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S U M M A R Y
Reflection/refraction process is studied to calculate the energy distribution and transmission
in a general anisotropic poroelastic solid half-space in contact with a fluid half-space. Biot’s
theory is used to study the propagation of plane harmonic waves in an anisotropic fluid-
saturated porous solid. Snell’s law for reflection/refraction at an interface between fluid and
anisotropic poroelastic solid is calculated for the wave propagation in three dimensions. From
the velocity and direction of incident wave in the fluid medium, Snell’s law is used to find
the phase velocities and phase directions of all the four refracted waves. The phase velocity
and phase direction, thus, obtained are used to calculate the group velocity and ray direction
of each of the refracted waves. The energy of the incident wave is distributed among one
reflected wave and four quasi-waves refracted to the anisotropic poroelastic medium. Energy
transmission with each of the reflected/refracted waves is studied along with their directions of
travel in 3-D space. The variations of energy partition with the direction of the incident wave
are computed for a particular model. The effect of azimuthal anisotropy on the partition and
transmission of energy is observed.

Key words: energy travel, general anisotropy, poroelastic solids, reflection seismology,
refraction seismology.

1 I N T RO D U C T I O N

Dynamic behaviour of fluid-saturated porous media is attracting considerable attention as a result of its importance in earthquake engineering,
oil exploration, soil dynamics and hydrology. The poroelastic equations formulated by Biot (1956) have long been regarded as standard
and have formed the basis for solving wave-propagation problems in poroelasticity. Biot (1955) presented the stress–strain relations for an
anisotropic poroelastic solid. Anisotropy in porous solids may be the result of propagation through distribution of aligned cracks, microcracks
and preferentially-oriented pore space. Occasionally, anisotropy may be the result of some other phenomena, such as rock foliation or crystal
alignment. Following Biot’s theory, Schmitt (1989) and Sharma (1991) studied the wave propagation in transversely isotropic poroelastic
solids. Thomsen (1995) related the anisotropy to crack parameters in a porous rock and suggested that amount and type of anisotropy in the
porous rocks depend upon the crack density, crack shape, stiffness of interstitial fluid, equant porosity, frequency, fluid pressure and flow
between cracks and pores. This work was supported by the experimental study of anisotropy of sandstone with controlled crack geometry by
Rathore et al. (1995). Sharma (1996) discussed the coexistence of cracks and pores and its effect on surface wave propagation. Hudson et al.
(1996) studied the effect of connection between cracks and of small-scale porosity within the solid material on the overall elastic properties
of cracked solids.

The study of anisotropic elasticity is also important for understanding the mechanical behaviour of composite materials (Braga 1990;
Fan & Hwu 1998). Anisotropy in these materials results from the presence of crystals of particular symmetry or periodic thin laminates. In
the last two decades, the applications of acoustic microscopy and fibre-reinforced composites have initiated interest in wave propagation in
layered anisotropic media (Braga 1990). The stress-induced anisotropy in granular media (Norris & Johnson 1997) represents an active area
of current research activity.

As available in the literature, the analytical studies on anisotropic propagation restrict the motion to a fixed (symmetry or arbitrary) plane
and, hence, solve a 2-D problem. The energy propagation in an anisotropic media is, in fact, a 3-D phenomenon. The presence of mineral
orientations, microfracturing or thin layering or combinations of these in a material results in a general anisotropy of arbitrary symmetry. The
absence of symmetry in the aligned microcracks or pore space, also, results in the anisotropy of general type. The wave motion restricted
to a symmetry plane represents only a special case of general anisotropy. Study of propagation in any one plane (particularly a symmetry
plane) may give no indication of its behaviour in the neighbouring directions. It is, usually, impossible to extrapolate from a special case of
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948 M. D. Sharma

anisotropy to the general. This demands that anisotropic wave propagation must be studied in 3-D space and the anisotropy considered should
be of general type.

The reflection and transmission of waves at a fluid/porous solid interface seems to an important study. Starting with Geertsma & Smit
(1961), to Deresiewicz & Rice (1964), Wu et al. (1990), Santos et al. (1992), Albert (1993), and Cieszko & Kubik (1998), it is continued
with Denneman et al. (2002). In this last study, the closed form expressions of reflection and transmission coefficients (Denneman et al.
2000; Denneman et al. 2001) are calculated for the interfaces of water with water-saturated and air-filled porous layers. The work presented
here, also, studies the reflection and transmission at the fluid/porous solid interface, however, the porous solid is considered anisotopic with
arbitrary symmetry. The wave propagation is studied in 3-D space. The expressions for phase velocities and polarizations (Appendix A) of
four quasi-waves are extracted from Sharma (2004, referred to as Paper I hereafter). The method used in this work is a different one. It is,
mathematically, more exploring and can be applied to study the poroelastic anisotropies of all kinds.

2 F I E L D E Q UAT I O N S O F A N I S O T RO P I C P O RO E L A S T I C I T Y

Following Biot (1956), the governing equations for a fluid-saturated porous media, in the absence of body forces and dissipation, are

σi j, j = ρ11üi + ρ12Üi ;

σ,i = ρ12üi + ρ22Üi . (1)

The ui and Ui are the components of the average displacements for the solid and fluid phases, respectively. The dot notation is used to represent
time (partial) derivative. Summation convention is valid for repeated indices, which can assume the values 1, 2 and 3. The comma (,) before an
index represents partial space differentiation. ρ 11, ρ 12 and ρ 22 are the dynamic constants depending upon the porosity ( f ) of solid, fluid-solid
coupling and densities of solid particles and interstitial fluid. In an anisotropic porous material, the constitutive equations for stresses in the
solid phase (i.e. σ i j ) and fluid (i.e. σ ) are

σi j = ci jkluk,l + mi j Uk,k ;

σ = mi j ui, j + RUk,k . (2)

The coefficients cijkl (= cklij = cjikl), mij (= mji) and R are the 28 independent material constants of a linear porous material.
To seek the harmonic solution of eq. (1), for the propagation of plane waves, write

u j = Sj exp

[
ıω

(
1

v
nk xk − t

)]
;

U j = Fj exp

[
ıω

(
1

v
nk xk − t

)]
, ( j = 1, 2, 3), (3)

where, ω is frequency, v is phase velocity of a wave along the phase direction (n1, n2, n3), and Sj and Fj are the polarizations of solid and
fluid particles, respectively. These polarizations are related by Fj = GjkSk with Gjk defined in Appendix A (eq. A14). The Christoffel equation
is a system of three homogeneous equations, given by

Wi j S j = 0, (i = 1, 2, 3), (4)

where Wij, the elements of square matrix of order 3, are as defined in Appendix A. Non-trivial solution of this system explains the propagation
of four quasi-waves (q P1, q P2, q S1, q S2) in an anisotropic poroelastic medium. The phase velocities of these quasi-waves are given by
v j = √

Rh j/ρ22, ( j = 1, 2, 3, 4) with hj as defined in Appendix A. These phase velocities depend upon the direction of phase propagation.

3 R E F L E C T I O N A N D R E F R A C T I O N

According to the method used by Keith & Crampin (1977), the Christoffel equation is reduced to a polynomial that is solved for the vertical
slowness values. The vertical slowness value for a wave represents the ratio of its (vertical) direction cosine to its phase velocity. Phase velocity
being a function of phase direction is not obtained, exclusively, and, hence, Snell’s law does not appear in the whole scene. The energy flux is
used in finding the ray directions of reflected/refracted quasi-waves. Schmitt (1989) and Sharma (1991) used this method to study the wave
propagation in transversely isotropic poroelastic solids. For general anisotropy, this method will require the solution of a polynomial of degree
8 to find the slowness values for all the waves propagating in an anisotropic poroelastic solid. This is certainly a difficult task, particularly
for complex roots. A new method is proposed, which is nearly analogous to the process used to study reflection/refraction in isotropic media.
The proposed process traverses through the phase directions, phase velocities of refracted quasi-waves and Snell’s law at the fluid/anisotropic
medium interface. The directional derivatives of phase velocities of quasi-waves can be obtained analytically and can be used in finding the
group velocities and ray directions of transmitted quasi-waves. This method is explained as follows:

(i) The Christoffel equation is solved analytically to find the phase velocities (eq. A10) of all the quasi-waves in an anisotropic poroelastic
medium.

(ii) The phase velocity of a quasi-wave depends upon its phase direction. The phase direction is obtained from Snell’s law, which involves
the phase velocity of the quasi-wave. This is a tricky situation. Here, the analytical expression for phase velocity of the quasi-wave manages
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Anisotropic poroelastic propagation 949

Figure 1. Geometry of the medium (rays represent phase directions).

the way out. Along with Snell’s law (eq. 10), the Bisection method (or Newton’s method) solves a non-linear equation (eq. 11) to find the
phase direction of the quasi-wave for the given values of phase velocity and phase direction of the incident wave.

(iii) The phase direction obtained numerically from the non-linear equation, in step (ii), is used to calculate the phase velocity (Appendix A2)
of the quasi-wave.

(iv) The Christoffel equation in the form of a polynomial (eq. A7) in phase velocity provides the expressions for directional derivatives of
phase velocity (eq. 17). The phase direction from step (ii) and phase velocity from step (iii), along with its directional derivatives, are used to
calculate the group (energy) velocity vector (eq. 14).

(v) Snell’s law is used to calculate the vertical slowness for each of the four quasi-waves transmitted to porous medium from their phase
directions and phase velocities.

3.1 Geometry of the medium

Consider a fluid half-space in contact with anisotropic poroelastic half-space along a plane interface. In a rectangular coordinate system (x ,
y, z), the plane z = 0 represents the interface between two half-spaces and the z-axis is pointing into the fluid, as shown in Fig. 1. An acoustic
wave travels through the fluid and becomes incident at a point on the interface. In a spherical coordinate system centred at this point, let
(θ I , φo) be the direction of incident wave in 3-D space. According to the Fig. 1, θ I = π − θ o, where θ o is the angle between incident ray
and z-axis. This incident wave results in a reflected wave along (θ R , φ R) and four waves (q P1, q P2, q S1, q S2) refracted to the poroelastic
medium. Rays in the poroelastic medium represent the phase directions (θ j , φ j ), ( j = 1, 2, 3, 4) of the four quasi waves.

3.2 Displacements

The displacement components in the fluid medium are written as

uo
j = n j exp

[
ıω

(
1

vo
nk xk − t

)]
+ aRn′

j exp

[
ıω

(
1

vo
n′

k xk − t

)]
, ( j = 1, 2, 3), (5)

where vo is the velocity of sound in fluid, (n1, n2, n3) = (sin θ ocos φo, sin θ o sin φo,−cos θ o) and (n′
1, n′

2, n′
3) = (sin θ R cos φ R , sin θ R sin φ R ,

cos θ R).
The displacement components in the anisotropic poroelastic medium are expressed as

u j =
4∑

m=1

a(m)S(m)
j exp

[
ıω

(
1

vm
n(m)

k xk − t

)]
;

U j =
4∑

m=1

a(m)F (m)
j exp

[
ıω

(
1

vm
n(m)

k xk − t

)]
; ( j = 1, 2, 3), (6)

where [n(m)
1 , n(m)

2 , n
(m)
3 ] = (sin θ m cos φm , sin θ m sin φm , cos θ m) represents the phase direction of quasi-wave m. The a(m) are relative excitation

factors.

3.3 Boundary conditions

Following Deresiewicz & Skalak (1963), the boundary conditions at the interface between a fluid medium and a poroelastic medium are the
continuity of stresses of fluid and solid constituents. Continuity of normal components of velocity are also considered. In this problem, the
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950 M. D. Sharma

following are the five appropriate boundary conditions that are required to be satisfied at the plane z = 0:

σzx = 0,

σzy = 0,

σzz = (1 − f )K ouo
j, j ,

σ = f K ouo
j, j ,

(1 − f )u̇3 + f U̇3 = u̇o
3, (7)

where, Ko is the bulk modulus of the fluid medium. σ represents the stress components in poroelastic medium and eq. (2) relates them to the
displacement components (ui, Ui). Satisfying the above boundary conditions with the displacements defined in last section yields a system of
five linear inhomogeneous equations in a(1), a(2), a(3), a(4) and aR. These equations are given by

4∑
m=1

J (m)
i

R

vm
a(m) − (1 − f )

K o

vo
δi3aR = (1 − f )

K o

vo
δi3, (i = 1, 2, 3);

4∑
m=1

J (m)
4

1

vm
a(m) − f

K o

vo
aR = f

K o

vo
,

4∑
m=1

[(1 − f )S(m)
3 + f F (m)

3 ]a(m) − n′
3aR = n3, (8)

where,

J (m)
i =

3∑
k=1

[
alk S(m)

k + mi3

R
F (m)

k

]
n(m)

k + al4

[
S(m)

2 n(m)
3 + S(m)

3 n(m)
2

]

+ al5

[
S(m)

1 n(m)
3 + S(m)

3 n(m)
1

]
+ al6

[
S(m)

1 n(m)
2 + S(m)

2 n(m)
1

]
, l = 6 − i ; (i = 1, 2, 3),

J (m)
4 = mkl S

(m)
k n(m)

l + RF (m)
k n(m)

k . (9)

3.4 Snell’s law

In order to solve the system of eq. (8) for a(m) and aR, the values of n(m)
j and vm are required for a given direction (n1, n2, n3) and velocity

(vo) of the incident wave. The continuity in boundary conditions require the identical phase of all the waves at the interface z = 0. The Snell’s
law in three dimensions is, then, explained by

ni

vo
= n′

i

vo
= n(m)

i

vm
, (m = 1, 2, 3, 4); (i = 1, 2). (10)

Following are some interesting points drawn from the Snell’s law:

(i) n′
2/n′

1 = n2/n1 = n(m)
2 /n(m)

1 , (m = 1, 2, 3, 4) imply that φm = φ R = φo. This means that the phase directions of all the reflected and
refracted waves lie in the same vertical plane. So, in the case of azimuth isotropy, the velocity and direction of energy propagation will confine
to this plane only. Hence, in an anisotropic medium with anisotropy up to azimuthal isotropy, the study of wave propagation in a plane is
sufficient to explain the reflection/refraction phenomenon. However, the presence of azimuthal anisotropy demands that the wave propagation
needs to be studied in three dimensions.

(ii) The polar angle of the wave reflected into the fluid is given by θ R = π − θ I = θ o.
(iii) The phase velocity vm of the quasi-wave m in a poroelastic medium depends upon its phase direction (θ m , φo). Using Snell’s law and

the condition n(m)
k n(m)

k = 1, an equation,

hm sin2 θo − (
ρ22v

2
o/R

)
sin2 θm = 0, (11)

is obtained which relates θ m and vm. An expression of hm = ρ 22v
2
m/R as a function of θ m can be obtained from the Appendix A. Along with

this expression and eq. (11), Bisection method (or Newton’s method) will be able to derive the value of θ m for any given value of θ o. This
value of θ m is used to calculate the phase velocity vm and, hence, partition, velocity and direction of energy.

(iv) It may be noted that polar angles θ m , (m = 1, 2, 3, 4) of quasi-waves are derived from the polar angle of incident wave. As the incident
wave reaches the critical angle for any of the refracted waves, the refracted wave propagates along the interface. For the concerned refracted
wave, the phase direction is given by θ m = π/2 and the phase velocity is given by vc

m = vm(π/2, φo). Hence, for the post-critical incidence,
the concerned refracted wave has the constant phase velocity, i.e. vc

m .
(v) Snell’s law is modified to sin θ I /vo = sin θ m/vc

m . The critical angle for refracted quasi-wave m is then given by sin−1(vo/v
c
m). To calculate

the energy partition for post-critical incidence, the vertical slowness is given by n(m)
3 /vc

m , where n(m)
3 = cos θm = √

[1 − (sin θI v
c
m/vo)2] is an

imaginary value.

C© 2004 RAS, GJI, 157, 947–958

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/157/2/947/2083429 by guest on 22 Septem

ber 2022



Anisotropic poroelastic propagation 951

3.5 Energy ratios

Distribution of energy between different reflected and refracted waves is considered across a surface element of unit area at the plane z = 0.
Following Achenbach (1973), the scalar product of surface traction and particle velocity per unit area, denoted by P∗, represents the rate at
which the energy is communicated per unit area of the surface. The time average of P∗ over a period, denoted by 〈P∗〉, represents the average
energy transmission per unit surface area per unit time. If z-axis is the outer normal to the surface, then, in the fluid medium, the average
energy flux of incident and reflected waves are 〈P∗

I 〉 = −0.5ω2Kon3/vo and 〈P∗
R〉 = −0.5ω2|aR|2Kon′

3/vo, respectively. Taking into account
the energy transmitted to the fluid portion of poroelastic solid, the average energy carried by the quasi-wave m is

〈
P∗

m

〉 = −0.5ω2|a(m)|2 Re

[
3∑

k=1

R J (m)
k S̄(m)

k + J (m)
4 F̄ (m)

3

] /
vm, (m = 1, 2, 3, 4). (12)

The energy ratios of reflected and refracted waves [i.e. ER = 〈P∗
R〉/〈P∗

I 〉 and Em = 〈P∗
m〉/〈P∗

I 〉, (m = 1, 2, 3, 4)] ensure the conservation of
energy by satisfying the relation

∑4
m=1 Em − ER = 1.

At incidence beyond the critical angle for a refracted wave, the waves become inhomogeneous and, hence, involve the concept of
interaction energy. Borcherdt (1977) explained the existence of interaction energy for the reflection and refraction of SH waves. To ensure
energy conservation, Ainslie & Burns (1995) have also explained some derivations involving interference-energy or complex-energy ratios.
In the present problem, an energy matrix Ejk = 〈P∗

jk〉 /〈P∗
I 〉 ; ( j , k = 1, 2, 3, 4), is defined to calculate the interaction energy among the four

quasi-waves in poroelastic medium. The energy fluxes are defined as

〈
P∗

jk

〉 = −0.5ω2 Re

{
1

v j

[
3∑

i=1

R J ( j)
i a( j)S̄(k)

i ā(k) + J ( j)
4 a( j)F̄ (k)

3 ā(k)

]}
. (13)

The sum of all the non-diagonal entries of this energy matrix gives the share of interaction energy for the refracted waves. In this case, the
conservation of energy is given by the relation

∑4
j=1

∑4
k=1 E jk − ER = 1. At incidence before all the critical angles, this energy matrix

is nearly a skew symmetric one. Hence, a small interaction energy (only, for triclinic system) is observed even for incidence before critical
angles. The diagonal entries of matrix E represent the energy ratios of the transmitted waves.

4 G RO U P V E L O C I T Y

In an anisotropic medium, the energy associated with a quasi-wave travels with its group velocity along a ray at an angle to its direction of phase
propagation. In a spherical coordinate system let v(θ , φ) define the phase velocity of a quasi-wave. According to the geometry considered in
Fig. 1, such a wave travels in the vertical plane (i.e. φ = φo) making an angle θ with the z-axis. The components of group velocity, wj, ( j =
x , y, z), following Ben-Menahem & Sena (1990), are expressed as follows:

wx/v = cos φ sin θ + cos φ cos θTθ − sin φ

sin θ
Tφ ;

wy/v = sin φ sin θ + sin φ cos θTθ + cos φ

sin θ
Tφ ;

wz/v = cos θ − sin θTθ , (14)

where, T θ and T φ are defined by,

Tk = 1

v
(v),k = 1

2h
h,k ; (k = θ, φ). (15)

The magnitude of the group velocity of the quasi-wave is

w = v

√
1 + T 2

θ + 1

sin2 θ
T 2

φ , (16)

and its ray direction, (θ g , φ g), is calculated from its components. The partial derivatives of h (= ρ 22v
2/R), in eq. (15), are given by the relation

h′ = (
c′

1h3 − c′
2h2 + c′

3h − c′
4

)
/
(
4h3 − 3c1h2 + 2c2h − c3

)
. (17)

The derivatives of coefficients (i.e. c′
k , k = 1, 2, 3, 4) are derived analytically from the relations given in Appendix A.

5 N U M E R I C A L C O M P U TAT I O N A N D D I S C U S S I O N

The purpose of numerical computation is to study the partition of energy across the interface between two media. Anisotropy in a porous
medium is a general one and it requires the propagation to be studied in three dimensions. The dolomite, a real crystalline rock, is considered
as a general anisotropic poroelastic solid. Elastic matrix (GPa) for Dolomite, (Rasolofasaon & Zinszner 2002) is written as:

c11 = 65.53 c12 = 9.77 c13 = 12.19 c14 = 0.18 c15 = −0.81 c16 = 2.94;

c22 = 50.77 c23 = 11.61 c24 = −0.09 c25 = −0.50 c26 = −0.19;

c33 = 60.11 c34 = −1.61 c35 = 1.78 c36 = 0.84;

c44 = 23.51 c45 = 1.49 c46 = −1.17 c55 = 24.57 c56 = 0.26 c66 = 20.21.
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952 M. D. Sharma

Figure 2. Variations of energy ratios with the direction of incidence (θ o, φo; angles in degrees).

The density is 2423 kg m−3. The values assumed for remaining elastic parameters (GPa) are (m 11, m 22, m 33, m 12, m 13, m 23) = (20, 21, 19, 1,
2, 2.5); R = 15. Dynamic constants are derived for 23 per cent porosity in a solid of density 2423 kg m−3 and containing a fluid of density
1000 kg m−3. These are ρ 11 = 1770 kg m−3; ρ 12 = −10 kg m−3; ρ 22 = 235 kg m−3. For the fluid medium, ρ = 1000 kg m−3 is the density
of water and vo = 1.463 km s−1 is the velocity of sound in it.
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Anisotropic poroelastic propagation 953

Figure 3. Variations of energy ratios with the direction of incidence (θ o, φo; angles in degrees): incidence before critical angles of refracted waves.

Using the above numerical values, the variations of energy ratios in 3-D space are calculated and presented in Fig. 2. The polar angle θ o

(Fig. 1) and azimuth φo both take the values between 0◦ and 90◦. As a result of the large difference between the phase velocities in water and
poroelastic solid, the critical angles for all the refracted waves lie in the range of θ o between 0◦ and 25◦. After this range, the terms of energy
matrix (i .e. Ejk) increases sharply. This gives larger variations in the energies and nullifies the variations of energies in the 0◦ to 25◦ range of
incidence. Fig. 3. exhibits a clear picture of energy variations in this range. The variations of group velocities and ray directions of the waves
transmitting in a poroelastic medium are exhibited in Figs 4 and 5. In case of post-critical incidence, the polar angle of phase propagation of
the concerned refracted wave does not change. The change in the azimuth of the phase results in similar azimuthal variations and negligible
polar angle variations in the group velocity and ray direction of the concerned wave. Keeping this in mind, the variations are plotted only for
values of θ o between 0◦ and 60◦. Details are as follows.

As shown in Fig. 2, for values of θ o beyond 25◦, the energies of refracted waves and interaction energy becomes large enough to nullify
the variations for smaller θ o. This happens mainly for values of azimuth φo near 0◦ and 90◦ because the incidence is beyond the critical angles
of refracted waves. The variations of energies for the pre-critical incidence are not readable. However, the conservation of energy holds well
for any arbitrary angle of incidence.

In Fig. 3, as a result of the transmitting medium being much denser, the major part of the energy is reflected back. The energy transmitted
to a poroelastic medium is carried mainly by the qP1 wave for incidence at a smaller polar angle. Energy shares of qP2, qS1 and qS2 waves
increases for the incidence beyond the critical angle for qP1 wave. Interaction energy is not very significant. It is noted that the critical angles
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954 M. D. Sharma

Figure 4. Variations of group velocity (km s−1) with the direction of incidence (θ o, φo; angles in degrees).

for various waves increases with the increase of azimuth (φo) of the incident wave. Also, for incidence at, near and after critical angles, the
energy partition is strongly dependent upon the value of azimuth.

Fig. 4 shows that the group velocities of all four quasi-waves transmitting in the anisotropic poroelastic medium are strongly dependent
upon both the polar angle and azimuth of the incident wave. The critical angle is dependent upon the azimuth of the incident wave. For each
refracted wave, it is found to increase slightly with the increase in azimuth. The group velocities vary with azimuth even at incidence after
critical angles. This indicates that the velocity of the interface waves are azimuth dependent.

In Fig. 5, the polar angle of a transmitted energy changes through 180◦ to 90◦ with the incidence changing from normal incidence to
critical incidence. For post-critical incidence, the energy is confined to the planes cutting the fluid/porous interface at very smaller angles. For
post-critical incidence, the azimuths of the refracted waves vary almost similarly to the variations in the azimuth of the incident wave. This
implies that the refracted energy is, more or less, confined around the vertical plane of incidence. The azimuth variations of incident wave do
influence the ray direction of each refracted wave at incidence before its critical angle.

The above numerical results are obtained for a realistic and, yet, particular model. These results may not qualify for generalization. The
behaviour of these results on expected lines, certainly, verifies the correctness of the expressions derived in the work. The conservation of
energy for incidence at an arbitrary angle in three dimensions certifies the applicability of the technique discussed in this work. The method
presented calculates phase direction, phase velocity, ray direction, group velocity and critical angle of each of the refracted quasi-waves.
Hence, it qualifies as a method to be more explanatory and transparent. The only numerical methods needed are the Gauss elimination method
to solve a system of five linear equations and the Bisection method to find the polar angle of each of the four quasi-waves for a given direction
of incident wave. Because finding the directional derivatives of phase velocities is not difficult, the Newton’s method can replace Bisection
method, if needed.

The purpose of this work is to study the energy transmission (i.e. group velocity and ray direction) in a general anisotropic poroelastic
medium. Therefore, the present concern is the anisotropy with arbitrary symmetry. The effects of porous parameters on the propagation can
be another important aspect to be considered in a later study. The work presented introduces a method to study the wave propagation in an
anisotropic poroelastic medium with arbitrary symmetry. This method is equally applicable for wave propagation in non-porous anisotropic
elastic solids. Such studies enable seismologists and structural engineers to use the improved models when interpreting their complex data.
The anisotropic poroelasticity may be more useful in studying the dynamic behaviour of composite and granular materials. This work can,
further, be used to study the propagation in multilayered models involving anisotropic poroelastic (APE) solids. The analytical studies create
a space for further research work and, also, provide algorithms for numerical codes. Hence, the researchers in this field are likely to prefer to
use the expressions derived in this work.
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Figure 5. Variations of ray direction (polar angle, azimuth) with the direction of incidence (θ o, φo; angles in degrees).
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A P P E N D I X A

A1 Christoffel equation

The Christoffel equation for wave propagation in an anisotropic poroelastic medium is given by

Wi j S j = 0, (i = 1, 2, 3), (A1)

where Sj is polarization of solid particles. The elements of coefficient matrix are

Wi j = −gohδi j + Pi j + 1

h − 1
Qi j , (i, j = 1, 2, 3), (A2)

where, δ i j is Kronecker delta. P and Q, the square matrices of order 3, are defined as follows. Denote by the row matrix N = (n1, n2, n3),
where nj are the components of a unit vector normal to wave surface, the direction of phase propagation. Consider a general anisotropic
poroelastic medium with elastic constants cijkl of the solid matrix represented by two-suffix notation, cij. Define, following Sharma (2002),

α = N AN ′, β = N B N ′, γ = NC N ′,

δ = N DN ′, η = N E N ′, ζ = N F N ′, (A3)

where N ′ denotes the transpose of row matrix N . A, B, C , D, E and F are square matrices of order 3 are defined as follows:

A = (a11, a16, a15; a16, a66, a56; a15, a56, a55); B = (a66, a26, a46; a26, a22, a24; a46, a24, a44);

C = (a55, a45, a35; a45, a44, a34; a35, a34, a33); D = (a16, a12, a14; a66, a26, a46; a56, a25, a45);

E = (a15, a14, a13; a56, a46, a36; a55, a45, a35); F = (a56, a46, a36; a25, a24, a23; a45, a44, a34); (A4)

where aij = cij/R. The matrix P = Z + Y and matrix Q = (Qij) is defined by Qij = XiXj + Yij, where symmetric, square matrix

Z = (α, δ, η; δ, β, ζ ; η, ζ, γ ), (A5)

and the elements of symmetric matrix Y are

Yi j = r 2
12ni n j − r12(ni X j + n j Xi ), (i, j = 1, 2, 3). (A6)
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The elements of row matrix X are defined as Xi = miknk/R, (i = 1, 2, 3). In eq. (A2), the variable h = ρ 22v
2/R and go = r 11 − r 2

12, where
r 1 j = ρ 1 j/ρ 22, ( j = 1, 2).

A2 Phase velocities

The non-trivial solution of the Christoffel equation is ensured by a biquadratic equation

h4 − c1h3 + c2h2 − c3h + c4 = 0. (A7)

This equation has all its four roots [e.g. hj, ( j = 1, 2, 3, 4)] positive only if all its coefficients are positive. The phase velocities of the four
quasi-waves, given by v j = √

(Rh j/ρ22), ( j = 1, 2, 3, 4), will be varying with the direction of phase propagation. These waves, represented
by j = 1, 2, 3 and 4, are called the q P1, q P2, q S1 and qS2 waves, respectively (Paper I). The coefficients cj of biquadratic equation are as
follows (repeated index implies summation).

c1 = Pii/go + 1;

c2 = (Pii − Qii )/go − T1/g2
o ;

c3 = [det(Pi j )/go + T2 − T1]/g2
o ;

c4 = [det(Pi j ) − T3]/g3
o ; (A8)

where,

T1 = P2
12 + P2

13 + P2
23 − P11 P22 − P11 P33 − P22 P33,

T2 = 2(P12 Q12 + P13 Q13 + P23 Q23) − Q11(P22 + P33) − Q22(P11 + P33) − Q33(P11 + P22),

T3 = Q11

(
P22 P33 − P2

23

) + Q22

(
P11 P33 − P2

13

) + Q33

(
P11 P22 − P2

12

)
+ 2Q12(P13 P23 − P12 P33) + 2Q13(P12 P23 − P13 P22) + 2Q23(P12 P13 − P11 P23). (A9)

The roots of the biquadratic equation are written as

h1 = .5(−G − L + �1);

h2 = .5(−G − L − �1);

h3 = .5(−G + L + �2);

h4 = .5(−G + L − �2); (A10)

where,

�1 = √
(G + L)2 − 4(H + M); �2 = √

(G − L)2 − 4(H − M);

G = −.5c1; H =
√

(c2
2/9 − c1c3/3 + 4c4/3) cos ψ + c2/6;

M = √
H 2 − c4; L = (.5c3 + G H )/M ; (L = √

G2 − c2 + 2H ; if M = 0);

ψ = 1
3 tan−1(�/�); � =

√
−�2 + (c2

2/9 − c1c3/3 + 4c4/3)3;

� = .5c[c2
3 + 2c3

2/27 − c2(c1c3 − 4c4)/3 − c4(4c2 − c2
1)]

A3 Polarizations

The polarizations (S1, S2, S3) of solid particles are obtained as

S1

�1
= S2

�2
= S3

�3
, (A11)

for three sets of (�1, �2, �3). These sets of values of � i , (i = 1, 2, 3), are

(i) �1 = �2, �2 = �1, �3 = �12;
(ii) �1 = �3, �2 = �13, �3 = �1;
(iii) �1 = �23, �2 = �3, �3 = �2; (A12)

where,

�1 = P23goh2 + [P12 P13 − P11 P23 + go(Q23 − P23)] h

+ P12 Q13 − P11 Q23 + P13 Q12 − P23 Q11 + P11 P23 − P12 P13,

�23 = g2
oh3 − go(P22 + P33 + go)h2 + [

P22 P33 − P2
23 + go(P22 + P33 − Q22 − Q33)

]
h

+ P22 Q33 + P33 Q22 − 2P23 Q23 + P2
23 − P22 P33.

(A13)
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The expression for �2(�3) can be obtained from that of �1 by interchanging the indices 1 and 2 (3). Similarly, the expression for �12(�13)
can be obtained from that of �23 by replacing the index 3 (2) with 1. Use of all the three expressions given above in obtaining polarizations are
discussed in Paper I. The polarization of the motion of fluid particles are defined by the relation Fi = GijSj, (i = 1, 2, 3), where the elements
of matrix G are given by

Gi j = −r12δi j + 1

h − 1

(
1

R
mi j − r12δi j

)
ni n j . (A14)
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