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Applicability of a Backprojection Algorithm
to Reconstruct Images of Subsurface Horizontal
Planes for Laboratory Experiments in Electrical

Resistance Tomography1

Josep Jordana2 and Ramon Pallàs-Areny2

This paper describes the use of a backprojection algorithm to reconstruct subsurface images of the
electrical resistivity in horizontal planes parallel to the surface. The algorithm can be applied to
detect buried objects such as tanks or pipes and possible leakages from them. Two imaging strategies
are compared: juxtaposition of vertical planes, and 3D reconstruction from the sensitivity matrix
corresponding to the entire volume whose surface is explored. The electrode arrays used for voltage
measurement are the dipole–dipole array and a modified Schlumberger array. A personal computer
controls current injection, electrode switching, and voltage detection. The system injects 1 kHz, 20 V
peak-to-peak square waveforms, thus avoiding electrode polarization effects. Experimental laboratory
measurements show that the algorithm detects localized objects such as an insulating sphere and a
conductive cylinder immersed in water. Furthermore, covering half of the cylinder by a rubber sleeve
to simulate a nonconductive leak, yields a distinct image for the leak. The backprojection algorithm
does not need any regularization parameter and it is very fast in inverting the sensitivity matrix because
it approximates the inverse matrix by its transposed. The dipole–dipole array usually yields a lower
overall pixel error than the modified Schlumberger array but both allow the detection of simulated
underground leaks.
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INTRODUCTION

Electrical resistance tomography (ERT) aims to image the distribution of resistivity
or conductivity across a section of a body from boundary voltage measurements
when injecting current. ERT was first proposed in geophysics (Dines and Lytle,
1981), and it has also found industrial and medical applications. Geoelectrical
prospecting methods have been available for more than a century, for example to
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detect subsurface objects from electrical resistivity variations inferred from surface
voltage measurements. These methods are common in shallow subsurface inves-
tigations, especially for groundwater studies (Burger, 1992). Currently, there is a
variety 2D and 3D algorithms able to image underground resistivity distributions.
Several of those algorithms derive from ERT for medical applications (Barber,
1990; Kotre, 1993). Subsurface resistivity imaging has been proposed, for exam-
ple, for leak detection because it is less expensive than methods based on soil
sampling and borehole tomography (Jordana, Gasulla, and Pall`as-Areny, 2001).
Specifically, subsurface resistivity measurements to detect leaks from buried pipes
do not need soil drilling.

Many underground resistivity imaging techniques use least-squares-based
methods. But inverse geoelectrical problems are ill-conditioned in general, mean-
ing that the images obtained are very sensitive to measurement errors. This paper
analyzes a weighted backprojection algorithm, based on the sensitivity theorem,
whose details have been reviewed by Wang (2002).

In a previous work (Jordana, Gasulla, and Pall`as-Areny, 2001), we used a
linear electrode array to image the resistivity distribution across the vertical plane
containing the array. The best images were obtained when the array was on the same
plane as the object to detect, whose location is often difficult to know in advance.
Here we propose to explore a region by uniformly shifting a single linear array
of N electrodes toNs successive parallel positions (Fig. 1). This method allows
us to image resistivity distributions in horizontal planes parallel to the surface at
different depths. The system has been successfully tested in a phantom with tap
water and different spherical and cylindrical objects immersed.

Figure 1. Shifting a linear array ofN electrodes toNs parallel positions allows us to image
horizontal planes by juxtaposing theNs 2D images corresponding to vertical planes. Shifting
two orthogonal electrode arrays allows us to directly obtain 3D images.
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IMAGE RECONSTRUCTION ALGORITHM

The image-reconstruction algorithm here proposed is based on the sensitivity
theorem (Geselowitz, 1971). The algorithm relies on the following assumptions:

(i) The measured data are the real part of the impedance. Hence, images
correspond to underground conductivity or resistivity distributions.

(ii) The interelectrode separation (s) is uniform.
(iii) The background conductivity distribution is homogeneous (σh).
(iv) The changes in conductivity to be imaged are not very different from

the homogeneous distribution.
(v) For so-called 2D algorithms, the region to be imaged is considered bidi-

mensional, that is, neither vertical planes nor horizontal planes interact.

In spite of (iv), Experimental Results and Discussion section show that tests per-
formed with objects whose conductivity is very different from that of the sur-
rounding medium yield useful images because the algorithms are intended to
detect changes in conductivity rather than to quantify them.

Data for underground resistivity imaging are collected from a surface lin-
ear array of uniformly spaced electrodes (electrode spacings), alternately used
for both current injection and voltage detection. Here we use the dipole–dipole
and the so-called modified Schlumberger electrode arrays (Fig. 2). For a given
set of N electrodes, the respective number of independent measurements are
N(N − 3)/2 for the dipole–dipole array and (N − 2)(N − 3)/2 for the modified
Schlumberger array. The modified Schlumberger array yields a reduced number of
measurements but the measured voltages are higher than those of the dipole–dipole
array.

Figure 1 shows the volume explored by shifting the linear array. This method
has the advantage of allowing the exploration of horizontal planes, which should
better identify underground objects or anomalies. Furthermore, because we as-
sume that vertical planes are independent from each other, the sensitivity matrix
(Kotre, 1996) is the same for each position of the electrode array. Therefore, we
only needNs reconstructions,Ns being the number of positions of the electrode
array: the sensitivity matrix corresponding to each array position will be the same
as that for 2D vertical planes. The juxtaposition of images of successive vertical
planes yields more information than the image of a single vertical plane and per-
mits us to reconstruct horizontal planes. If the distance between successive array
positions equalss (interelectrode spacing), the reconstructed horizontal planes are
squares.

When using an array of eight electrodes, the order of the sensitivity matrix is
20× 40 for the dipole–dipole array and 15× 40 for the modified Schlumberger ar-
ray. The number of rows corresponds to the number of independent measurements
and the number of columns corresponds to the number of pixels to reconstruct. If
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Figure 2. Electrode arrays description: (A) In the dipole–dipole array, cur-
rent injection and voltage detection are performed by adjacent electrode pairs,
including end electrodes. (B) In the modified Schlumberger array, current is in-
jected through distant electrodes and voltage is detected by successive adjacent
electrode pairs.
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the array is shifted seven times (eight positions), we need to invert the sensitivity
matrix eight times.

In practice, because electrical charge flows throughout the underground, volt-
ages sensed by electrodes depend not only on the vertical plane beneath the elec-
trode array but also on nearby vertical planes. In order to take this effect into
account, we calculate the sensitivity coefficients for the complete volume and ap-
ply them to the reconstruction of 3D images from data obtained by two orthogonal
electrode arrays, as proposed by Kotre (1996). When using two eight-electrode
arrays, the order of the sensitivity matrix is 320× 320 for the dipole–dipole array
and 240× 320 for the modified Schlumberger array.

The backprojection image-reconstruction algorithm has been applied to ob-
tain 2D images from vertical planes that are later juxtaposed, and 3D images that
are reconstructed from measurements obtained by shifting two orthogonal linear
electrode arrays.

When the resistivity changes, the change in voltage corresponding to an
injecting–detecting electrode pairm–n as a function of the sensitivity coefficients
obeys to
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whereV are the measured voltages when there is the anomaly,Vh are the measured
voltages for an homogeneous medium, andSm,n,x,y,z is the sensitivity coefficient
relating the measurement (m, n) to the position (x, y, z). The sensitivity coef-
ficients are calculated in the appendix. For several injecting–detecting pairs, (1)
leads to an equation system relating small conductivity changes to voltage changes
measured on the surface. The normalized resistivity is then (Kotre, 1996)
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This reconstruction method approximates the inverse sensitivity matrix by its trans-
posed, whose values (reconstructed pixels) are

P(x, y, z) ≈ −σ (x, y, z)− σh

σh
(3)

whereσh is the reference conductivity (homogeneous medium) andσ (x, y, z) is
the true conductivity distribution, slightly different from the homogeneous distri-
bution. Some experimental measurements later described actually involve high-
contrast objects, but the algorithm detects them too.



P1: GAD

Mathematical Geology [mg] pp1107-matg-478595 February 10, 2004 15:34 Style file version June 25th, 2002

132 Jordana and Pallàs-Areny

This reconstruction algorithm yields blurred images that can be restored by a
spatial frequency filter derived from the algorithm’spoint-spread-function(PSF).
Leak detection, however, only needs to distinguish between images showing an
intact pipe and images showing a leaking pipe. There is no need for neat images,
and experimental results without any restoration filter are acceptable.

EXPERIMENTAL RESULTS AND DISCUSSION

The proposed algorithm has been applied to reconstruct images from data
obtained from a 40 cm× 30 cm× 25 cm plastic tank full of tap water, where we
have explored a 16 cm× 16 cm area. The instrumentation electronics for current
injection and voltage detection has been described elsewhere (Gasulla, Jordana,
and Pallàs-Areny, 1998). A personal computer controls electrode switching, thus
enabling us to easily test different electrode arrays. The system injects 1 kHz,
20 V peak-to-peak square waveforms, thus avoiding electrode polarization effects,
which hinder dc and low-frequency voltage measurements.

Figure 3 is a sketch of the tank as viewed from its top. The plane to be
reconstructed is divided in 8× 8 pixels. The electrode arrays can be respectively
displaced along thex and they directions. Actual electrode spacing iss= 2 cm. In
order to obtain conclusions independent of specific distances, all the other distances
and dimensions are given in terms ofs. The objects that we have immersed in the
tank are: (a) an insulating sphere of radius 1s buried at 2s (4 cm) and (b) a
stainless steel cylinder of radius 1s and length 8s also buried at 2s and parallel to

Figure 3. Orthogonal electrode arrays in a plastic tank full of tap water, view from above
when immersing: (A) an insulating sphere and (B) a conductive cylinder half of which is
covered by an insulating sleeve to simulate a leak.
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the y axis. Half of the cylinder was covered by an insulating rubber sleeve 0.25s
(0.5 cm) thick to simulate an insulating leak from the cylinder.

Displacing the electrode arrays at uniform steps can only be approximated in
practice. Electrode spacing in a fixed 8× 8 electrode matrix would be easier to
control, but at a higher cost for the electrode switching system.

Particularities of visual perception in humans make the quality of the re-
constructed images dependent on the color map used to picture them (Rogowitz
and Treinish, 1998). Hence, equal pixel values can result in quite different im-
ages perceived. Therefore, instead of relying on visual perception only, we have
also compared the reconstructed images by calculating the root-mean-square error
between ideal and actual pixel values,

E = 1

P

P∑
n=1

e2
i (4)

ei = σ ideal
i∣∣σ ideal
imax

∣∣ − σ r
i∣∣σ r

imax

∣∣ (5)

whereP is the number of pixels in the image, andσ ideal
i and|σ ideal

imax
|, andσ r

i and
|σ r

imax
| are, respectively, the values of pixeli and the maximal absolute values of

pixels in the ideal and reconstructed images. Both ideal and reconstructed pixel
values are normalized to their respective maximal values in order to better compare
the ideal and reconstructed images.E is the overall pixel error.

Image Reconstruction for an Insulating Sphere

Figure 4 shows the theoretical image corresponding to an insulating sphere of
radius 1s immersed at depth 2s. We see a square instead of a circle because of the
large pixel size. The negative values for the conductivity of the central area (shown
in black) indicate that the object is insulating as compared to its surroundings.

Results With the Dipole–Dipole Array

Figure 5(A) shows the image for the horizontal plane atz= 2 s obtained
by juxtaposition of vertical planes (parallel to axisy) reconstructed by the back-
projection algorithm applied to data from the dipole–dipole array. The insulating
sphere can be easily identified. Figure 5(B) shows the image of the same horizontal
plane obtained from data also gathered with the dipole–dipole array but by shifting
the orthogonal electrode array and image reconstruction based on the sensitivity
matrix corresponding to the whole volume shown in Figure 1, whose order is
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Figure 4. Ideal image of a sphere of radius 1s (s being
the electrode spacing), and placed at 2sdepth. The sphere
occupies the four central pixels of its plane.

Figure 5. Reconstructed image for the sphere in Figure 3(A) when buried at 2s depth,
when using the backprojection method and the dipole–dipole array (interelectrode distance
1 s). (A) Image synthesized by juxtaposing vertical planes. (B) 3D image obtained from
voltages measured by shifting two linear orthogonal arrays.
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Figure 6. Reconstructed image for the sphere in Figure 3(A) when buried at 2s depth,
when using the modified Schlumberger array (interelectrode distance 1s). (A) Image
synthesized by juxtaposing vertical planes. (B) 3D image obtained from voltages measured
by shifting two linear orthogonal arrays.

320× 320 in this case. The sphere is easily identified butE = 0.080, against
E = 0.054 in Figure 5(A). This increase in error can be partially attributed to
nonuniform steps when shifting the electrode arrays.

Results With the Modified Schlumberger Array

Figure 6 shows images reconstructed by applying the backprojection algo-
rithm to voltages measured by the modified Schlumberger array. The sphere can
still be identified but the images are clearly worse than those in Figure 5. However,
E = 0.049 andE = 0.108, respectively for Figure 6(A) and (B). This indicates
that perhaps the overall pixel errorE is not the best parameter to quantify im-
age quality. An error metric linked only to those pixels of interest could be more
meaningful.

Image Reconstruction for a Conducting Cylinder
With a Simulated Insulating Leak

Figure 7 shows the theoretical image of the conducting cylinder with a simu-
lated insulating leak, placed at the horizontal planez= 2 s. Results in the previous
section for the sphere indicate that using the 3D sensitivity matrix for voltage
data measured by displacing the orthogonal array does not improve enough the
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Figure 7. Ideal image of the horizontal plane atz= 2 s
for a conductive cylinder with radius 1s and length 8s,
with a simulated insulating leak whose thickness is 0.25s.
(Pixels in black indicate the insulating leak.)

quality of images to compensate for the increased computation time required.
Consequently, here we show only images obtained by juxtaposing vertical planes
corresponding to successive positions of the electrode array parallel to thex axis.

Figure 8(A) and (B) shows images of the horizontal plane atz= 2 s re-
constructed by, respectively, the dipole–dipole electrode array and the modified
Schlumberger array. Both arrays detect the cylinder and the simulated leak, and
their correct locations. The overall pixel errors are similar:E = 0.102 andE =
0.132.

Figure 8. Reconstructed image for the cylinder in Figure 3(B) when buried at 2s depth,
by juxtaposing vertical planes when using (A) the dipole–dipole array and (B) the modified
Schlumberger array.
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Figure 9. Ideal image for the leak in Figure 3(B) when
reference voltages are measured in the presence on the
intact conductive cylinder.

Image Reconstruction for a Conducting Cylinder With a Simulated
Insulating Leak and In-Situ Reference Voltages

Reference voltages in the preceding sections (Vh in Eqs. (1) and (2)), were
obtained by first measuring voltages in a tank without any immersed object. This
is not a realistic situation for leak detection but allows the comparison of different
electrode arrays. Figure 9 shows the ideal image for the simulated leak when the
reference voltages correspond to an intact conductive cylinder immersed in the
tank.

Figure 10(A) and (B) shows images of the horizontal plane atz= 2 s re-
constructed by, respectively, the dipole–dipole electrode array and the modified
Schlumberger array. Both arrays detect the cylinder and the simulated leak, and
their correct locations. The overall pixel errors are similar:E = 0.052 andE =
0.063.

CONCLUSIONS

The backprojection algorithm allows the fast reconstruction of images ob-
tained from voltages measured by the dipole–dipole and modified Schlumberger
linear electrode arrays when applied to subsurface resistance tomography. As op-
posed to other image reconstruction algorithms, the backprojection algorithm does
not need to guess any regularization parameter. Images from horizontal planes par-
allel to the surface can be obtained by either juxtaposing images of vertical planes
containing the electrode array that is successively shifted to parallel positions, or
3D image-reconstruction algorithms applied to voltage data obtained by shifting
two orthogonal linear arrays.
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Figure 10. Reconstructed image for the simulated leak in Figure 3(B) when the cylinder
is buried at 2s depth and the leak is 0.25s thick, by juxtaposing vertical planes when
using reference voltages measured with the intact immersed cylinder, using: (A) the
dipole–dipole array, (B) the modified Schlumberger array.

Experimental tests in a water-filled plastic tank with an immersed sphere or
cylinder, show that the juxtaposition of vertical planes corresponding to a single
electrode array shifted to successive positions, permits the detection of both the
object and a simulated leak from the cylinder. 3D image reconstruction methods
also permit us to detect both objects and simulated leaks, but with a higher com-
putation time without substantial reduction in overall pixel error. This may be due
to a nonuniform placement of the electrode array in successive parallel positions.

Simulated insulating leaks can be detected and correctly located when the
reference voltages for image reconstruction are measured in the presence of an
intact conductive cylinder, which is a situation closer to the actual than measuring
reference voltages from a volume without any internal object.

The dipole–dipole electrode array usually yields images with lower overall
pixel error than the modified Schlumberger array. Visually, however, both arrays
yield images of comparable quality.
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APPENDIX

Determination of the Sensitivity Coefficients and Sensitivity Matrix

To calculate the sensitivity coefficients it is necessary to know the electric
potential at each pixel in which the subsurface has been divided. We consider an
infinite semispace of homogeneous resistivityρh. The electrostatic potential at
point P due to the electrode pair (m) with currentsI and−I (Fig. A1) is

Vp = Iρh

2π

(
1

a
− 1

b

)
(A1)

where

a =
√

(x − xi )2+ (y− yi )2+ (z− zi )2

and b =
√

(x − xd)2+ (y− yd)2+ (z− zd)2,

are the distances of each electrode pair to point (x, y, z). (xi , yi , zi ) are the coor-
dinates of the current-injecting electrode and (xd, yd, zd) are those of the current-
draining electrode.

By successively taking the derivative of (A1) with respect tox, y, andz, we
obtain the electric field generated by each electrode pair (m)

Em = −∇φm = −(Eix , Eiy, Eiz) (A2)
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Figure A1. Notation used in determining the sensitivity coefficient of a pixel of a vertical
plane under the electrode array.

The electric field components corresponding to the electrode pairm are:

Eix = −∂Vp

∂x
= k

[
x − xi

wi
− x − xd

wd

]
Eiy = −∂Vp

∂y
= k

[
y− yi

wi
− y− yd

wd

]
(A3)

Eiz = −∂Vp

∂z
= k

[
z− zi

wi
− z− zd

wd

]
where

wi =
(
(x − xi )

2+ (y− yi )
2+ (z− zi )

2
)3/2

,

wd =
(
(x − xd)2+ (y− yd)2+ (z− zd)2

)3/2
andk = Iρh

2π . The potential gradient corresponding to the second electrode pair (n),
∇φn, can be obtained in a similar way.

The sensitivity coefficients associated to each pixel equal the scalar product
of the two potential gradients times its area or volume, depending on whether
the reconstruction is bidimensional (2D) or tridimensional (3D). An approximate
2D sensitivity coefficient for pixeli , corresponding to the measurementj is
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(Noel and Xu, 1991)

Sji = ∇φm∇φn Ai (A4)

where we have supposed that its value is constant in the whole area of the element
(x, y, z).

The sensitivity matrix consists of the sensitivity coefficients corresponding to
a homogeneous medium. Its order isM × P, whereM is the number of measure-
ments andP is the number of pixels in which the subsurface has been divided.


