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An Application of Bayesian Inverse Methods to
Vertical Deconvolution of Hydraulic Conductivity
in a Heterogeneous Aquifer at Oak Ridge
National Laboratory *

Michael N. Fienen? Peter K. Kitanidis,? David Watson 2
and Philip Jardine®

A Bayesian inverse method is applied to two electromagnetic flowmeter tests conducted in fractured
weathered shale at Oak Ridge National Laboratory. Traditional deconvolution of flowmeter tests is also
performed using a deterministic first-difference approach; furthermore, ordinary kriging was applied
on the first-difference results to provide an additional method yielding the best estimate and confidence
intervals. Depth-averaged bulk hydraulic conductivity information was available from previous testing.
The three methods deconvolute the vertical profile of lateral hydraulic conductivity. Alinear generalized
covariance function combined with a zoning approach was used to describe structure. Nonnegativity
was enforced by using a power transformation. Data screening prior to calculations was critical to
obtaining reasonable results, and the quantified uncertainty estimates obtained by the inverse method
led to the discovery of questionable data at the end of the process. The best estimates obtained using
the inverse method and kriging compared favorably with first-difference confirmatory calculations,
and all three methods were consistent with the geology at the site.
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INTRODUCTION

In heterogeneous and fractured media it is essential to understand the vertical dis-
tribution of lateral hydraulic conductivity in order to correctly interpret and model
groundwater flow and contaminant transport. For example, in modeling multiple-
well recirculation schemes for bioremediation, like at the Natural and Accelerated
Bioremediation Research (NABIR) Field Research Center (FRC) at the Oak Ridge
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Reservation (ORR) in Tennessee, U.S.A., high hydraulic conductivity layers must
be well located to predict residence times and recirculation pathways, and to design
well screen placements. The subsurface media at the ORR consist of interbedded
fractured weathered shale and limestone resulting in significant vertical and hor-
izontal heterogeneity. Limestone units are extensively weathered to massive clay
lenses with residual nodules of limestone bedrock dispersed within the medium.
The more resistant shale has weathered to an extensively fractured saprolite where
fractures are highly interconnected with densities in the range of 200 fractures per
m. Fracture orientation and connectivity can give rise to preferential flow within
the medium (Jardine and others, 2001).

The purpose of this effort was to deconvolute the vertical distribution of
lateral hydraulic conductivity at the FRC using a Bayesian geostatistical inverse
method applied to the results of electromagnetic borehole flowmeter (EBF) tests
conducted in two boreholes (Waldrop and Pearson, 2001). The two 10.16 cm
(4 in.) diameter boreholes were augered strike parallel to a depth of 13.7-15.2
m (45-50 ft) below land surface, just above the consolidated Nolichucky Shale
bedrock. The upgradient borehole was labeled FW24 and the downgradient bore-
hole was labeled FW26.

The traditional method for deconvolution of EBF data is the deterministic
first-difference method detailed in Molz and others (1994), Young and others
(1998), and Waldrop and Pearson (2001). The first-difference method does not
provide quantification of uncertainty on the estimated results and yields values
of hydraulic conductivity only at the midpoints between original EBF measure-
ments. To interpolate between the EBF measurement depths and to quantify the
uncertainty one may use ordinary kriging (e.g. Kitanidis, 1997) treating the first-
difference estimates as the data. Geostatistical methods provide not only a best
estimate of hydraulic conductivity, but also confidence intervals.

Linear inverse methods and ordinary kriging are not constrained by the phys-
ical reality that hydraulic conductivity cannot be negative, so a power transforma-
tion was employed to enforce nonnegativity on the best estimate and confidence
intervals, resulting in physically meaningful results for both methods.

SITE SETTING AND GEOLOGY

The geology at the ORR is characterized by moderately metamorphosed
sedimentary rocks, folded and weathered to create a system of parallel ridges and
valleys. The FRC is in the Bear Creek Valley, which is underlain by calcareous
shale and limestone of the Conasauga Group, with a strike of abowasé of
north, and a dip of about 450 the southeast (Bailey, 1988).

At the ground surface, fill material extends to about 1.5 m below land surface
(bls). Unsaturated low-permeability interbedded weathered shale and clay lenses,
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derived from the shale and limestone, respectively, extend to about 3.7 m bls. This
interbedded weathered material is collectively referred to as saprolite. The saprolite
retains some of the fracture structure of the original rock, but the fractures are closed
off due to clay infilling and the formation of secondary precipitate coating on the
fracture faces and bedding plane parting surfaces. A transition zone from saprolite
to unweathered bedrock occurs between approximately 11 and 15 m bls.

The primary porosity of the Nolichucky shale is about 10% (Dorsch and
others, 1996) and groundwater flow occurs in fractures. Fractures are aligned
in three mutually orthogonal orientations: parallel to dip, parallel to strike, and
perpendicular to bedding planes. The fracture sets parallel to strike are dominant,
resulting in principal flow parallel to strike (Solomon and others, 1992). Fractures
on the secondary and tertiary axes connect the dominant fractures to allow for
flow between bedding planes. This allows for a conceptual model of an equivalent
porous medium with anisotropy of lateral hydraulic conductivity likely on the
order of 10 (Jacobs EM Team, 1997) or 100 (Lozier, Spiers, and Pearson, 1987).

Onthe basis of the geology of the site, itis expected that hydraulic conductivity
should increase with increasing depth in the transition zone, thence decrease within
the bedrock.

One of the primary advantages of inverse methods as the one presented in
this work is that it can incorporate realistic forward flow models, thus explicitly
considering the physics of the problem. In this work, however, we have retained
a simplified flow model of radial flow in horizontal strata, following the Dupuit—
Forchheimer assumptions with isotropic hydraulic conductivity.

METHODOLOGY

In this section, we develop the Bayesian inverse method, and compare the re-
sults with first-difference, and ordinary kriging results. Other established geostatis-
tical methods could be applied, such as minimum relative entropy (Woodbury and
Ulrych, 1998) or Bayesian maximum entropy (Christakos, 1990). Such methods
offer similar advantages to that developed in this work, including use of physically
relevant forward models.

Bayesian Inverse Method

The objective is to estimate hydraulic conductivity in discrete vertical layers
within an aquifer using the flowrate measured with an electromagnetic borehole
flowmeter (EBF) positioned, sequentially, at various elevations in the borehole.
The model used to calculate floW@] given hydraulic conductivityK) is called
the forward model. In stochastic inverse methods, the unknown quakKt)tys(
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modeled as a random process due to uncertainty. The uncertainty stems from
measurement error, and potential inaccuracy of the forward model. The inversion
process accounts for this uncertainty, resulting in a best estimate of the unknown
and quantification of the error.

The Bayesian inverse methodology used in this case is based on Kitanidis
and Vomvoris (1983), Kitanidis (1995), and Snodgrass and Kitanidis (1997) and
is summarized here.

Governing Equation—The Forward Model

The discharge measured in the EBF can be represented by the following
integral equation:

Zo+h
Q(h) = / a(¢) de )

Z

whereQ(h)[L3/T] is the flow measured dt, that is the cumulative influx in the
interval between the bottom of the borehole (at elevatiph]) and the elevation of
the EBF &, + h[L]), andq(¢)[L?/T]is the flow per unit depth at. All elevations
are measured from the same datum. The pumping setup is depicted schematically
in Figure 1, wherd refers to aquifer saturated thickness.

For Dupuit—Forchheimer flow, Darcy’s law can be expressed in radial coor-
dinates as:

do
a(s) = —K(Q)2rr 5 ()
whereK (¢) is the hydraulic conductivity at, ¢ is the head, and is the radial
distance from the well.
Evaluating Equation (2) at the well:

a) de
m = —Zﬂrwa -~

wherer,, is the well radius.
Assuming the gradien%(f) is constant over the depth, the ratio in Equation (3)
will be the same for any. Considering the entire thickness of the aquier,

®3)

Tw

Qb) _ al)

T T KQE) )

whereQ(b) is the total flowrate from the well antl is the aquifer transmissivity.



Application of Bayesian Inverse Methods 105

<«
<«
<«

i

z:th| |llpackers and EBF

<= A

A AA A}

Z, |
7 TITTI I T

Figure 1. Schematic drawing of EBF and pumping sefapt to scalé.

We rearrange to express flowrate per unit depth (unknown) as a function of
known (measured) quantities:

Q(b)

9¢) = “K(©) ©)

Substituting Equation (5) into Equation (1), we establish a linear relationship
between the quantity we measu€(f)) and the unknown quantity we sedk(¢)):

Zo+h
am =22 [T ke ©
Z

In this equation, the only unknown kK(¢): Q(h) is measured in the EBF,
Q(b) is the total flow measured at the pump, and known from a constant-rate
pump test conducted in one of the boreholes (FW24) and analyzed using Jacob’s
straight-line method.

Using this formulation, there is not a unique solution for the unknéwf);
the same single-flow measurement could result from one relatively high value of
conductivity over asmall area, or asmall value of conductivity over alarger area. An
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infinite combination of configurations & (¢) could therefore be consistent with
observation®(h;) - - - Q(hy). A Bayesian approach that considers uncertainty in
measurements and in the modeling of spatial variability is therefore well suited to
this problem.

Initial Setup

We can express our forward model in the standard form:
y=Hs+v (7

wherey is ann x 1 vector of measurements (tlig(h) values at discrete mea-
surement depths in this caskl)js ann x m algebraic formulation of the forward
model function of Equation (6)is anm x 1 random vector of unknowns, and

is the measurement and model error, modeled as a Gaussian random vector with
zero mean and covariance matixin this case:

R=vl, ®)

wherel, is an identity matrix of dimension, andv is the variance.
For this work,H is formulated as
WLIA¢ g =2
Hij = . 9)

0 : otherwise
whereA¢ is the discretization increment for tine x 1 vector of depths at which
the unknown functiorsis to be estimated;; is the depth of thgth element o8,
andz; is the depth of theth element of thg. In other words, thél matrix serves to
implement the integration relatirggo y through Riemann sums in a single matrix
multiplication.

Alinearrelationship such as Equation (7) allows for the closed-form analytical
solutions presented herein to be implemented. As will be shown in the discussion
of nonnegativity constraints, some nonlinear problems can be solved using the
linear solution form through successive linearizations. In the case of more strongly
nonlinear relationships, other methods must be implemented beyond the scope of
this work.

The variability ofsis expressed geostatistically through a Gaussian probabil-
ity distribution function fd f) constructed using the first two moments: the mean,
or prior expected value, and the covariance.

The mean ofis:

E[s] = X8 (10)

whereX isaknowmm x pmatrix corresponding to the discretization of the domain
in which estimates are to be made, aficre p drift coefficients. In this work,
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p was equal to 2, as discussed below. Whes: 2, a zonation approach was
employed in which two constant meargs @nd g,) apply to two different zones
within the domain. The zone locations are defined througtXth@atrix using the
value 1 to indicate a point within a zone, and 0 to indicate a point outside a zone.
For example, if the first column in the following matrix indicates zone 1, and the
second column zone 2, zone 1 would cover the first two locations, and zone 2 the
last three locations (witm = 5 in this example):

(11)

x

Il
O 0O O R Rk
R P P OO

Clearly, this approach can be extendedfas 2 to employ more zones. The
covariance okis represented through a generalized covariance function or GCF
(Kitanidis, 1997)

El(s—XB)s-XB8)12Q=«(n)+C (12)

where the GCF (), is a known function of structural parametgandC is not
needed for the solution of the inverse problem.
x(n) was modeled as a linear GCF as described in Kitanidis (1997)

kij =—-nlhi—=hj| i,j=12....m (13)

where|h; — hj| is the difference in depth of each of theprediction points from
each other within the borehole.

Other GCFs could be used, but for this case, the linear GCF was chosen
because it is a model imparting a minimum of assumptions about the structure
of the function. The linear GCF also yields best estimates with maximum flat-
ness, i.e., that minimize the first derivative of the estimated function (Kitanidis,
1999) thus preventing overshooting of the estimate and resulting in the most direct
interpolation between points.

Posterior Probability Density Function

The goal of this analysis is to determine the first and second moments of the
posteriomdf(p”(sly)) of the unknown based on the measurements. The posterior
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pdfcan be expressed as a function of the ppifi( p’(s)) and the likelihood function
(p(y|s)) through Bayes’ theorem:

Py [9)p'(s)

TP19p(ds a4

p'(sly) =

The denominator in Equation (14) is a normalizing constant, and in the lin-
ear case, the first two moments of the postepdf can be described through
the shape (regardless of scaling by a constant) so the equation can be written
as:

p"(sly) o< p(y|9)p'(9) (15)

The closed-form solution for Equation (15) is derived in Kitanidis and
Vomvoris (1983), Kitanidis (1995), and Snodgrass and Kitanidis (1997) and is
summarized in more detail in Appendix A. The equation fgf(6|y)) is:

P(s13) x exp| ~ 50y~ HYTR Ay — H9) - 5(s- XB)'Q s X))

(16)
whereR is the measurement covarian€@is the prior covariance, andg is the
prior mean of.
The posteriopdf is Gaussian so the best estimate is coincident with its peak
(or mode). This allows us to disregard the constants and consider only proportion-

ality. Rather than finding the maximum, however, it is easier to find the minimum
of the negative logarithm.

L o —=In(p“(s|y)) an

Lo Sy~ HYTR My —HS) + 25— XB)'Q s - XB)  (19)

The drift parametersd) are also eliminated by working with restricted like-
lihood (Kitanidis, 1995). The result is:

1 1
L E(y —Hs)"R™Y(y — Hs) + EsTGs (19)

where

G=Q!'-QXXTQ™X)"XTQ™* (20)
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The posterior mean is then found by forming and solving the following cok-
riging equations
v OHX|[AT H
= Q (21)
HX)T 0 M XT

¥ =HQHT +R (22)

where

AT is anm x n matrix of coefficientsM is ap x n matrix of multipliers, and,
isap x p matrix of zeros.
From these results, the posterior mean or best estifatefbund as:

S= Ay (23)
with covariance matrix
V=-XM+Q—-QH'AT (24)

Confidence intervals are formed using the diagonal elements a$ the
variance. For a 95% confidence interval, we form the upper and lower confidence
intervals (UCL and LCL) as

UCL = §+ 2,/diagV
LCL = §— 2,/diagV (25)

Enforcement of Nonnegativity

Without constraining the method to yield only positive results, it is possible
that conditional realizations of hydraulic conductivity (as manifest in confidence
intervals) could extend into negative values. For example, for a mean value near
zero applying to a vertical interval, it is entirely possible that large positive values
would balance with large negative values, resulting in confidence intervals extend-
ing into the negative. The method intrinsically makes no accounting of this and, in
many estimation problems, negative values are acceptable. Therefore, nonnegativ-
ity must be enforced to reflect the a priori understanding of the physical problem
which indicates that negative hydraulic conductivity is not meaningful.

Several options for enforcing nonnegativity are available including transforms
into logarithmic space (Kitanidis, 1997), normal score transformations (Deutsch
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and Journel, 1992), and Markov Chain Monte Carlo (MCMC) methods with
Lagrange multipliers (Michalak and Kitanidis, 2003). The straightforward power
transformation (Box and Cox, 1964; Snodgrass and Kitanidis, 1997) was selected:

s=a(ks —1) (26)

with the back-transformation
k= <S+ “) . 27)

o
Note that in the limit

s= lim (a(kz — 1)) = In(k) (28)

and the back-transformation
k= lim <s+—°‘> — exp) 29)

a—00 o

For reasonable values of any value ofs will be back-transformed to a
positive value ofk. Kitanidis and Shen (1996) provide a method for optimally
determiningx. However, for this work, a relatively large value @f(10?) is used
to approximate the logarithmic transformation.

Using this transformation the measurement equation becomes:

S+«

y= H(T) v (30)

This relationship is not linear, so iterative techniques are necessary for the
determination of the best estimatesot 8. For the first iteration, the best estimate
Swas chosen as the transformed best estimate from the linear case (i.e. the case
where nonnegativity was not enforced) using the transformation of Equation (26).
In the few instances where a negative best estimate value was encountered, a small
positive number was substituted. It is not necessary to first calculate the linear
result to use as a seed value, but the value should be close to the final best estimate,
and may reduce the number of iterations in the solution.

We employ the quasi-linear technique of Kitanidis (1995) using successive
linearization. We first must linearize the problem in a Taylor series resulting in

yi = His+v (31)
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where
Ny (ST, e
o= =2 m () [1-5% ] @)
and
o (Site)( @
(HI)IJ—HIJ( a >(§j+a)' (33)

Inthese equation$js the best estimate sfibout which the Taylor expansion
is performed. Details of the Taylor expansion are provided in Appendix B.

The linear techniques described above are then applied to this linearized
equation iteratively, until the solution converges. From the solution we obtain the
best estimate and confidence intervals.

Structural Parameter Optimization

Thus far, the two structural parameters in this problem

(=],)

have been assumed known. These parameters describe variability in the model,
measurements, and estimation and derive from Equations (8) and (13). In prac-
tice, they must be found by optimization by maximizing the probability of the
measurements given the parameters:

p(y |6) o (det®)~z(detX THT w—1HX]) "2 exp[—%yTEy] (34)

where

¥ =HQH™ +R (35)
E=0 1 — U HX(XTHT W THX)XTHT ¢t (36)

It is easier to minimize the logarithm qf(y | 8) as

L(8) = % In(det®) + % In(detXH HX]) + %yTEy (37)
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The minimization is performed by setting the derivatives of Equation (37)
equal to zero, and finding the valuesgathat satisfy the equation using the Gauss—
Newton method. The Gauss—Newton method is performed as described in Kitanidis

(1995).

Algorithm Summary

Following is a brief summary of the algorithm.

9.

. Determine an initial estimate of the unknovég)(
. Select a value fow to be used in the power transformation. If in doubt,

use a high value af to approximate a natural logarithmic transformation.

. Transform botl§ and the measurementg (sing the power transforma-

tion.

. Determine an initial guess for the structural parameters

(=12

. Linearize the problem, obtain a new best estimate by solving the system

in Equations (21) and (23) for the, and calculating

§=<AW+“)%
o

. Set§ = §, and iterate until the change &from one iteration to the next

is sufficiently small.

. Using the valueyg, andH,, calculate optimal structural parameters as in

the linear case.

. Once the structural parameter optimization has converged, calculate afinal

best estimate and set of confidence intervals using the optimal parameters
and repeat steps 5-7.
Back-transform the results to physical space using Equation (27).

First-Difference Method

The traditional method for deterministic interpretation of borehole flowmeter
tests is the first-difference method, as discussed in the introduction. In this method
the flux between two adjoint measurement points is evaluated from the differ-
ence between the measured fluxes; then, the average or effective conductivity is
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estimated for the interval

Q(hi41) —Q(hi) T
hizi—h  Qb)’
The value obtained applies to the entire intertalt6 h;.1), and for plotting

and subsequent calculations, the value was used as a point-value at the center of
the vertical section/{*1ist),

K() = hi <¢ <hija (38)

Ordinary Kriging

Ordinary kriging was performed on the results of the first-difference method
to provide an alternative and easier way to account for uncertainty in the estimates
of hydraulic conductivity. Variogram fitting and Kriging calculations were imple-
mented following the cR and LQoptimization methodology in Kitanidis (1997)
using code from Erickson (1999). First-difference data were transformed using the
power transform in Equation (26). A nugget effect was introduced to accompany
the linear variogram in order to suppress small-scale variations in the solution. Al-
though a different variogram may be more appropriate, the linear variogram with
nugget was chosen to foster meaningful comparison with the Bayesian results.

It was neither possible to perform indicator kriging nor zonation for kriging
due to the limited data points in the lower zone in FW24.

DATA AND RESULTS

The techniques discussed above were applied to flowmeter test results from
the Field Research Center (FRC) at the Oak Ridge Reservation (ORR). First is a
discussion of the data obtained, preliminary processing and evaluation of the data,
and an explanation of which data were ultimately used for this analysis. Following
the discussion of data is the presentation and interpretation of the results from the
FRC, and a comparison of results from the three methods.

Data

The electromagnetic borehole flowmeter (EBF) tests used in this study were
performed at the FRC in April and May of 2001 (Waldrop and Pearson, 2001). Two
boreholes were tested and are labeled FW24 and FW26. The two boreholes are
approximately 3.4 m apart (Fig. 2). Data pertaining to flow measured in the field,
and vertically averaged hydraulic conductivity are both needed to determine the
vertical distribution of hydraulic conductivity. The vertically averaged hydraulic
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Figure 2. Location of the boreholes FW24 and FW26.

conductivity was independently determined from a constant-rate pumping test in
borehole FW24.

Ambient or regional flow must be removed because natural vertical gradi-
ents may work with or against the pumping and could over- or underestimate the
stress induced on the aquifer by pumping (Young and others, 1998). Ambient flow
was measured prior to perturbation of the well. The EBF was placed at various
intervals starting at the bottom of the borehole, and a packer was inflated isolating
the EBF so flow measured at each interval was the total cumulative flow between
the bottom of the borehole and the EBF. For this test, positive EBF measurements
indicate upward ambient flow, while negative measurements indicate downward
ambient flow. Pumping induced flow was also positive, so the following correction
for ambient flow was made:

Q(h)net = Q(h)pumped— Q(h)ambient (39)

where the dependence dn) {ndicates that flow is measured at various depths.
After determining the ambient flowrate, the velocity was measured again

using the EBF in the same manner while pumping. First each borehole was pumped

at a rate of approximately 1.5 L per min (LPM) until drawdown reached steady
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state. The pump was then placed near the water table and a constant pump rate was
maintained. By maintaining a constant total pump rate, variations in flow measured
through the EBF as a function of depth are known to result from variations in the
hydraulic conductivity of the formation.

Several difficulties were encountered in the execution of the field tests result-
ing in underestimation of flow readings toward the end of the test. These difficulties
resulted in limitations to the usability of the data, and some preliminary data se-
lection was necessary as discussed below.

Borehole FW24 Flowmeter Data

Borehole FW24 was the more successful of the two tests. However, the field
crew encountered difficulty in obtaining a proper seal with the packer in loose
soil near the top of the borehole. Therefore, some flow likely bypassed the EBF
resulting in underestimated flow readings. This hypothesis was qualitatively tested
by briefly overinflating the packer and attempting to read the flow on the EBF. The
flowrate at the instant of overinflation was observed to be in line with that expected,
but a stable reading (the average of several sequential readings) was not possible.
Therefore, several data points were disregarded near the top of the column. The
shallowest point (near the water table) was replaced by the total flow measured
from the well because all flow must have exited the borehole through the shallowest
point. The EBF readings are presented in Figure 3 where open squares show all
readings recorded, open diamonds show ambient flow, and filled triangles show
net corrected flow at the elevations where measurements were retained.

Borehole FW26 Flowmeter Data

The lithologic similarity and close proximity of borehole FW26 to FW24
suggest that some difficulty obtaining a good seal with the packer in the upper
section of the borehole may have been encountered in FW26. However, this concern
was eclipsed by more serious problems caused by variations in the pump rate.
The pumping rate varied dramatically when the flowmeter was at shallow depth,
masking the flowrate signal resulting from variations in lithology. Therefore, at
depths shallower than about 11 m, the flow values are not considered reliable
(Fig. 4). Fortunately, these shallow points are expected to contribute little to the
overall flow, and hence the region of rejected data is interpreted to be of low
hydraulic conductivity.

Similarly to FW24, the shallowest data point was assigned a value equal to
the total pump flowrate. All data points between the shallowest depth and 11 m
were not used, with the exception of the data point at 9.14 m (30 ft). This data
point was interpreted to be in line with the expected flow rate and was retained in
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the analysis. Finally, the deepest point was set to zero due to field observations that
there was no flow at this depth (Waldrop and Pearson, 2001). The EBF readings
are presented in Figure 4 following the same convention as for FW?24 above.

RESULTS

The results of the three methods are first discussed separately, and then
compared.

Bayesian Inverse Method

The flow profiles (Figs. 3 and 4) were analyzed assuming a single constant
mean (i.e. asingle zone) throughout the entire depth of the formation. The structural
parameters did not converge for FW24, but they did for FW26, resulting in a
hydraulic conductivity profile (Fig. 5). The inability of structural parameters to
converge in the case of FW24 is a result of the extreme variability in the initial
flow profile. In FW24, two regions or zones of flow behavior can be discerned
(Fig. 3). A significant increase in flow per unit depth is observed at the bottom of
the borehole, indicating high hydraulic conductivity. However, at approximately
10.9 m bls, an abrupt change is seen, and the flow increases with decreasing depth
at a much lower rate, indicating lower hydraulic conductivity. It is unreasonable

5
. - Kest
gl ---- 95% confidence interval
1 v=0.054
70 6=0.005
o= 107
=z B
=
w
3
E 9
E=
g 10 :
LA R S LT
12
13

Hydraulic Conductivity (ctm/sec)

Figure 5. Hydraulic conductivity in FW26 (Bayesian inverse method): No zonation.
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to expect a linear model of variance to capture two distinct, smoothly varying
patterns. Favoring parsimony, the GCF was retained and a zoned approach was
followed. This allows the same number of structural parameters to be optimized
while also allowing for two mean valueg).

We know a priori that the aquifer has fractured zones, and we also expect a
weathering contactto be encountered. Such an obvious jump in flow indicates thata
distinct difference in lithology is apparent, further suggesting use of a zoned model.
The zone boundary was chosen as the depth at which the obvious inflection pointin
the flow curve was observed. Both data sets were reexamined using the zoned ap-
proach because similar geologic conditions are present at both borehole locations.

With the zoned approach, the structural parameters for FW24 converged
rapidly to reasonable values (Fig. 6).

The behavior and results of FW26 were also reasonable when subjected to
the zoned approach (Fig. 7). In this borehole, the zone transition was assigned as
11.9 m bls.

In general, the results of the best estimate match the pattern expected based
on the geology of the site. An increase in hydraulic conductivity with depth was
expected within the transition zone before more competent rock was encoun-
tered at the bottom of the borehole. The convergence of the structural parameter
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Figure 6. Hydraulic conductivity in FW24 (Bayesian inverse method): Range is
trimmed at upper end, affecting only three UCL measurements which had a max-
imum value of 0.0126 cm/s. Zoned approach with zone transition is at 10.9 m
bls.
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Figure 7. Hydraulic conductivity in FW26 (Bayesian inverse method): Zoned
approach with zone transition set at 11.9 m bls.

optimization (especially in FW24) was very sensitive to the location of the zone
boundary.

First-Difference and Ordinary Kriging Methods

Both the first-difference and ordinary kriging results were computed (Figs. 8
and 9). These results are presented together because the first-difference results
were the data used as the basis for the ordinary kriging.

Comparison of Results

Figures 10 and 11 present the comparison of the first-difference, ordinary
kriging, and inverse methods for deconvoluting the hydraulic conductivity profile.
Only the best estimates are presented.

The general patterns of the best estimates among the three methods are similar.
The first-difference method provides one result for each measurement taken which
applies to the entire interval sampled in a given event. No uncertainty analysis is
possible with the first-difference method.

Both the Bayesian inverse method and ordinary kriging provide estimates
of the function at intermediate points on an arbitrary discretization. Furthermore,
both methods offer formal estimation of uncertainty. Kriging, however, does not
allow for a physically relevant forward model to be explicitly incorporated. In a



120 Fienen, Kitanidis, Watson, and Jardine

5 -
4 First Difference K
— Kriged K
e 85% confidence interval
X
%
7k

Depth {meters bis)

—
o
T,

11

........
...................................

12

13

i 1 1 1 1 1 1 1 1 1
0 0001 0002 0003 0004 0.005 0006 0007 0008 0.009 001
Hydraulic Conductivity {crm/sec)

Figure 8. Hydraulic conductivity in FW24 (first-difference and ordinary kriging):
Range is trimmed at upper end, affecting only two UCL measurements which had a
maximum value of 0.0201 cm/s.
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Figure 9. Hydraulic conductivity in FW26 (first-difference and ordinary kriging).
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Figure 11. Hydraulic conductivity in FW26: Comparison of three deconvolution
methods.
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case as this problem where a simplified forward model is used, the difference in
results is not substantial. However, with a more complicated forward model, the
explicit incorporation of such a model may result in a superior solution using the
Bayesian inverse method rather than kriging.

CONCLUSIONS

We have developed a Bayesian inverse method for the deconvolution of hy-
draulic conductivity in borehole flowmeter tests. A linear GCF was an appropriate
model of the prior covariance when combined with the zonation approach. Without
zonation, it was not possible to obtain results for one borehole (FW24) and results
in both boreholes tested were improved through use of the zonation model. The
quasi-linear Bayesian inverse method applied here assumes a Gaussian prior dis-
tribution, which encounters difficulty at geologic contacts or other discontinuities.

A different prior distribution may be better suited to handle such discontinuities
without the need for zonation. However, the zonation approach has the advantage
of being intuitive with respect to the geology at the site.

Ordinary kriging with a linear variogram and nugget effect was also per-
formed for comparison, and the results of the inverse method and kriging were both
compared to results of the traditional first-difference method. Both the Bayesian
inverse method and kriging take into account errors and variability and provide
a best estimate and confidence intervals. Both methods also yielded reasonable
results as compared to the traditional first-difference method, and all results of all
three methods were consistent with the geology at the site. It was expected that
higher hydraulic conductivity would be encountered at depth due to a transition
from highly weathered saprolite to fresher fractured shale with increasing depth.

The enforcement of nonnegativity through use of a power transformation
was critical in obtaining physically reasonable estimates of hydraulic conductiv-
ity. For the Bayesian inverse method, successive linearization and optimization
using the Gauss—Newton method was effective both in handling the nonlinear-
ity resulting from the power transformation, and in obtaining optimal structural
parameters. This method of enforcing nonnegativity suffers from the fact that con-
fidence intervals are dependent on the magnitude of measurements which may not
be appropriate with varied magnitudes of best estimates.

The ordinary kriging approach has the advantage of being relatively easy to
implement using a variety of commercially available programs. This approach is
directly dependent on the first-difference results, however, overemphasizing the
importance of the midpoints of sampled intervals.

The Bayesian inverse method is more involved to implement but, when com-
bined with zonation, provides reasonable and usable results. The Bayesian method
also explicitly incorporates the physics of the problem in the forward model. In
the instance of the simplified forward model of this case, this advantage was not
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strong, but with a more realistic forward model, the closer honoring of the physics
could grow in significance.

Preliminary data screening also added to the physical reasonability of the re-
sults, as several EBF measurements were rejected as a result of field
observations.
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APPENDIX A: DERIVATION OF POSTERIOR PDF

The Gaussian prigodf, p/(s), can be readily constructed from the expected
value and covariance matrix.

PO = e o0( ~ 36— XA X)) (A

1
/detQ
The likelihood function (Kitanidis, 1995) can be expressed as

P19 = oo~ 50— hE TRy -hE ) (82
VdetR 2

Equation (6) is linear, so we can express the integral and the constant param-
eters () as Riemann sums, and express Equation (7) as

y=Hs+v (A3)

whereH is a known matrix representing the function of Equation (6). The constant
parameters

Q(b)

T 1)
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are absorbed intd. The expected value of the measurements given the unknowns
is found through the discretized forward Equation (A3). The covarianBe &s
defined above. Therefore, the likelihood function is expressed as

_ 1 Ly HyTR Yy -
Y19 = o en( ~ 50— HR Iy —He) (A

Multiplying thesepdfs results in the posteriqudf:

P(513) o exp 5~ HOTR iy — Ho) — 5(5- XB)'Q (s X)|
(15)

APPENDIX B: LINEARIZATION OF THE MEASUREMENT EQUATION

We introduce a power transformation of the hydraulic conductivity vdctor

1

Sj = Oé(kf — 1), S§j > —« (A6)

so the observation equation becomes

m S-+a o )
M:ZH”(JO[ >+vi, i=1....n (A7)

=t

Equation (A7) is nonlinear, so we expand in a Taylor series about an estimate
of swhich we calls. The expansion of the nonlinear term is:

S: o § o § o
(—J+a> :< ’+“> +( J+a> ( 2 )(sj—é,-)JrH.o.T.
o o o S+«

(A8)

whereH.O.T. means higher (than linear) order terms. Neglecting the higher-order
terms, Equation (A7) becomes, after rearrangement of terms,

S () o ] - S (B2

X(AL)SJ—FM, i=1....n (A9)
S+«
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Thus, we obtain the linearized system,

m

M) =Y (H)ijsj +v. i=1....n (A10)
j=1
where
Ny (ST, e
)i = Vi ;W( ” >[1 §j+a} (A11)

L (S ta ¢ o
(H|).J—H.,< " ) <§j+a> (A12)



