fundamen-
tal differences between wave propagation in anisotropic poroelastic medium and anisotropic
elastic medium are suggested, an interesting one is that in an anisotropic poroelastic medium,
the polarizations of different quasi-waves need not be mutually orthogonal. In the anisotropic
poroelastic medium, the motion of fluid particles deviates from solid particles and this devia-
tion varies, also, with the matrix porosity. Propagation regimes for an isotropic medium, giving
velocities and polarizations of both compressional and shear waves, are obtained as special
cases. The variations of phase velocity, group velocity, ray direction with phase direction (in
3-D space), are plotted for a numerical model of general anisotropic poroelastic solid. The
same numerical model is used to plot the deviations of polarizations from phase direction
and ray direction. The deviations among the motion in fluid of the particles and solid parts of
porous aggregate are also plotted.

Key words: general anisotropy, group velocity, phase velocity, polarization, poroelasticity.

1 I N T RO D U C T I O N

Elastic wave propagation in anisotropic poroelastic media is of great interest in geophysics and other branches of applied sciences such
as petroleum engineering, structural mechanics and seismology. In the absence of point symmetry of pores, a poroelastic solid behaves
anisotropically to wave propagation. Stress-induced anisotropy may also be present in the matrix frame of a poroelastic solid. The seismic
anisotropy in the earth is caused by the preferential alignments in crystal orientations, grains, pores, microcracks, regional fractures or joints.
Such alignments are in direct response to the existing or former stress-field. Volumes of inherently isotropic rocks may be microfractured by
regional tectonic stresses, resulting in a system of oriented fractures along principal axes which could lead to global anisotropy (Bamford &
Nunn 1979; Leary et al. 1987). In exploration studies (Helbig 1984; Leary & Henyey 1985; Corrigan 1989; Kerner et al. 1989, and many
others), velocity anisotropy measured from traveltimes has suggested the presence of significant anisotropy in sedimentary basins. Similar
results for Earth’s crust and mantle have been obtained in earthquake studies (Gupta 1973; Crampin 1985; Thomsen 1986; and many others).
Crampin (1994) reviewed the various observational studies and confirmed the presence of shear wave splitting in almost all the rocks in the
uppermost half of the crust.

The poroelastic equations formulated by Biot (1955, 1956) have long been regarded as standard and have formed the basis for solving
wave propagation problems in poroelasticity. Burridge & Keller (1981) used homogenization theory (Levy 1979; Auriault 1980) to derive the
equations which govern the linear macroscopic mechanical behaviour of a porous solid saturated with a compressible viscous fluid. However,
for small viscosity, these equations are equivalent to those of Biot’s formulation. Schmitt (1989) and Sharma (1991) used Biot’s theory to
study the wave propagation in transversely isotropic porous solids. Mengi & McNiven (1978) studied the propagation and decay of waves in
isotropic and anisotropic poroelastic media, in the absence of fluid-solid coupling of Biot’s theory. Theoretical models developed by Hudson
(1980) are the bases of much of the work explaining the anisotropic wave propagation behaviour of cracked solids. These works, however,
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fail to account fully for the presence of both matrix porosity and crack porosity. Thomsen (1995) related the anisotropy to crack parameters
in a porous rock and suggested that the amount and the type of anisotropy in the porous rocks depends upon the crack density, crack shape,
stiffness of interstitial fluid, matrix porosity, frequency, fluid pressure and flow between cracks and pores. Rathore et al. (1995) supported this
work through the experimental study of anisotropy in a sandstone with controlled crack geometry. Sharma (1996) discussed the co-existence
of cracks and pores and its effect on surface wave propagation. Hudson et al. (1996) studied the effect of interconnection between cracks
and of small-scale porosity within the solid material on the overall elastic properties of cracked solid. Very recently, Tod (2002) discussed
the changes in the crack distribution and fluid flow properties of the aggregate with the alteration in applied stress and fluid pressure. The
expressions for effective elastic constants, involving a dependence on both the applied stress and the fluid pressure, are derived and are used
to determine their effects on the anisotropy of the effective medium.

An important tool for studying the properties of anisotropic elastic wave propagation is the capability to model slowness and polarization.
Of these, the variations of velocities with direction are often considered to be the dominant indicator of anisotropy. However, the velocity
variations that are averaged over very long paths are not of much use in studying a local structure. The polarizations of direct arrivals are
more sensitive to the local properties of a medium. So, within a few wavelengths of the recording station, the diagnostic effect of anisotropy is
better represented by the polarization anomalies than velocity dispersion. Moreover, the complicated structure of the Earth inhibits our ability
to obtain accurate measurements of velocity over a range of directions in one plane of a material. This makes velocity anisotropy difficult
to observe. An easily observable and distinctive feature of wave propagation in anisotropic solids is the deviation of particle displacements
from the ray path. These anomalies contain information concerning the nature of anisotropic alignments and in some cases may indicate
the depth of the anisotropic layer. Variations of delays in anisotropic polarization anomalies are used to extract information concerning the
orientations of stress-induced dilatancy and also concerning the state of stress causing dilatancy (Crampin & McGonigle 1981). Polarization
vectors of waves propagating in anisotropic media are used to calculate Green’s tensor which plays an important role in the computation of
displacements from point sources (Aki & Richards 1980; Ben-Menahem & Singh 1981). Ben-Menahem et al. (1991) have shown that the
radiation patterns are controlled entirely by the dot product of polarization dyadic and point source vector. Sayers (1988) used the inversion of
ultrasonic velocity and polarizations to obtain crack orientation distribution function and verified the results with those obtained by petrofabric
analysis. Meadows & Winterstein (1994) studied the use of polarizations of S waves in detecting the hydraulic fracture at Lost Hills Field,
California.

In the available literature, all the analytical studies on anisotropic propagation in poroelastic solids restrict the motion to a fixed (symmetry
or arbitrary) plane and hence solve a 2-D problem. The energy propagation in an anisotropic media is, in fact, a 3-D phenomenon. Moreover,
the mineral orientations, microfracturing or thin layering or combinations of these can disturb the point symmetry of pores that results in an
anisotropy of arbitrary symmetry. The work presented studies both velocities and polarizations for the 3-D wave propagation in a general
anisotropic poroelastic medium. The analytical expressions are derived for phase velocity, group velocity, ray direction and polarizations of
all the four quasi-waves.

2 A N I S O T RO P I C P O RO E L A S T I C I T Y

Following Biot (1956), the governing equations for a fluid-saturated porous media, in the absence of body forces and dissipation, are

σi j, j = ρ11üi + ρ12Üi ;

σ,i = ρ12üi + ρ22Üi .
(1)

In these equations, ui and Ui are the components of the average displacements for the solid and fluid phases, respectively. The dot notation
is used to represent differentiation with respect to time. Indices can take the values 1, 2 and 3. Summation convention is valid for repeated
indices. The comma before an index represents partial space differentiation. ρ11, ρ12 and ρ22 are the dynamic constants related to the porosity
of solid (f ), densities of solid particles and interstitial fluid (ρs , ρ f ), through the relations: ρ11 + ρ12 = (1 − f )ρs , ρ12 + ρ22 = f ρ f . For an
anisotropic porous material, the constitutive equations for stresses in the solid phase (i.e. σ ij) and fluid (i.e. σ ) are

σi j = cijkluk,l + mi j Uk,k ;

σ = mi j ui, j + RUk,k .
(2)

The coefficients cijkl, mij and R are the material constants of a linear porous material. The assumptions cijkl = cklij = cjikl and mij = mji reduce
the number of independent material constants in the constitutive equations for a general anisotropy to, at the most, 28.

To seek the harmonic solution of (1), for the propagation of plane waves, write

u j = Sj exp [iω(pk xk − t)];

U j = Fj exp [iω(pk xk − t)], ( j = 1, 2, 3),
(3)

where, ω is frequency and (p1, p2, p3) is slowness vector. Substituting (2) in (1) and then using (3), we obtain a system of six homogeneous
equations in S1, S2, S3, F1, F2, F3. Non-trivial solution of this system of equations defines the modified Christoffel equation for the wave
propagation in an anisotropic poroelastic medium. Eliminating Fj, ( j = 1, 2, 3), the modified Christoffel equation is a system of three
homogeneous equations, given by

Wi j S j = 0, (i = 1, 2, 3). (4)
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3-D wave propagation 331

The elements W ij of square matrix of order 3 are defined as

Wi j = −g0hδi j + Pi j + 1

h − 1
Qi j , (i, j = 1, 2, 3), (5)

where, δij is Kronecker delta. P and Q, the square matrices of order 3, are defined as follows.
The row matrix N = (n1, n2, n3), where nj denotes the components of a unit vector normal to wave surface, represents the direction

of phase propagation. In terms of phase velocity v, the slowness is, then, {p1, p2, p3} = {n1, n2, n3}/v. Consider a general anisotropic
poroelastic medium with elastic constants cijkl of the solid matrix represented by two-suffix notation, cij. Define, following Sharma (2002),

α = NAN′, β = NBN′, γ = NCN′,

δ = NDN′, η = NEN′, ζ = NFN′,
(6)

where N′ denotes the transpose of row matrix N. A, B, C, D, E and F are square matrices of order 3. For general anisotropy, these are defined
as follows.

A = {a11, a16, a15; a16, a66, a56; a15, a56, a55};
B = {a66, a26, a46; a26, a22, a24; a46, a24, a44};
C = {a55, a45, a35; a45, a44, a34; a35, a34, a33};
D = {a16, a12, a14; a66, a26, a46; a56, a25, a45};
E = {a15, a14, a13; a56, a46, a36; a55, a45, a35};
F = {a56, a46, a36; a25, a24, a23; a45, a44, a34},

(7)

where aij = cij/R. The matrix P = Z + Y and matrix Q = {Qij} is defined by Qij = X iX j + Y ij, where symmetric, square matrix

Z = {α, δ, η; δ, β, ζ ; η, ζ, γ }, (8)

and the elements of symmetric matrix Y are

Yi j = r 2
12ni n j − r12(ni X j + n j Xi ), (i, j = 1, 2, 3). (9)

The elements of row matrix X are defined as Xi = miknk/R, (i = 1, 2, 3). In eq. (5), the variable h = ρ22v
2/R and g0 = r 11 − r 2

12, where r 1 j =
ρ1 j/ρ22, ( j = 1, 2). The system of eqs (4) is possible for all values of h other than 0 and 1. The non-zero value of h implies that this system of
equations for saturated poroelastic solid cannot be reduced to the one for dry poroelastic solid. h = 1 represents the case when phase velocity
assumes the value of

√
R/ρ22.

3 P H A S E V E L O C I T Y

For the non-trivial solution of the system of eqs (4), the determinant of matrix W must vanish. This gives a biquadratic equation in h
(=ρ22v

2/R), given by

h4 − c1h3 + c2h2 − c3h + c4 = 0. (10)

Unlike in an anisotropic elastic medium, this biquadratic equation is not derived from the eigensystem of a real, symmetric positive definite
matrix. This implies that roots of this equation may not, always, be positive. Therefore, the number of waves propagating in such a medium
depends upon the coefficients of this biquadratic equation. For all the four body waves to propagate in an anisotropic poroelastic medium, all
the coefficients (i.e. cj, j = 1, 2, 3, 4) must be positive. Let hj, ( j = 1, 2, 3, 4), denote the four (positive) roots of this equation. The velocities
of the four waves, given by v j = √

(Rh j/ρ22), ( j = 1, 2, 3, 4), will be varying with the direction of phase propagation and called phase
velocities. These waves are called quasi-waves because polarizations may not be along the dynamic axes. Keeping in mind the propagation of
two compressional and two shear waves in an isotropic poroelastic medium (Appendix A), these waves represented by j = 1, 2, 3 and 4, are
called the qP1, qP2, qS1 and qS2 waves, respectively. The coefficients of eq. (10) are as follows (a repeated index implies summation).

c1 = Pii/g0 + 1;

c2 = (Pii − Qii )/g0 − T1/g2
0 ;

c3 = (det{Pi j }/g0 + T2 − T1)/g2
0 ;

c4 = (det{Pi j } − T3)/g3
0,

(11)

where

T1 = P2
12 + P2

13 + P2
23 − P11 P22 − P11 P33 − P22 P33,

T2 = 2(P12 Q12 + P13 Q13 + P23 Q23) − Q11(P22 + P33) − Q22(P11 + P33) − Q33(P11 + P22),

T3 = Q11

(
P22 P33 − P2

23

) + Q22

(
P11 P33 − P2

13

) + Q33

(
P11 P22 − P2

12

)
+ 2Q12 (P13 P23 − P12 P33) + 2Q13 (P12 P23 − P13 P22) + 2Q23 (P12 P13 − P11 P23) .

(12)
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The roots of eq. (10) are written as

h1 = 0.5(−G − L + �1);

h2 = 0.5(−G − L − �1);

h3 = 0.5(−G + L + �2);

h4 = 0.5(−G + L − �2), (13)

where

�1 = √
(G + L)2 − 4(H + M); �2 = √

(G − L)2 − 4(H − M);

G = −0.5c1; H =
√(

c2
2/9 − c1c3/3 + 4c4/3

)
cos ψ + c2/6;

M = √
H 2 − c4; L = (0.5c3 + G H )/M ; (L = √

G2 − c2 + 2H ; if M = 0);

ψ = 1

3
tan−1(�/�); � =

√
−�2 + (

c2
2/9 − c1c3/3 + 4c4/3

)3
;

� = 0.5
[
c2

3 + 2c3
2/27 − c2(c1c3 − 4c4)/3 − c4

(
4c2 − c2

1

)]
.

4 G RO U P V E L O C I T Y

In an anisotropic medium, energy travels with group velocity along a ray at an angle to the propagation direction. It is the group velocity that
is measured in observations of arrival times. The group velocity is also required for the interpretation of both real and synthetic data. In a
spherical coordinate system (r , θ , φ), let vj(θ , φ) define the phase velocity of wave j in the direction of N (=(sin θ cos φ, sin θ sin φ, cos θ ) in
the Cartesian coordinate system). Ray direction is determined from the components of group velocity. These components wj, ( j = 1, 2, 3),

Figure 1. Variations of phase velocity, group velocity and ray direction of the qP1 wave with phase direction (θ , φ); all angles are in degrees.
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3-D wave propagation 333

following Ben-Menahem & Sena (1990), are expressed as follows.

wx/v j = cos φ sin θ + cos φ cos θTθ − sin φ

sin θ
Tφ ;

wy/v j = sin φ sin θ + sin φ cos θTθ + cos φ

sin θ
Tφ ;

wz/v j = cos θ − sin θTθ .
(14)

The magnitude of the group velocity is

w j = v j

√
1 + T 2

θ + 1

sin2 θ
T 2

φ ; (15)

and the ray direction, (θ g , φg), is given by

θg = tan−1




√
w2

x + w2
y

wz


; φg = tan−1

(
wy

wx

)
. (16)

T θ and Tφ in (14)–(15), for each wave j = 1, 2, 3, 4, are defined by,

Tk = 1

v j
(v j ),k = 1

2h j
(h j ),k ; (k = θ, φ). (17)

The partial derivatives of hj, ( j = 1, 2, 3, 4), for each of the four quasi-waves, derived from eq. (10), are given by the relation

h′ = c′
1h3 − c′

2h2 + c′
3h − c′

4

4h3 − 3c1h2 + 2c2h − c3
. (18)

The derivatives of coefficients (i.e. c′
k , k = 1, 2, 3) can be derived analytically from the relations defined in Section 3.

Figure 2. Variations of phase velocity, group velocity and ray direction of the qP2 wave with phase direction (θ , φ); all angles are in degrees.
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5 P O L A R I Z AT I O N

The modified Christoffel eq. (4) is written as a system of three homogeneous equations, given by

Wi j u j = 0, (i = 1, 2, 3). (19)

The fluid displacement Ui is related to solid displacement ui by the relation

Ui = Gi j u j , (20)

where

Gi j = −r12δi j + 1

h − 1

(
1

R
mi j − r12δi j

)
ni n j . (21)

The system of eqs (19) and that the components u1, u2, u3 must satisfy the relations
u1

�1
= u2

�2
= u3

�3
, (22)

for three sets of (�1, �2, �3). These sets of values of �i , (i = 1, 2, 3), are as follows.

(i) �1 = �2 �2 = �1 �3 = �12, (23)

(ii) �1 = �3 �2 = �13 �3 = �1; (24)

(iii) �1 = �23 �2 = �3 �3 = �2, (25)

where

�1 = P23g0h2 + [P12 P13 − P11 P23 + g0(Q23 − P23)]h

+ P12 Q13 − P11 Q23 + P13 Q12 − P23 Q11 + P11 P23 − P12 P13,

�23 = g2
0h3 − g0(P22 + P33 + g0)h2 + [

P22 P33 − P2
23 + g0(P22 + P33 − Q22 − Q33)

]
h

+ P22 Q33 + P33 Q22 − 2P23 Q23 + P2
23 − P22 P33. (26)

Figure 3. Variations of phase velocity, group velocity and ray direction of the qS1 wave with phase direction (θ , φ); all angles are in degrees.
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3-D wave propagation 335

The expression for �2(�3) can be obtained from that of �1 by interchanging the indices 1 and 2 (3). Similarly, the expression for �12(�13)
can be obtained from that of �23 by replacing the index 1 with 3 (2).

Polarizations can be obtained from any of the three sets of �i. The extra degree of freedom is removed by normalization. These sets are
not independent but all three are required to find the polarizations for ui, (i = 1, 2, 3) in two situations. These situations (Fryer & Frazer
1987) are indeterminate solutions and singularities. Indeterminate solutions occur when along a particular phase direction, all �i , (i = 1,
2, 3), from one of the relations among (23) to (25) vanish. Then, ui calculated from the zero �i will be a null vector. However, fortunately,
one of the remaining two sets of �i will always provide a non-trivial solution for polarizations of ui. Polarizations of Ui are, then, calculated
from the relation (20). Singularities are the phase directions along which more than one quasi-waves have a common phase velocity. In such
a situation, a single set of �i will assign the same polarizations for these waves and hence represent the same wave. So, in the vicinity of
a singularity, other sets of �i help to find the polarizations of the unrepresented waves. Singularities are unlikely for the qP1 wave because
of its large phase velocity as compared with other quasi-waves. To find the polarization in the case of singularities, the algorithm given by
Fryer & Frazer (1987) may be used. A detailed study of singularities for anisotropic wave propagation in a poroelastic medium (analogous to
singularities in anisotropic elastic medium) may be the subject of further studies.

There are some fundamental differences between wave propagation in an anisotropic elastic medium and an anisotropic poroelastic
medium. These are as follows.

(1) Phase velocities of waves propagating in general anisotropic elastic medium are the eigenvalues of a real symmetric positive definite
matrix and this ensures the propagation of exactly three waves along all phase directions (Sharma 2002). In an anisotropic poroelastic medium,
the propagation of all the four quasi-waves along all phase directions is not guaranteed.

(2) Polarization vectors in an anisotropic elastic medium are the eigenvectors of a real symmetric positive definite matrix and hence will
be mutually orthogonal. In an anisotropic poroelastic medium, the polarization vectors of different quasi-waves may not be orthogonal.

(3) In an anisotropic poroelastic medium, the deviation of fluid particles from solid particles varies with the phase direction. The polarizations
of fluid particles have no role to play in the wave propagation in anisotropic elastic solids even when the anisotropy is caused by the fluid-filled
cracks.

Figure 4. Variations of phase velocity, group velocity and ray direction of the qS2 wave with phase direction (θ , φ); all angles are in degrees.
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6 PA RT I C L E M O T I O N

Polarization relations derived in Section 5 give the direction of motion of both solid and fluid particles of the porous aggregate. For each of
the quasi-waves, (i.e. for h = hj, ( j = 1, 2, 3, 4)), (S1, S2, S3), the unnormalized polarization vector for the displacement of solid particles, is
obtained from the relations

S1

�1
= S2

�2
= S3

�3
. (27)

The direction (θ s , φs) of motion of solid particles is given by

θs = tan−1

(√
�2

1 + �2
2

�3

)
, φs = tan−1

(
�2

�1

)
. (28)

Figure 5. Variations of deviation (from phase direction) of solid particle polarization with phase direction (θ , φ); all angles in degrees.
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3-D wave propagation 337

Similarly, the direction (θ f , φ f ) of displacement of fluid particles is given by

θ f = tan−1

(√
�2

1 + �2
2

�3

)
, φ f = tan−1

(
�2

�1

)
, (29)

where

�i = Gi j� j , (i = 1, 2, 3). (30)

7 N U M E R I C A L C O M P U TAT I O N A N D D I S C U S S I O N

The analytical expressions derived in the previous sections represent a mathematical model for anisotropic propagation in a poroelastic
medium. In a sense, it is a restricted study that considers the anisotropic wave propagation but without going into the cause of anisotropy. The
numerical computation is, therefore, restricted to discuss the directional variations of velocities and polarizations. In a general anisotropic
medium, the 3-D propagation depends upon azimuth also. Therefore, variations in phase direction is represented by both, the polar angle and

Figure 6. Variations of deviation (from phase direction) of fluid particles with phase direction (θ , φ); all angles in degrees.

C© 2003 RAS, GJI, 156, 329–344

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/156/2/329/598709 by guest on 21 Septem

ber 2022



338 M. D. Sharma

the azimuth. The variations in these angles are considered from 0◦ to 90◦. The analysis of anisotropic propagation in a real crustal material may
be a useful study. Dolomite, a reservoir rock is chosen as the numerical model of an anisotropic poroelastic medium. Following, Rasolofosaon
& Zinszner (2002), the elastic matrix (GPa) for dolomite, is given by

c11 = 65.53c12 = 9.77c13 = 12.19c14 = 0.18c15 = −0.81c16 = 2.94;

c22 = 50.77c23 = 11.61c24 = −0.09c25 = −0.50c26 = −0.19;

c33 = 60.11c34 = −1.61c35 = 1.78c36 = 0.84;

c44 = 23.51c45 = 1.49c46 = −1.17;

c55 = 24.57c56 = 0.26c66 = 20.21

.

The density is 2423 kg m−3. The values assumed for remaining elastic parameters (GPa) are {m11, m22, m33, m12, m13, m23} = {20, 21, 19,
1, 2, 2.5} and R = 15. Dynamic constants are derived for 23 per cent porosity, in a solid of density 2.423 g cc−1 and containing a fluid of

Figure 7. Variations of apparent polarizations of solid particles with phase direction (θ , φ); all angles in degrees.
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3-D wave propagation 339

density 0.98 g cc−1. According to Biot’s theory (1956), ρ12 represents fluid-solid coupling and its value is, generally, very small and negative.
For an assumed value of ρ12 = −0.01, ρ11 = (1 − 0.23)2.423 − ρ12 and ρ22 = 0.23(0.98) − ρ12.

7.1 Velocities

Using the above numerical values, the variations of velocities with phase direction are presented in Figs 1–4 , for the qP1, qP2, qS1 and
qS2 waves, respectively. Each of the Figs 1–4 exhibits the variations of (1) phase velocity, (2) difference between group velocity and phase
velocity and (3) deviation of ray direction (polar angle and azimuth) from phase direction, with the phase direction. For the qP1 wave, as
shown in Fig. 1, the phase velocity is minimum when θ = 0. The effect of azimuth variations on phase velocity is negligible for smaller values
of θ , but important at the larger values. The group velocity of the qP1 wave is very close to its phase velocity. The difference between group
velocity and phase velocity is relatively larger when propagation is nearly along the polar axis (i.e. θ ≈ 0). The deviation of ray direction from

Figure 8. Variations of apparent polarizations of fluid particles with phase direction (θ , φ); all angles in degrees.
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340 M. D. Sharma

phase direction is larger in azimuth as compared with polar angle. The deviation in azimuth is maximum at (θ , φ) = (0, 0) and minimum at
(0◦, 90◦). The velocity variations for the qP2 wave are plotted in Fig. 2. The group velocity of this wave has larger variations (≈2 per cent of
phase velocity) as compared with qP1 wave (≈0.2 per cent). The deviation range of ray direction from phase direction is much smaller for
polar angle than azimuth. Figs 3 and 4 contain the variations for the qS1 and qS2 waves, respectively. The difference between group velocity
and phase velocity is smaller (≈2 per cent of phase velocity) for the qS1 wave as compared with qS2 waves (≈5 per cent). Deviation of
polar angle of ray from θ is around 5◦–10◦, whereas azimuth of ray deviates up to 180◦. For phase propagation away from the polar axis, the
velocities vary significantly with the azimuth of the phase. The deviation of ray direction from phase direction also varies with the azimuth
of phase propagation. The variations of velocities with the azimuth, in all plots, exhibit the importance of azimuthal anisotropy for the wave
propagation in anisotropic poroelastic solids.

As a special case, the phase velocities of quasi-waves were calculated numerically for the 2-D wave propagation in transversely isotropic
poroelastic solid and were verified with those obtained in Sharma (1991).

Figure 9. Variations of deviations of fluid particles from solid particles with phase direction (θ , φ): matrix porosity = 23 per cent; all angles in degrees.
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7.2 Polarization

The numerical work is restricted to calculate the deviations of fluid and solid particles from phase direction. Keeping in view the practical
importance of apparent polarizations, the deviations of fluid and solid particles from ray direction are also computed for all the four quasi-waves.
The variations in the polarization of solid particles and fluid particles with phase direction are presented in Figs 5–8 .

Fig. 5 exhibits the deviations of vibrations of solid particle from the direction of phase propagation. For the qP1 wave the polar angle
of solid particles deviates by nearly 5◦ whereas azimuth deviates up to 40◦. Polar angle of solid particles for the qP2 wave deviates between
40◦ and 140◦. This means that this motion is more transverse than longitudinal. The polar angle for solid particles in qS1 motion varies
continuously with phase direction but its azimuth may suddenly reverse for some phase directions. The deviations of solid particles in qS2
motion is large but continuous. The deviations of the polarization from phase direction of fluid particles are plotted in Fig. 6. In qP1 motion,
the fluid particles are polarized nearly along the phase direction. However, in the qP2 motion, the fluid particles move nearly along the phase
direction for most of the phase directions but for some phase directions polar angles and azimuth can suffer sudden jumps of 90◦ and 180◦,

Figure 10. Variations of deviations of fluid particles from solid particles with phase direction (θ , φ): matrix porosity = 5 per cent; all angles in degrees.
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respectively. The deviations of fluid particles from phase direction is also small in qS2 wave. This implies the smaller contribution of fluid
particles in the qS2 wave. The motion of fluid particles in qS1 wave seems more turbulent than solid particles.

The variations of apparent polarizations of solid and fluid particles are presented in Figs 7 and 8. The apparent polarization of solid
particles, in qP1 motion (Fig. 7) is much smaller as compared with the deviations from phase direction (Fig. 5). For the qP2, qS1 and qS1
waves, the polar angle in apparent deviations are nearly similar to its deviations from the phase direction. The azimuth deviations are also
similar except in qP2 motion at larger θ . This implies that for these waves, the deviations of ray direction from phase direction are much
smaller as compared with their apparent polarizations. Fig. 8 exhibits the apparent polarization of fluid particles. In qP1 motion, the apparent
polarization of fluid particles is small but much larger as compared with their deviations from phase direction (Fig. 6). For other waves, the
deviations in apparent polarizations are nearly similar to the deviations from phase direction.

In an anisotropic poroelastic medium, the motion of fluid particles may not be along (or parallel to) the motion of solid particles.
The deviations of fluid particles from solid particles are calculated for two values (5 and 23 per cent) of matrix porosity and are plotted
in Figs 9 and 10, respectively. These figures indicate the different behaviours of two constituents of a poroelastic solid. Changing the
proportions of these two constituents changes the polarizations of the quasi-waves (particularly, the azimuth of the qS1 and qS2 waves). This
implies that polarization difference of two constituents of a poroelastic solid may be diagnostic to the amount of fluid saturating the solid
matrix.

The above discussion of numerical results is made for a particular model. So, it may not be useful to draw conclusions from such a
discussion. The analytical expressions derived in this work may be used to improve the mathematical models of anisotropic wave propagation
in poroelastic media. The researchers in this field would prefer to use these expressions to improve their models when interpreting the complex
data. Polarization anomalies are a diagnostic feature of wave propagation in a cracked or anisotropic solid, and the present study certainly
supplements this diagnosis. The difference in polarizations of two constituents of a poroelastic solid may help to study the type of anisotropy
and amount of matrix porosity in porous rocks. This study may be helpful to the prospecting seismologists working for improved oil recovery.
The expressions derived for the propagation of quasi-waves can, further, be used to derive the characteristic equations for surface waves and
to study the reflection/refraction/scattering phenomena in general anisotropic poroelastic media.
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A P P E N D I X A : I S O T RO P I C P H A S E V E L O C I T I E S

To ensure the correctness of the expressions derived for anisotropic poroelasticity, in the text, eq. (10) is reduced to calculate the wave velocities
in an isotropic poroelastic solid. Let a11, a66, Q and R be the four elastic constants that represent isotropic poroelasticity. Considering it a
special case of anisotropic poroelasticity, we have

mi j = Qδi j ; Xi = Q
R ni ; Zi j = a66δi j + (a11 − a66)ni n j ; Yi j = (

r 2
12 − 2r12 Q

/
R
)

ni n j ;

Pi j = a66δi j + (
a11 − a66 + r 2

12 − 2r12 Q/R
)

ni n j ; Qi j = (
r 2

12 − 2r12 Q/R + Q2/R2
)

ni n j ;

T1 = −a66

(
2a11 + a66 + 2r 2

12 − 4r12 Q/R
)
; T2 = −2a66

(
r 2

12 − 2r12 Q/R + Q2/R2
)

;

T3 = a2
66

(
r 2

12 − 2r12 Q/R + Q2/R2
)
; det{Pi j } = a2

66

(
a11 + r 2

12 − 2r12 Q/R
)

;

c1 = (a11 + 2a66 + r11 − 2r12 Q/R)/g0;

c2 = (
a11 − Q2/R2

)
/g0 + a66[2(a11 + r11 − 2r12 Q/R) + a66]/g2

0 ;

c3 = 2a66

(
a11 − Q2/R2

)
/g2

0 + a2
66(a11 + r11 − 2r12 Q/R)/g3

0 ;

c4 = a2
66

(
a11 − Q2/R2

)
/g3

0 .

Eq. (10) reduces to[
h2 − (a11 + r11 − 2r12 Q/R)h/g0 + (

a11 − Q2/R2
)
/g0

]
(h − a66/g0)2 = 0,

and its roots are given by

h1 = [
(a11 + r11 − 2r12 Q/R) + √

(a11 + r11 − 2r12 Q/R)2 − 4(a11 − Q2/R2
]
/(2g0),

h2 = [
(a11 + r11 − 2r12 Q/R) − √

(a11 + r11 − 2r12 Q/R)2 − 4(a11 − Q2/R2
]
/(2g0),

h3 = h4 = a66/g0

Here, h1, h2 represent Pf , Ps waves, respectively, and h3 = h4 represent the shear wave. The wave velocities v j = √
Rh j/ρ22, ( j = 1, 2, 3),

are the same as defined in Biot’s theory.

A P P E N D I X B : I S O T RO P I C P O L A R I Z AT I O N S

The polarizations expressions are reduced to become applicable to an isotropic poroelastic medium. a11, a66, Q and R are the four elastic
constants for the isotropic poroelastic medium. With the relations Pij = a66δi j + (a11 − a66 + r 2

12 − 2r 12 Q/R)ninj and Qij = (r 2
12 − 2r 12 Q/R

+ Q2/R2)ninj, the three sets of �i are given by

(i) �1 = −�2n1n3, �2 = −�2n2n3, �3 = �1 + �2

(
1 − n2

3

)
;

(ii) �1 = −�2n1n2, �2 = �1 + �2

(
1 − n2

2

)
, �3 = −�2n2n3;

(iii) �1 = �1 + �2

(
1 − n2

1

)
, �2 = −�2n1n2, �3 = −�2n1n3;

where �1 = a66 − g0h and �2 = [(a11 − a66 + r 2
12 − 2r 12 Q/R)h − a11 + a66 + Q2/R2]/(h − 1).

For the compressional waves (i.e. Pf and Ps)

g0h2 − (a11 + r11 − 2r12 Q/R)h + (
a11 − q2/R2

) = 0;

and this is equivalent to �1 + �2 = 0. The polarizations of solid particles are then given by
u1

n1
= u2

n2
= u3

n3
.

Polarizations of fluid particles Ui = 1
h−1 ( Q

R − r12h)ui implies that fluid particles moves parallel to the motion of solid particles.
For shear waves, h = a66/g0 implies �1 = 0 and the polarization vectors for solid particles are(

1 − n2
1, −n1n2, −n1n3

)
;

(−n1n2, 1 − n2
2, −n2n3

)
;

(−n1n3, −n2n3, 1 − n2
3

)
.

The polarizations of fluid particles and solid particles are related through U i = −r 12ui, (i = 1, 2, 3). This polarization of fluid particles is due
to the fluid-solid coupling which is represented by the dynamic constant ρ12. According to Biot’s theory (1956b), the value of r12 is, generally,
very small and negative. This implies that during the propagation of shear waves, the fluid particles move with the solid particles but their
motion is very small.

C© 2003 RAS, GJI, 156, 329–344

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/156/2/329/598709 by guest on 21 Septem

ber 2022



344 M. D. Sharma

A P P E N D I X C : D I S S I PAT I O N I N P O RO U S S O L I D

The expressions derived in text and previous appendices are valid for non-dissipative poroelastic solids (i.e. interstitial fluid is a non-viscous
one). By transforming the dynamic constants

ρ11 → ρ11 + ı
b

ω
;

ρ22 → ρ22 + ı
b

ω
;

ρ12 → ρ12 − ı
b

ω
;

the non-dissipative poroelastic solid can be generalized to a dissipative poroelastic solid. Following Biot (1956a), we have the dissipation
function

b = ν

χ
f 2,

where ν is fluid viscosity, χ is permeability and f is porosity. This expression is valid for the low-frequency range, where the flow in the pores
is of Poiseuille type. For higher frequencies, a correction factor is applied to the viscosity ν, replacing it by ν�, where � is a complex function
of frequency. The coefficients of characteristic eq (10) will become complex. The velocities vj, ( j = 1, 2, 3, 4), derived from the roots of this
equation, will also be complex.

C© 2003 RAS, GJI, 156, 329–344

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/156/2/329/598709 by guest on 21 Septem

ber 2022


