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Experimental Assessment of Gradual
Deformation Method1

Ning Liu 2 and Dean S. Oliver2

Uncertainty in future reservoir performance is usually evaluated from the simulated performance of
a small number of reservoir realizations. Unfortunately, most of the practical methods for generating
realizations conditional to production data are only approximately correct. It is not known whether or
not the recently developed method of Gradual Deformation is an approximate method or if it actually
generates realizations that are distributed correctly. In this paper, we evaluate the ability of the Gradual
Deformation method to correctly assess the uncertainty in reservoir predictions by comparing the
distribution of conditional realizations for a small test problem with the standard distribution from a
Markov Chain Monte Carlo (MCMC) method, which is known to be correct, and with distributions
from several approximate methods. Although the Gradual Deformation algorithm samples inefficiently
for this test problem and is clearly not an exact method, it gives similar uncertainty estimates to those
obtained by MCMC method based on a relatively small number of realizations.
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INTRODUCTION

The only practical methods for quantifying uncertainty in reservoir performance
require the generation of multiple random reservoir models conditional to available
data. By simulating the future production from each realization, an empirical dis-
tribution of production characteristics is obtained. The validity of the Monte Carlo
method for quantifying uncertainty depends on the quality of the distribution of
reservoir models generated. Methods for sampling from the a posteriori probabil-
ity density function (pdf) of reservoir flow models conditioned to production data
have been discussed by Hegstad and Omre (1997), Oliver, Cunha, and Reynolds
(1997), Bonet-Cunha and others (1998), Roggero and Hu (1998), Hegstad and
Omre (2001), Hu (2000), Holden and others (2001), and Omre (2001).

Gradual Deformation is a method for gradually deforming continuous geo-
statistical models to generate reservoir models that honor historic production data.
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This algorithm has been used by Hu and others (1999), Le Ravalec, Hu, and
Nœtinger (1999), and Hu, Ravalec, and Blanc (2001) to incorporate historic pro-
duction data to reduce uncertainty in production forecasts. Because the gradual
deformation algorithm preserves the geostatistical parameters while deforming
the model to honor the data, it seems intuitive that it might generate realiza-
tions from the pdf for model variables conditioned to data. The purpose of this
study is to evaluate the ability of Gradual Deformation method to correctly as-
sess uncertainty of reservoir model realizations. The assumptions and models
used in this study are identical to those used previously by Liu and Oliver (2003)
to assess uncertainty quantification of other common algorithms for conditional
simulation.

PROBLEM DESCRIPTION

Evaluation of the ability of Gradual Deformation method to correctly sample
reservoir models conditional to production data requires an appropriate test prob-
lem. The test problem should be small enough that a large number of realizations
can be generated in a reasonable amount of time. It should also be highly nonlinear
as some of the approximate methods are known to sample correctly for problems
with linear relationships between the conditioning data and the model parameters.
By choosing a single-phase transient flow problem with highly accurate pressure
measurements, fairly large uncertainty in the values of porosity and permeability
field, and a short correlation length, we were able to obtain a problem with multiple
local maxima in the likelihood function, yet for which a flow simulation required
only 0.02 seconds.

The test problem is a one-dimensional heterogeneous reservoir whose perme-
ability and porosity fields are shown in Figure 1. The reservoir is discretized into
20 gridblocks, each of which is 50 ft in length. Both the log-permeability (lnk)
and porosity fields were assumed to be multivariate Gaussian with exponential co-
variance and a range of 175 ft. The prior means for porosity and log-permeability
are 0.25 and 4.5, respectively. The standard deviation of the porosity field is 0.05
and the standard deviation of the log-permeability field is 1.0. The correlation
coefficient between porosity and log-permeability is 0.5. The flow is single phase
with an oil viscosity of 2 cp and a total compressibility of 4× 10−6 psi−1. The
initial reservoir pressure is 3500 psi.

There are three wells in this linear reservoir: a constant rate producer in
gridblock 13, and two observation wells in gridblocks 7 and 18. A reservoir flow
simulator was used to compute pressures at each of the wells at 10 different times,
then Gaussian random noise with a standard deviation of 0.5 psi was added to
the data generated from the true reservoir model. The observed pressure data for
all three wells are shown in Figure 2. Because of the random noise, the early
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Figure 1. The true synthetic permeability and porosity fields, used to generate pressure data to
test the sampling algorithms. Well locations are shown by solid bars along the base of the figure.

time pressure drop measurements at the observation wells are erratic. Porosity
measurements at well locations were not included in this study as their introduction
would have made the posteriori (conditional) pdf for model variables more nearly
Gaussian.

Figure 2. The observed pressure drop at all wells. Random noise added to the true
pressure drop causes the nonphysical appearance at low values of1p.
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The conditional probability density for the model variables, given the pressure
data, is provided by Bayes rule,

fM|D(m|dobs) = fD|M(dobs|m) fM(m)/
∫

fD|M(dobs|m) fM(m) dm

∝ exp

(
− 1

2
(g(m)− dobs)

TC−1
D (g(m)− dobs)

)
× exp

(
− 1

2
(m− µ)TC−1

M (m− µ)

)
(1)

whereg(m) is the vector of theoretical pressure data obtained by running the
simulator with log-permeability and porosity values given by the vectorm. CD

andCM are the data error covariance and the prior model parameter covariance
respectively. Both of these matrices are assumed to be known for this study. If
the algorithm used to generate reservoir realizations is an exact method, the sam-
ples should reflect this distribution, i.e., reservoir models with higher conditional
probability density should be more likely to be generated.

GRADUAL DEFORMATION METHOD

The principal idea of the Gradual Deformation method is that new realizations
of a random fieldZ can be written as the linear combination of a set of independent
random Gaussian fields with expected meanµ and covarianceCZ , i.e.,

Z(K ) =
n∑

i=1

ki (Zi − µ)+ µ (2)

The coefficientski are required to satisfy:

n∑
i=1

k2
i = 1. (3)

In this study, each of theZi is a vector of identical independent distributed
deviates with expectation 0 and variance 1. By deforming the model in this way,
the intent is to preserve the covariance and mean. Because theki depends on theZi

through the minimization, the mean and covariance are not necessarily preserved,
however, when long sequences of deformations are applied (Skjervheim, 2002).
Le Ravalec, Hu, and Nœtinger (1999) have shown that the chain of realizations
created in this way sometimes results in biased sampling.
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We tested the most basic form of the Gradual Deformation algorithm in which
pairs of vectors are combined:

Z(ρ) = Z1 cos(πρ)+ Z2 sin(πρ) (4)

whereρ is the deformation parameter with the range from 0 to 2. The procedure
for generating a realization conditional todobs is as follows:

1. Generate an initial vectorZ1 of independent normal deviates.
2. Generate a second vector of independent normal deviatesZ2.
3. Search for the optimumρ value which gives a reservoir realization mini-

mizing the objective functionSd of Equation (7).
Reservoir model realizations are generated using the LU decomposition
method:

m(ρ) = mprior+ L Z(ρ) (5)

where

LLT = CM . (6)

Note that the objective function to be minimized contains the squared data
mismatch only:

Sd(ρ) = 1

2
[g(m(ρ))− dobs]

TC−1
D [g(m(ρ))− dobs]. (7)

4. If the minimum value of the objective function is sufficiently small, then
stop the procedure. Otherwise replaceZ1 with the optimalZ(ρ) and return
to step 2.

Because the Gradual Deformation algorithm involves minimization, the con-
vergence or stopping criterion is expected to be important to the sampling. Un-
fortunately, none of the papers referenced here provided quantitative convergence
criterion for this algorithm. In our tests, we usedSd = 1.6 nd as a stopping crite-
rion, as reduction to a lower level is difficult in a reasonable number of iterations
(10,000).

Local Perturbation

When the historic production data are scattered spatially in the reservoir,
adding an independent vectorZ is likely to improve the fit in some gridblocks
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Figure 3. The 3rd, 7th, and 15th elements change with iterations using global perturbation.

while deteriorating the fit in other locations. This led Hu and others (1999) to
develop a procedure for modifying the values ofZ only within a limited region
for which the data mismatch was large. Because it is not clear how to choose a
limited region for interference tests, we examined the extreme case in which the
region of change was limited to a single gridblock. The location of the gridblock
to be modified was randomly chosen in each iteration. In this case, theZ vector in
Equation (5) is calculated as

zi (ρ) =
{

z1,k for i 6= k,

cos(πρ)z1,i + sin(πρ)z2,i for i = k.
(8)

wherek is a randomly selected perturbation location.z2,i is a realization of a ran-
dom variable sampled from the Gaussian distribution with mean 0 and variance 1.
z1,i is thei th element of the vectorZ1. Figures 3 and 4 show the permeability value
in the 3rd, 7th, and 15th gridblock after every 100th perturbation for global and
local perturbation, respectively. From these two figures, the squared data mismatch
is seen to decrease even slower by local perturbation than by global perturbation.
Part of the reason is that some of the local perturbations are applied in regions for
which a change in property values has no effect on the data mismatch.

RESULTS

In this study, we ran the Gradual Deformation algorithm until the objective
function was reduced to 50 or less. If the objective function was not reduced to
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Figure 4. The 3rd, 7th, and 15th elements change with iterations using local perturbation.

50 by the 10,000th iteration, it was discarded. For comparison, over 99% of the
MCMC (Markov Chain Monte Carlo) realizations have squared data mismatch
values less than 50, so 50 is a relatively loose tolerance on the data mismatch. In
each iteration, a line search is required to find the optimumρ value, so 10,000
is a sensible maximum number of iterations. For the global perturbation method,
86 realizations were generated out of 1000 Gradual Deformation sequences. The
local perturbation method performed slightly better with 11% of the sequences
reaching the convergence criterion before the 10,000th iteration.

Several summary property values of each realization were calculated to com-
pare the distribution of realizations from Gradual Deformation with distributions
from other methods. We report the distribution of realizations of average reser-
voir porosity and effective permeability because these are important in predicting
oil-in-place and recovery. Also, because some minimization methods generate ex-
treme values in the property fields, we report the maximum permeability of each
reservoir realization. We also report the distribution of the squared model mis-
match to check the probability that the realization could be a sample from the prior
distribution. Finally, we report the distribution of realizations of data mismatch
because it is important that realizations honor the historical data. The distributions
of realizations are summarized in the form of box plots. A key for interpreting the
box plots is shown in Figure 5.

Figure 6 shows comparisons of the property distributions from different sam-
pling methods for the test problem described in this paper. The acronym MCMC
indicates the Markov Chain Monte Carlo method based on 320 million realizations.
The distributions for Randomized Maximum Likelihood (RML), Linearization
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Figure 5. Key for interpretation of box plots. (P Values are
percentiles.)

about the Maximum a Posterior Model (LMAP), Pilot Point (PP), and Uncondi-
tional (UC) are all based on 5000 realizations. The algorithm of each sampling
method has been described in a previous paper (Liu and Oliver, 2003). As explained
in that paper, we are quite confident that the results from MCMC are correct be-
cause we obtained consistent results from several different variants of the MCMC
method.

DISCUSSION

The distributions of average porosity, effective permeability, and maximum
permeability from Gradual Deformation were very similar to distributions from
MCMC and RML. The small differences are easily attributed to the small number
of samples from Gradual Deformation. The Gradual Deformation algorithm also
did an excellent job of sampling the squared model mismatch distribution (shown
in Figure 7), even though the standard implementation of this algorithm does not
have squared model mismatch term in the objective function. The only distribution
from Gradual Deformation that is poor is the squared data mismatch. Instead of
being distributed approximately asχ2, it is nearly a delta function atSd = 50.

The good performance of the Gradual Deformation algorithm in matching
the prior model is quite discrepant with the results from Le Ravalec, Hu, and
Nœtinger (2000) and Skjervheim (2002). Le Ravalec, Hu, and Nœtinger (2000)
revealed that the distribution of samples from the Gradual Deformation method
do not reflect the correct conditional distribution even for linear problems. As a
result, they proposed an Enhanced Gradual Deformation method, which contains
both the likelihood and the prior constraint terms explicitly in the objective func-
tion. For the classical Gradual Deformation method, the only constraint in the
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Figure 6. Distribution of conditional realizations of average porosity, effective per-
meability and maximum permeability from the approximate sampling algorithms and
from the very long MCMC. The unconditional distribution and the true values are
shown for comparison.
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Figure 7. Distribution of conditional realizations of squared model mismatch and squared data mis-
match from the approximate sampling algorithms and from the very long MCMC. The unconditional
distribution and the true values are shown for comparison.

objective function is the likelihood term, and the prior information is only hon-
ored approximately by the method of combining realizations. After many combi-
nations, the influence of the prior was small in their example, implying that the
stopping criteria may be important (see also Holden and others, 2001). Skjervheim
(2002) tested the Gradual Deformation on small two-parameter problems, linear
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and nonlinear, and drew a similar conclusion. Both Le Ravalec, Hu and Nœtinger
(2000) and Skjervheim (2002) concluded that, for linear problems, the standard
Gradual Deformation method does not sample from the posteriori distribution, but
the Enhanced Gradual Deformation does sample correctly; for nonlinear problems,
neither algorithm samples well, but the distributions of variables for the Enhanced
Gradual Deformation are better.

In our nonlinear test problem, we found that the standard algorithm gave good
results. It is possible that the difference in results could be due to the difference
in the dimension of the test problems (2 variables vs. 40 variables). This same
property of sampling well for large models but not for small has been observed with
Randomized Maximum Likelihood method (Oliver, He, and Reynolds (1996). Liu
and Oliver (2003)). It also seems that the drift of the covariance and mean observed
in the small examples of Le Ravalec, Hu, and Nœtinger (2000) and Skjervheim
(2002) are less likely to occur in larger models if the number of deformations
is relatively modest. A chain of 10,000 local deformations was not sufficient to
deform the structure of the initial model for our example.

The fact that the mean of the squared data mismatch distribution is larger than
expected is simply a result of our choice of stopping criterion. If we had chosen
a smaller criterion, we would have had better agreement in the mean with the
correct distribution. Estimates of uncertainty in near future pressure predictions
would still be in error, but it would be straight forward to modify the objective
function to add errors to the measured data as illustrated in Le Ravalec, Hu, and
Nœtinger (2000). In that case the sampling of data mismatch would probably be
similar to RML.

Although our focus was not on efficiency, it was clear that the Gradual De-
formation method is inefficient in the neighborhood of the minimum compared,
for example, to the method of randomized maximum likelihood. One reason for
the inefficiency is that the new vector in each iteration of the Gradual Deformation
method provides a random direction for minimization, instead of a downhill di-
rection. At early iterations, a reduction in the mismatch can be achieved in almost
any direction, but at later iterations, the likelihood that a reduction in the mismatch
can be obtained in a randomly chosen direction is small. Figure 8 shows the data
objective function as a function ofρ for the first and the 1000th iterations. In the
first iteration, a large reduction is obtained by choosingρ = 0.88. At the 1000th
iteration, on the other hand, no reduction was possible. From the squared data
mismatch curve in Figures 3 and 4, it is clear that the rate of improvement in the
data match is slow at late iterations.

It does seem very likely that the rate of convergence would improve dramati-
cally if multiple independent realizations were used at each step in the deformation.
Le Ravalec and Nœtinger (2002) have compared the schemes of combining dif-
ferent number of realizations to form a chain and found that the convergence rate
has a exponential relation with the number of unconditional realizations combined
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Figure 8. The shape of squared data mismatch function at the 1st (left) and 1000th (right) iteration.

into the chain in each iteration. Instead of a line search for an optimalρ, it would be
necessary to perform a multidimensional search for the coefficients of the expan-
sion. It appears however, that the objective function to be minimized for Gradual
Deformation can be multimodal, even when the data constraints are linear.

CONCLUSIONS

The method of Gradual Deformation produced acceptable distributions of
reservoir properties from the 40-parameter nonlinear model in a reasonable num-
ber of iterations. These distributions were similar to the distributions from MCMC,
which is known to reflect the true distribution. This indicates that, although the
method is only approximate, because the constraint of the prior model is approxi-
mately reflected in the new realizations to be combined and the number of iterations
is relatively small in practice, the realizations will approximately honor the prior
model. So based on these experiments, the Gradual Deformation method may be
a reasonable method for uncertainty evaluation in reservoir studies. Although effi-
ciency was not the primary focus of this investigation, it was clear that the method
of Gradual Deformation was less efficient for generating realizations than other
approximate methods.
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