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S U M M A R Y
Numerical studies of the geodynamo have taken different views on the importance of inertial
effects. Some have neglected inertia, while others have boosted its strength, in much the same
way as they have had to take an artificially high viscous force because of numerical consider-
ations. Yet others have taken an intermediate view. In terms of the standard non-dimensional
numbers, the Ekman number E measures the strength of viscous effects, the magnetic Ekman
number Eη measures the strength of inertia, and the magnetic Prandtl number P m = E/E η.
Virtually all studies have P m ≥ 1 (E η ≤ E), even though geophysical values give P m �
1. Those studies that have undertaken parameter surveys have found no dynamo action when
P m < P mc, where Pmc is an O(1) number that depends on E. We have therefore been motivated
to undertake a systematic study of the effect of inertia. In order to work with a manageable
problem, we have used a non-linear mean-field dynamo driven by an α-effect [α = α0 cos θ

sin π (r − r i)]. In this, a finite-amplitude field drives a flow through the Lorentz force in the
momentum equation, and this flow feeds back on the field-generation process in the magnetic
induction equation, equilibrating the field. This equilibration process is a key aspect of the
full hydrodynamic dynamo. What we are not modelling here is the effect on convective-driven
processes of changes in inertia; our forcing α-effect is fixed considered the system in the ab-
sence of inertia. Here, we include the full inertial term. For an Ekman number of E = 2.5 ×
10−4, we have investigated dynamo solutions for the magnetic Ekman number in the range
E η = 5.0 × 10−5 to 9.0 × 10−2 (corresponding to reducing Pm from 5 to ∼0.003). In this
range we find three distinct types of solution. At the higher values of Pm we find solutions very
similar to those found in the absence of inertia. The addition of inertia damps out the rapid
time dependence found in its absence. The major effect we have found is that the addition of
inertia (decreasing Pm) facilitates dynamo action; for a given level of forcing (i.e. fixed α0),
increasing Eη results in an increased amplitude of the magnetic (and kinetic) energy. There
is no shut-off of dynamo action with decreasing Pm as found in hydrodynamic models. This
difference gives an insight into the various aspects of the dynamo process. By focusing on
the field-generation process, using a fixed α that is independent of Eη, we have shown that
inertia modifies the flow driven by the Lorentz force in a manner that is beneficial to field
generation. The contrast between the present mean-field model and the results of hydrody-
namic models shows that the effect of inertia on the driving process (thermal convection) is
detrimental to field generation, more than compensating for the beneficial effect identified
here.

Key words: inertia, mean-field dynamo, non-linear dynamo.

1 I N T RO D U C T I O N

The past decade has seen major developments and increased ac-
tivity in the study of the geodynamo, spurred on by new observa-
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tions and computational developments. The ground-breaking work
of Glatzmaier & Roberts (1995a,b) has encouraged an increasing
number of groups to develop their own numerical models (see for
example Christensen et al. 2001). In such models a number of non-
dimensional parameters must be prescribed. These typically depend
on material properties, such as the viscosity or the electrical con-
ductivity of the core. While our knowledge of these properties is
improving (see for example Alfe et al. 2002; de Wijs et al. 1998),
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there remains considerable uncertainty in the exact geophysical val-
ues of many quantities. Furthermore, in numerical models, there are
constraints on the values of some parameters that are currently ac-
cessible. The most significant of these constraints is on the Ekman
number

E = ν

	0 L2
, (1)

where ν is the kinematic viscosity, L is a characteristic length scale,
here taken to be the width ro − r i of the outer core, and 	0 is the
rotation frequency of the mantle. Using the molecular value of the
viscosity, in the Earth E = O(10−15). In numerical models, res-
olution constraints mean that typically E is taken no smaller than
O(10−4), or perhaps O(10−5). Clearly this is very far from the geo-
physical value and any uncertainties in the viscosity of the core
are currently essentially irrelevant as far as numerical modelling is
concerned.

The low value of E suggests that one approach is simply to neglect
the effect of viscosity altogether. This approach has been successful
for magnetoconvection problems, but has so far failed for the hy-
dromagnetic dynamo problem (see for example Walker et al. 1998).
As a result, all successful hydromagnetic geodynamo models have
included viscous effects.

Another important parameter is the magnetic Ekman number

Eη = η

	0 L2
, (2)

where η is the magnetic diffusivity. In the core, Eη is of the order of
10−9. This gives a measure of the relative strength of inertial terms
in the Navier–Stokes equation determining the evolution of the core
flow. [The quantity defined in eq. (2) is sometimes referred to as
the Rossby number Ro. Strictly speaking Ro = U/	0 L , where U
is a characteristic speed, and the two quantities match only when
U = η/L .]

Motivated by the smallness of Eη, some numerical models of
the geodynamo neglect inertial terms altogether, a few choose the
geophysical value, while many take the view that Eη should be no
smaller than the Ekman number. The magnetic Prandtl number

Pm = E/Eη = ν/η (3)

is small in the core, but the numerical constraints on E mean that
most numerical models take P m ≥ O(1). Taking the geophysical
value of Eη while accepting the numerical constraints on E im-
plies a large magnetic Prandtl number, while neglecting inertial
effects altogether corresponds to the infinite magnetic Prandtl num-
ber limit. Whatever the choice, almost all studies choose a fixed
value of Eη and focus on other aspects of the problem. Very little
work has focused specifically on the role of inertia in the dynamo
problem.

Given the numerical constraints on E, there is no ‘correct’ choice
for Eη. What is clear, though, is that there is a need for a sys-
tematic survey in which the value of Eη is varied in order to de-
termine the influence of inertia on the geodynamo problem. Al-
though fully 3-D models are available, they are computationally
highly intensive. In these circumstances, we believe that further
investigations using simpler models are appropriate, and we have
chosen to use a mean-field α2-dynamo model. These models have
lower computational requirements and so are useful for a parameter
survey and for developing our understanding of the role of inertia
on geodynamo solutions. Such an approach is also very useful in
that it complements hydrodynamic dynamo studies. The choice of
a mean-field model with prescribed α means that we are focusing

on the effect of inertia on the field-generation process. The influ-
ence of inertia on the convection, which is here parametrized by
the α-effect, is, of course, not modelled. We discuss this further in
Section 6.

In computational models we need to accept values of E that are
very much larger than the geophysical value. For the magnetic Ek-
man number we are free from such a constraint. By setting E η =
0 rapid fluctuations associated with the rotational timescale are fil-
tered out, making solutions easier to obtain. If the inertial term is to
be included, the fact that E is larger than its geophysical value must
also affect the choice of Eη. In the Earth’s core, the viscous timescale
can be as short as O(E1/2), while the rotational timescale is O(Eη).
For the lowest manageable values of E, the rotational timescale will
be shorter than the viscous timescale. Therefore the choice of Eη

depends on any assumption that is made for the relative size of these
timescales.

The first Earth-like magnetic field was generated by Glatzmaier
& Roberts (1995a,b) using a 3-D global model designed to simulate
the core. Inertial effects were neglected. These models included only
thermal buoyancy and used the Boussinesq approximation. Their
later models (Glatzmaier & Roberts 1996a,b,c, 1997, 1998) included
the axisymmetric part of the azimuthal component of the inertia
and accounted for both thermal and compositional buoyancy, using
the anelastic approximation. They prescribed E = 10−6 (achieved
using hyperdiffusivities), E η = 10−9, and adopted no-slip boundary
conditions for the flow. There are significant differences between
the earlier and later models, but since the difference between them
is not limited to the addition of inertia it is not possible to identify
to what extent changes in the solutions are due to inertia. Given
their choice of P m = 103, it seems likely that the effect of inertia is
weak.

Kuang & Bloxham (1997, 1999) developed a Boussinesq model
that used different velocity and thermal boundary conditions from
Glatzmaier & Roberts and also produced an Earth-like magnetic
field outside the core. Their model incorporated all components of
the axisymmetric inertia. They were able to minimize the viscous
torque on the Taylor cylinders by imposing stress-free boundary
conditions. At the outer core boundary, their strong-field dynamo
solution for E η = E = 2 × 10−5 is similar to the observed geo-
magnetic field in many aspects: the field is dominantly dipolar and
drifts westwards. Inside the fluid core, their solution differs greatly
from the solutions of Glatzmaier & Roberts. The field in the Kuang
& Bloxham solution is dominantly generated in the bulk of the fluid
core outside the tangent cylinder, while the field in the Glatzmaier
& Roberts dynamo solution is generated near the inner core bound-
ary and inside the tangent cylinder. Kuang & Bloxham (1997) have
demonstrated that, when a strong viscous coupling is introduced
on the boundaries while the inertia is kept unchanged, the dynamo
solutions undergo a transition from Kuang & Bloxham’s solution
to solutions qualitatively the same as the Glatzmaier & Roberts dy-
namo solutions.

Proctor (1977) studied an α2-dynamo in a full sphere including
all components of inertia. He examined the equilibration process
of the evolved magnetic field. The form of α was simple: α =
α0 cos θ . The values of E and Eη that he studied are E = 1.0,
0.01, 0.005 and E η = 1.0, 0.01, 0.025. For E = 0.005 and E η =
0.0025 he noticed the occurrence of persistent oscillations for all
values of α0. As he changed the values of both E and Eη at the
same time, it is not clear how inertia alone affected the solution.
Jault (1995), using an αω-dynamo model, found that restoring just
the axisymmetric part of the inertial term can help to prevent the
physical and numerical instabilities associated with small viscosity.
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Fearn & Morrison (2001, hereafter referred to as FM) investigated
the role of inertia in hydrodynamic models of the geodynamo. In
order to permit a reasonable survey of parameter space, they used
the so-called 2.5-D model (Jones et al. 1995; Sarson et al. 1998;
Morrison & Fearn 2000). This uses full resolution in radius r and
colatitude θ but is highly truncated in azimuth φ. The computational
requirements of the 2.5-D model are much lower than those of fully
3-D models. In their calculations they used E/2 = 10−3 and Eη/2
in the range 5 × 10−5 to 5 × 10−4. (Note: the definitions of E and
Eη used by FM differ by a factor of 2 from those adopted here.)
As Eη is increased from zero, their solutions show evidence of a
smooth transition from the inertia-less solution until E η/2 ≈ 10−4,
where there is a transition to a new, higher-amplitude solution. The
lower-Eη solution has a time dependence that is periodic, while the
larger-Eη solution is more chaotic. Increasing Eη further results in
a decreasing solution amplitude, and above E η/2 ≈ 5 × 10−4 (P m

below ∼2) no dynamo solutions were found.
Fearn & Rahman (2004, hereafter referred to as FR) (see also Rah-

man 2003) gave mean-field dynamo solutions in a rapidly rotating
spherical shell with a finitely conducting inner core and insulating
mantle. Inertial effects were again neglected. The velocity boundary
conditions they imposed were no-slip at the boundaries. The form
of α chosen was α = α0 cos θ sin π (r − r i). For this α they gave
solutions for the Ekman number in the range E = 5 × 10−5 to E =
2.5 × 10−3. FR investigated a rapid time behaviour which suggests
that the effects of inertia may not be negligible. Here, we want to
investigate this problem further, with inertial effects included, and
to undertake a parameter survey of solution behaviour as a function
of Eη. The mean-field model is simpler than the convectively driven
model of FM, permitting exploration of a wider range of magnetic
Ekman number, Eη.

The organization of the remainder of the paper is as follows. In
Section 2 we describe our physical model with governing equa-
tions and boundary conditions, and in Section 3 discuss the solution
method very briefly. In Section 4 we discuss the role of inertia on our
α2-dynamos. Finally, in Section 5 we summarize our results before
presenting our conclusions in Section 6.

2 P H Y S I C A L M O D E L

The model we are investigating consists of a spherical shell of inner
radius r i and outer radius ro that is rotating about its axis with angu-
lar velocity 	 = 	0ez , where ez is the unit vector in the z-direction.
The region r i ≤ r ≤ r o is filled with an electrically conducting
fluid of constant kinematic viscosity ν, magnetic diffusivity η, mag-
netic permeability µ and density ρ 0. The exterior region r ≥ r o is
electrically insulating, to model the Earth’s mantle. The fluid and
its interior region have the the same electrical conductivity, σ (and
η = 1/µσ ). The governing non-dimensional equations for the evo-
lution of the magnetic field and fluid flow based on the scales: length,
L = r o − r i; time, τ η = L2/ η; fluid velocity, U = η/L; magnetic
field, B = (	0µρ0η)1/2 and pressure, P = 	0 L2/τη are as follows.
In the fluid outer core:
∂B

∂t
= ∇ × (u × B + αB) + ∇2B, (4)

Eη

[
∂u

∂t
+ (u.∇)u

]
+ 2ez × u − E∇2u

= −∇ P + (∇ × B) × B, (5)

∇.u = 0, (6)

where B is the magnetic field, u is the fluid velocity, P is the pressure,
and α is the α-effect, chosen to be

α = α0 cos θ sin π (r − ri). (7)

In the finitely conducting inner core, we solve

∂B̂

∂t
= ∇ × (ui × B̂) + ∇2B̂, (8)

where ui = 	ir sin θeφ with 	i = 	iez denoting the inner core
angular velocity. Here we have used B̂ to represent the magnetic
field in the inner core.

The non-dimensional parameters appearing in (5) are defined in
(1) and (2). For all the calculations in this paper, we have used E =
2.5 × 10−4 and a spherical shell with radius ratio r i/r o = 1/3.
Values of the magnetic Ekman number Eη in the range 5 × 10−5

−0.09 have been investigated. The problem has been looked at in
detail by FR for the case E η = 0. They found the onset of dynamo
action for α0 = 6.69, and transition to the ‘spiked’ behaviour at α0 ≈
10.8. We have investigated a variety of values of α0 up to α0 = 12,
but our main results are for α0 = 10 and α0 = 11.

Our model is axisymmetric. The α-effect term in (4) is a well-
established way (see, for example, Moffatt 1978) of representing
the mean electromotive force due to the non-linear interaction of
the non-axisymmetric parts of the field and the flow.

There is no current in the mantle as it is electrically insulating,
so the boundary condition for the field at the core–mantle boundary
(CMB) becomes

B = B(e) at r = ro, (9)

where B(e) is the external potential field. We are also considering a
finitely conducting inner core, so at the inner core boundary (ICB)
the field in the outer core and field in the inner core will match:

B = B̂, at r = ri. (10)

For the flow we impose no slip at the boundaries. The boundary
condition for the flow at the CMB becomes

u = 0 at r = ro. (11)

Since the inner core is rotating with an angular velocity 	i, the
no-slip velocity boundary condition at the ICB becomes

u = 	ir sinθeφ at r = ri. (12)

A freely rotating finitely conducting inner core has a stabilizing
effect on the dynamo solution (Hollerbach & Jones 1993, 1995).
This finitely conducting inner core couples electromagnetically with
the outer core, giving rise to a magnetic torque on the inner core.
The equation that determines the angular velocity of the inner core,
	i, is the torque balance on the inner core (Glatzmaier & Roberts
1996c; Aurnou & Olson 2000):

C Eη

∂	i

∂t
= E

∫
S

r
∂

∂r

(
uφ

r

)
|r=riri sin θ d S

+
∫

S
Br Bφ |r=riri sin θ d S, (13)

where C = (8/15)πr 5
i (considering an inner and outer core of equal

density).

3 C A L C U L AT I O N S

The numerical method that we are using for our calculation is based
on the code developed by Hollerbach (2000). He used a pseudospec-
tral method to solve the magnetoconvection equations in a spherical
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518 D. R. Fearn and M. M. Rahman

Figure 1. Contour plots of (left to right) B, Ar sin θ , v/r sin θ and ψr sin θ at (top to bottom) α0 = 7, 8, 9, 10 (cf. fig. 1 of FR) for E η = 10−4, E = 2.5 ×
10−4. Contour intervals are 0.2, 0.02, 4 and 0.04 respectively. Solid lines represent positive contours, and dashed lines represent negative contours.

C© 2004 RAS, GJI, 158, 515–528

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/158/2/515/770177 by guest on 24 Septem

ber 2022



Inertia and models of the geodynamo 519

geometry. Hollerbach (2000) used a decomposition of B and u into
poloidal and toroidal parts:

B = ∇×Aeφ + Beφ, u = ∇×ψeφ + veφ (14)

(Bullard & Gellman 1954), as they automatically satisfy the
solenoidal conditions ∇.B = ∇.u = 0. He further used KB Cheby-
shev polynomials in the radial direction and LB spherical harmonics
in the θ -direction. The time-stepping procedure was implemented
via a second-order Runge–Kutta predictor–corrector method, mod-
ified to treat the diffusive terms implicitly. Further details are given
in Rahman (2003).

With inertia included, the momentum equation (5) as well as the
torque balance equation (13) are time-stepped to update the fluid
velocity u and the angular velocity Ωi via the terms E η∂u/∂t and
E η∂ 	i/∂t . This approach is clearly not possible when E η = 0 (see
Jones et al. 1995; Morrison & Fearn 2000; FR; Rahman 2003). The
numerical method of this paper is therefore not capable of exploring
E η = 0 solutions, but lower values of E η ≤ 10−4 give results very
consistent with E η = 0. FR have calculated solutions corresponding
to E η = 0 for different values of α0 and E = 2.5 × 10−4. Fig. 1 shows
contour plots of B (toroidal field strength), Ar sin θ (poloidal field
lines), v/rsin θ (differential rotation) and ψr sin θ (poloidal flow
streamlines) for α0 = 7, 8, 9, 10 and E η = 10−4, E = 2.5 × 10−4.
In these cases, although we did not impose any symmetry constraint
about the equator, we found steady dipole solutions. The strength
of the field and flow increase with increasing α0. Comparing the
structure of these solutions with the E η = 0 solution, fig. 1 of FR,
we found almost exact agreement for both the field and the flow,
indicating that, at this value of Eη, inertial effects are having at most
a modest effect on the problem.

The numerical scheme involves a time-stepping calculation of
the spectral coefficients. Energies are calculated, as required, from
these spectral coefficients and are a useful measure for monitoring
the solutions. In a typical calculation, the system is allowed to march
forwards in time until the evolved magnetic field has settled down
to a finite amplitude. The magnetic energy that we calculate is

E∗
M = 1

2µ

∫
v1

|B∗|2 dv

= [
ρ0	0ηL3

] (
1

2

∫
v1

|B|2 dv

)
= [

ρ0	0ηL3
]
EM, (15)

where v1 is the computational domain and B∗ is the dimensional
field. Similarly, the kinetic energy that we calculate is

E∗
K = ρ0

2

∫
v2

|u∗|2 dv

= [
ρ0	0ηL3

] (
1

2
Eη

∫
v2

|u|2 dv

)
= [

ρ0	0ηL3
]

EK, (16)

where v2 is the volume of the outer core and u∗ is the dimensional
fluid velocity.

The value of E that we have chosen (E = 2.5 × 10−4) is one order
smaller than that used by FM. The magnetic Ekman number E η =
10−4 represents a reasonable starting point for our calculations and
is relatively high [compared with the geophysical value of O(10−9)]
so that we can employ a sensible time step to resolve in time. We have
performed calculations for various values of Eη, with the full range
investigated given in Tables 1 and 2. The choice of time step depends
on the choice of Eη. As we vary the magnetic Ekman number, Eη,
we find the structure of the solution may require higher truncation to
resolve it properly. Therefore, the level of truncation also depends
on Eη.

Table 1. Magnetic energy EM for various values of Eη at α0 = 10, 11.

EM

Eη α0 = 10 α0 = 11

0 6.42 3.92–81.16
5 × 10−5 6.50 3.90–80.51

10−4 6.51 3.89–80.70
5 × 10−4 6.52 3.86–81.48

10−3 6.53 3.82–83.03
5 × 10−3 6.70 3.60–90.00

10−2 7.19 3.81–96.64
2 × 10−2 9.14 9.18
5 × 10−2 19.93 26.39
7 × 10−2 27.15 35.40
8 × 10−2 32.70 39.36

8.5 × 10−2 35.81 42.61
9 × 10−2 38.02 45.50

Table 2. Kinetic energy EK for various values of Eη at α0 = 10, 11.

EK

Eη α0 = 10 α0 = 11

5 × 10−5 3.8 × 10−3 1.2 × 10−3 − 0.16
10−4 7.7 × 10−3 2.3 × 10−3 − 0.31

5 × 10−4 3.9 × 10−2 1.1 × 10−2 − 1.04
10−3 7.7 × 10−2 2.1 × 10−2 − 1.20

5 × 10−3 0.39 9.2 × 10−2 − 8.37
10−2 0.85 0.12–14.51

2 × 10−2 2.18 2.47
5 × 10−2 9.36 13.85
7 × 10−2 14.98 21.31
8 × 10−2 18.96 24.60

8.5 × 10−2 20.13 29.32
9 × 10−2 22.64 29.59

The solution corresponding to α0 = 7, E = 2.5 × 10−4, E η =
10−4 was calculated from a random initial condition. After a couple
of diffusion times, the solution converged to a finite amplitude. The
solutions corresponding to higher α0 were calculated using the α0 =
7 solution as an initial condition. We found the solution for α0 =
10, E = 2.5 × 10−4 and E η = 10−4, and then investigated the effect
of increasing Eη.

4 R E S U LT S

To investigate the role of inertia, we calculated solutions for α0 =
10 and α0 = 11 for a range of values of Eη. These are summarized in
Tables 1 and 2 and Fig. 2. The E η = 0 solutions are taken from FR,
who used a different code. The small-Eη results clearly approach
the E η = 0 results. From Table 1 we see that the change in magnetic
energy is modest up to E η ≤ 10−2. Beyond this, the change in
magnetic energy is more rapid.

FR found solutions corresponding to a range of values of α0

for E = 2.5 × 10−4 and E η = 0. While steady for low values
of α0, these solutions developed a rapid time behaviour when α0

was increased above some critical value αp = 10.8 for E = 2.5 ×
10−4. It is interesting to see how inertia affects this behaviour. The
results of our parameter survey in Eη for α0 = 11 are summarized
in Fig. 2, which shows the variation in the amplitude of magnetic
energy (top) and kinetic energy (bottom). There are three notable
features apparent in Fig. 2.

First, there appears to be a smooth trend, with the E η > 0 re-
sults approaching the E η = 0 result as Eη is decreased. In Fig. 2,
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520 D. R. Fearn and M. M. Rahman

Figure 2. Magnetic energy (top) and kinetic energy (bottom) as a function of E η = Ro for α0 = 11. Lines represent energy that is oscillatory, bullets represent
energy that is steady, and squares represent the average energy of a periodic solution.

vertical lines represent the lower and upper bounds of the rapid
time-behaviour solutions. From Tables 1 and 2 we see that the upper
bounds (lower bounds) of these solutions increase (decrease then
increase) very slowly with increasing Eη. In Fig. 3, we have plotted
a snapshot of the solution for E η = 10−3 and α0 = 11, to be com-
pared with Fig. 1. The flow structure is clearly unchanged, although
the flow has a slightly higher magnitude. The structures of the fields
in Figs 1 and 3 are similar. The field and flow structures remain
unchanged qualitatively throughout the range 5 × 10−5 ≤ E η

<∼ 1.2
× 10−2.

The time dependence of the magnetic energy for various values of
Eη is shown in Fig. 4. The behaviour of the kinetic energy is similar to

that of the magnetic energy, and both show a similar behaviour to the
case without inertia. (See fig. 4 of FR, who discuss the nature of this
relaxation oscillation in detail, demonstrating the strong influence
of Taylor’s constraint in the rapid growth phase, where growth is
essentially at the linear growth rate.) One noticeable feature is the
period of oscillation. Fig. 5 shows the period versus Eη for α0 = 11
and E = 2.5 × 10−4. From this figure we see that the period without
inertia (asterisk) and that with small inertia (the nearest bullet to the
asterisk) are in excellent agreement. From the parameter survey by
FR (see their fig. 3), we know that the period of a solution for fixed
E initially decreases as α0 increases and then settles down to a finite
value. We also know that the period goes to infinity as α0 approaches
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Inertia and models of the geodynamo 521

Figure 3. Snapshot of the solution for E η = 10−3, E = 2.5 × 10−4, α0 =
11. Contour plots are shown of B, Ar sin θ (top row) and v/rsin θ , ψr sin θ

(bottom row). Contour intervals are 0.2, 0.02, 4 and 0.04 respectively. Solid
lines represent positive contours, and dashed lines represent negative con-
tours.

the onset of oscillatory solutions (α0 = αp). Fig. 5 shows the clear
effect of inertia on the period. As Eη increases, the period decreases
smoothly as Eη increases up to E η ≤ 7.0 × 10−3. Beyond this, the
period increases and near E η ≈ 1.2 × 10−2 it approaches infinity
(i.e. a stationary solution).

The second notable feature in Fig. 2 is the evolution to a steady
solution at E η ≈ 1.2 × 10−2. Using the E η = 1.1 × 10−2 oscil-
latory solution as the initial condition, we calculated the solution
for E η = 1.2 × 10−2 and found a steady solution. Using the E η =
1.2 × 10−2 solution as the initial condition, we ran the program
for E η = 1.15 × 10−2 and found the previous oscillatory solu-

tion, indicating that the nature of the bifurcation is supercritical.
Similarly, using the higher magnetic Ekman number E η = 1.5 ×
10−2 solution as the initial condition, we ran the program again for
E η = 1.2 × 10−2 and found the same steady solution. This con-
firms that at this Eη we have only one solution. The amplitudes of
magnetic energy and kinetic energy increase with increasing Eη.
These steady solutions exist in the range 1.2 × 10−2 <∼ E η

<∼ 8.5 ×
10−2. Fig. 6 shows the solutions for E η = 2 × 10−2, 5 × 10−2 and
8 × 10−2. As Eη increases, the toroidal field B, the poloidal field
Ar sin θ and the poloidal flow ψr sin θ increase in strength while
roughly retaining their form and moving slightly to lower latitudes.
By contrast, the differential rotation v/rsin θ diminishes with in-
creasing Eη. Further calculations for E = 10−4 give very similar
results.

We investigated this transitional behaviour from a spiked solution
to a steady solution further for the higher value of α0 = 12 (see
Table 3). The behaviour of the period as a function of Eη shows
a similar behaviour to that in Fig. 5. From Table 3 we see that
the height of the spiked solutions falls very quickly as Eη tends
to the critical value Eη c. This is clearer from the energy plots in
Fig. 7 in the region of Eη c. From these figures we see that at the
bottom of these spikes there appear to be several oscillatory modes
that become stronger as Eη increases and pull down the highest
spike.

The final notable feature in Fig. 2 is the periodic solution beyond
E η = 8.5 × 10−2. Figs 8 and 9 show the variation of magnetic
and kinetic energies over Eη in this parameter regime. Both EM

and EK oscillate in a periodic fashion for E η = 8.5 × 10−2. We
calculated the E η = 8.5 × 10−2 solution using the E η = 8.0 ×
10−2 solution as the initial condition, which took a long time to
settle down (top plots). The solution corresponding to E η = 9.0 ×
10−2 oscillates quite irregularly. Fig. 10 shows snapshots of the field
and flow for E η = 8.5 × 10−2. Comparing this with Fig. 6, we see
that both the azimuthal and meridional field have moved towards
the equatorial plane. For the azimuthal field no activity is observed
close to the inner boundary. The structures of the angular velocity
and meridional flow are now completely different. They are highly
asymmetric. A lot of activity is now observed both inside and outside
the tangent cylinder. The angular velocity has small-scale features.
Fig. 11 shows a snapshot of the same axisymmetric quantities (cf.
Fig. 10) for E η = 9.0 × 10−2 after five diffusion times. The field
and flow are now highly asymmetric and the solutions have evolved
into a mixed mode. In Figs 10 and 11 we are clearly beginning
to run into resolution problems for v/r sin θ near the axis (where
r sin θ is small). We ran the same calculations at higher resolution.
The results found are the same as shown, except for minor details
close to the axis for v/r sin θ . Owing to the resolution difficulties
described above we stopped our parameter survey here.

FM found the structure of the flow remained similar in both
their weak-field (oscillatory) and strong-field (chaotic) branches.
However, the structure of the field in their stronger-field branch is
completely different from that in the weaker-field branch. In the
weaker-field branch their field was nearly quadrupolar, while in
the stronger-field branch it was mixed mode. In our model both the
field and flow structures remain the same in the spiked and steady
branches but are different in the periodic branch. The former and
dipolar and the latter is mixed mode.

A feature of FM’s convectively driven dynamo is the shut-off of
dynamo action as Eη is increased. In their solutions no dynamo
was found for E η/2 >∼ 5.0 × 10−4, even when the forcing was
increased (i.e. the Rayleigh number was increased). At E η = 5.0 ×
10−4, increasing the Rayleigh number from 50 to 60 resulted in a
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Figure 4. Magnetic energy versus time for E η = 10−4 (top), 10−3 (middle), 10−2 (bottom) and α0 = 11.

significantly stronger field, yet in both cases increasing Eη to E η/2 =
6.25 × 10−4 resulted in failure to maintain a field. In our model we
explored a lower value of E and a wider range of Eη than FM and
found no indication of shut-off of dynamo action. We comment on
this further in Section 6, where the differences between mean-field
and convectively driven dynamos are discussed.

The behaviour noted in Fig. 2 shows both the magnetic and kinetic
energies to be roughly proportional to Eη. Given the definitions of
the non-dimensional energies, see (15) and (16), this implies that
|B| ∼ E1/2

η and |u| ∼ E0
η. If we then look at the steady version of

the induction equation (4), we see that all terms are of order E1/2
η ,

so the leading-order balance in this equation is independent of Eη.
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Figure 5. Period versus E η = Ro for α0 = 11.

Table 3. Magnetic energy and kinetic energy for various values of Eη and
α0 = 12.

Eη EM EK

0 6.07–210.37 –
5 × 10−5 6.04–203.12 2.6 × 10−3–0.58

10−4 6.01–203.55 4.7 × 10−3–1.08
5 × 10−4 5.93–204.73 2.2 × 10−2–3.83

10−3 5.84–206.03 4.2 × 10−2–6.48
5 × 10−3 5.13–218.43 0.17–23.29

10−2 4.62–223.33 0.40–36.04
1.5 × 10−2 4.52–214.14 0.75–42.68
1.8 × 10−2 4.90–203.82 1.46–46.21
1.9 × 10−2 5.24–182.64 2.01–43.95
1.92 × 10−2 5.33–165.07 2.07–39.91
1.94 × 10−2 5.42–132.94 2.12–30.88
2.5 × 10−2 10.93 4.25
5 × 10−2 35.60 19.58
8 × 10−2 49.19 31.5

In the momentum equation (5), the Lorentz and inertial terms are
of order Eη, with the viscous term of order E. As the strength of
Eη is increased from zero (where viscous effects have a controlling
influence), at some value of Eη inertial effects become more im-
portant. Then, a balance is possible between inertia and the Lorentz
force that results in an increase in |B| with E1/2

η . In our present study,
inertia is an important influence when Eη is of order 10−2, corre-
sponding to P m

<∼ 0.02. How this relates to the value of E can only
be determined by a more extensive parametric study. What is clear,
though, is that the mechanism observed here becomes important
when Pm is small.

5 S U M M A RY

The role of inertia in a mean-field non-linear α2-dynamo has been
investigated using a rapidly rotating spherical shell with a finitely
conducting inner core, insulating mantle and a realistic α = α0 cos θ

sin π (r − r i) vanishing at both the inner and outer boundaries of the
core. The key non-linear effect, which acts to equilibrate dynamo
solutions at finite amplitude, is the flow driven by the Lorentz force.
The influence of inertia on this flow and the consequent variation
in the equilibrated field strength is the main focus of this investi-
gation. The value of the Ekman number that we have used is E =
2.5 × 10−4. From earlier work (FR) that neglects inertial effects

(E η = 0), we know that at this value of E steady dipole solutions
exist for values of α0 < 10.8, and that oscillatory reversing spiked
solutions are found for higher values of α0. The nature of the spiked
solutions is qualitatively the same for the range of α0 (up to α0 =
14) studied; for example, the period of the oscillations is essentially
independent of α0 for α0 > 12 (see fig. 3 of FR). Here, we consider
values of α0 up to 12, but believe that our results give the correct
qualitative picture for higher forcing.

We found a smooth transition from the E η = 0 results to those
for small Eη; thus, the addition of a small amount of inertia results
in solutions very similar to those found in the absence of inertia. At
higher Eη, inertia has the effect of damping out the rapid (spiked)
time behaviour observed at low Eη: we found steady solutions for
10−2 <∼ E η

<∼ 8 × 10−2. The major effect of inertia was found
to be that it facilitates dynamo action, with the magnetic energy
increasing significantly with increasing E η (see Fig. 2). Our results
span a range in Eη from 5 × 10−5 to 9 × 10−2, corresponding to a
range in Pm from 5 to ∼ 3 × 10−3. The lower limit on Eη and the
upper limit on Pm are not significant since we found our results at
these values to essentially match the corresponding solutions found
in the absence of inertia (E η = 0 or P m → ∞).

6 D I S C U S S I O N A N D C O N C L U S I O N S

The key conclusions of this study relate to the differences between
mean-field dynamos and convectively driven hydrodynamic dy-
namos and to what insight this gives us into aspects of the dynamo
mechanism.

6.1 Hydrodynamic models

In hydrodynamic studies (where convection drives the field-
generation process), additional parameters appear. There is the
Rayleigh number that measures the forcing (and so, very roughly,
replaces our α0), and there is the Prandtl number

Pr = ν/κ, (17)

where κ is the thermal diffusivity. In place of the magnetic Prandtl
number Pm, many studies thus use the Roberts number

q = κ/η = Pm/Pr. (18)

Comparisons between studies are often made difficult by the differ-
ent choices made for the parameters, and in particular which are kept
fixed while others are varied. For example, FM increase Eη whilst
keeping E and q fixed. This implies a corresponding decrease in the
values of Pm and Pr.

The work by FM (which used a 2.5-D hydrodynamic model) found
there to be no dynamo action above some value of Eη, and below
this value there was a decrease in magnetic energy with increas-
ing Eη. These observations are in agreement with other, fully 3-D,
hydrodynamic calculations. Christensen et al. (1999) conducted a
parametric study for fixed Pr = 1 (so q = P m, and decreasing
Pm at fixed E corresponds to increasing Eη). They found dynamo
action only for P m > P mc ∼ 450E3/4. For E = 10−3, P mc ∼ 2,
and for E = 10−4 they found P mc ∼ 0.5. The results of FM can be
re-expressed in terms of Pm. For fixed q = 10 and E/2 = 10−3, they
find dynamo action only for E η/2 <∼ 5 × 10−4. This is equivalent
to P m

>∼ 2, consistent with Christensen et al.’s results. (Note that
the two surveys are not directly comparable since FM fix q while
Christensen et al. fix Pr.) Simitev & Busse (2002) also find dynamo
action to be more difficult to achieve as Pm is reduced. They find

C© 2004 RAS, GJI, 158, 515–528

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/158/2/515/770177 by guest on 24 Septem

ber 2022



524 D. R. Fearn and M. M. Rahman

Figure 6. Contour plots of (left to right) Ar sin θ , B, v/r sin θ and ψr sin θ . Contour intervals are 0.1, 0.5, 20 and 0.1 respectively. Solid lines represent
positive contours, and dashed lines represent negative contours. Results are shown for (top to bottom) E η = 2 × 10−2, E η = 5 × 10−2 and E η = 8 × 10−2,
all for E = 2.5 × 10−4, α0 = 11.
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Figure 7. Magnetic energy versus time for E η = 1.8 × 10−2, 1.9 × 10−2 and 1.94 × 10−2 at α0 = 12.

a dependence on Pr, with Pmc increasing with increasing Pr (see
fig. 4 of Simitev & Busse 2002). This is associated with a decline
in differential rotation (decline in ω) with increasing Pr in a regime
where the dynamo is of αω-type.

Of relevance to the studies by Christensen et al. (1999) and
Simitev & Busse (2002) is the observation that many studies have
identified the increasing difficulty of dynamo action as q is reduced;

see, for example, Jones (2000). The geophysical value of q is of
order 10−6, but numerical models have considerable difficulty in
achieving values as low as q = 10−1, and most models use values in
the range q = 1–10. For a given level of forcing, one would then ex-
pect dynamo action to shut off as q is reduced. For fixed E and fixed
Pr, reducing q corresponds to increasing η and hence increasing Eη

or equivalently decreasing Pm. One cannot accurately characterize
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Figure 8. Magnetic energy versus time for E η = 8.5 × 10−2 and 9 × 10−2

at α0 = 11.

this effect as being due to inertia, though, since the increasing diffi-
culty of finding dynamo action as q is reduced is present in models
that do not include the inertial term in the Navier–Stokes equation
(see, for example, Jones 2000). At least part of the reason for this is
that, in the non-dimensionalization (as used here) using the ohmic
timescale, the non-dimensional parameter multiplying the buoyancy
force is qRa (see Jones 2000), so a reduced q at fixed Ra results in
a reduced buoyancy force.

A further complication is the dual role of differential rotation. It
can be important for dynamo action (providing the ω-effect; stretch-
ing out the poloidal field to create the toroidal field) but can also
act to inhibit convection. The latter effect is increasingly constrain-
ing as q is reduced; see, for example, Fearn & Proctor (1983a,b).
Busse (2002) comments on the inhibiting effect of differential ro-
tation at high Rayleigh numbers for rapidly rotating convection,
but also on the braking effect of a magnetic field on differential
rotation.

With their choice of fixing q, FM avoid the complications of small
q and so their results provide the best comparison for the present
study.

Figure 9. Kinetic energy versus time for E η = 8.5 × 10−2 and 9 × 10−2

at α0 = 11.

6.2 Conclusions

Our key observation is that, while our mean-field model shows an
increase in field strength with increasing Eη, FM’s hydrodynamic
model shows a decrease, with no dynamo action found above E η ≈
10−3 (for the parameters used in their model).

The essential difference between mean-field models of the type
studied here and the hydrodynamic models discussed above is the
forcing. Here we use an α-effect that is fixed and is independent
of Eη. Inertia influences the problem through its effect on the flow
u driven by the Lorentz force in (5), and this flow then feeds back
on the generation process in (4) via the u × B term, equilibrating
the field at a finite amplitude |B|. The evidence from the present
study is that inertia modifies u in such a way that |B| increases with
increasing inertia. [Note that most of our solutions are steady, so
that here this effect is being achieved by the E ηu · ∇u term in (5)].
This effect must also be present in the hydrodynamic models, so
the finding that dynamo action shuts off as Eη is increased must be
due to a more-than-compensating reduction in convective vigour,
or the effectiveness of convection in generating magnetic field. The
mechanism may be related to the effect of differential rotation that
has been identified in some studies, but further investigation of
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Figure 10. A snapshot of the solution for E η = 8.5 × 10−2, E = 2.5 ×
10−4, α0 = 11. Contour plots are shown of B, Ar sin θ (top row) and v/r sin θ ,
ψr sin θ (bottom row). Contour intervals are 0.5, 0.2, 4 and 0.2 respectively.
Solid lines represent positive contours, and dashed lines represent negative
contours.

hydrodynamic models is required to link this with the influence
of inertia.

It is clear from Section 6.1 that, for hydrodynamic models, vary-
ing a single parameter can influence the overall dynamo process in a
number of different ways within the various sub-processes (convec-
tion, field generation, etc). The mean-field model we have studied
here has helped to disentangle the various processes by focusing
on the field-generation part of the problem. Forcing through a pre-
scribed α-effect reduces the number of independent parameters in
the problem and eliminates the influence they have on the convection
that drives the dynamo in the hydrodynamic models. In our model,

Figure 11. A snapshot of the solution for E η = 9 × 10−2, E = 2.5 × 10−4,
α0 = 11. Contour plots are shown of B, Ar sin θ (top row) and v/r sin θ ,
ψr sin θ (bottom row). Contour intervals are 0.5, 0.2, 4 and 0.2 respectively.
Solid lines represent positive contours, and dashed lines represent negative
contours.

the direct forcing (the α-effect) is unaffected by inertia. Given this,
the effect of increasing inertia is to increase the strength of the mag-
netic field generated.
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