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Abstract

The Altai-Salair area in southern Siberia is a Caledonian folded area containing fragments of Vendian–Early Cambrian island arcs. In the

Vendian–Early Cambrian, an extended system of island arcs existed near the Paleo-Asian Ocean/Siberian continent boundary and was

located in an open ocean realm. In the present-day structural pattern of southern Siberia, the fragments of Vendian–Early Cambrian

ophiolites, island arcs and paleo-oceanic islands occur in the accretion–collision zones. We recognized that the accretion–collision zones

were mainly composed of the rock units, which were formed within an island-arc system or were incorporated in it during the subduction of

the Paleo-Asian Ocean under the island arc or the Siberian continent. This system consists of accretionary wedge, fore-arc basin, primitive

island arc and normal island arc. The accretionary wedges contain the oceanic island fragments consist of OIB basalts and siliceous—

carbonate cover including top and slope facies sediments. Oceanic islands submerged into the subduction zone and, later were incorporated

into an accretionary wedge. Collision of oceanic islands and island arcs in subduction zones resulted in reverse currents in the accretionary

wedge and exhumation of high-pressure rocks. Our studies of the Gorny Altai and Salair accretionary wedges showed that the remnants of

oceanic crust are mainly oceanic islands and ophiolites. Therefore, it is important to recognize paleo-islands in folded areas. The study of

paleo- islands is important for understanding the evolution of accretionary wedges and exhumation of subducted high-pressure rocks.

q 2003 Published by Elsevier Science Ltd.
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1. Introduction

It is a common knowledge that fragments of paleo-

oceanic lithosphere are preserved in foldbelts. In previous

studies, various types of ophiolites have been commonly

identified as oceanic crust fragments (Coleman, 1977;

Dobretsov et al., 1977; Dobretsov and Zonenshain, 1985;

Nicolas, 1989). During recent years, numerous fragments of

oceanic islands and plateaus have been identified in

foldbelts of different ages.

The general problem is that oceanic islands and basaltic

plateaus in present oceans constitute significant volumes

and areas in comparison with island arcs (Fig. 1). The

elevation of oceanic islands and plateaus above the oceanic

floor ranges from 1.5 to 5 km, the thickness of crust varies

from 14 to 35 km, and the area varies from 100 km2 for

individual islands to 100,000 km2 for oceanic plateaus, e.g.

Shatsky, Ontong-Java, Kergullen (Fig. 1). Therefore, we

can expect that fragments of such structures should be

widely present in foldbelts and their volume should be

comparable with that of island arc fragments. The fact that

they are less common in folded areas can be explained either

by their subduction or by difficulties during their recognition

among other sedimentary and basaltic-sedimentary terranes.

A possibility for preservation of the fragments of oceanic

islands and oceanic plateaus was discussed in Ben-Avrahem

et al. (1981), Cloos (1993), Chekhovich (1997) and

Bogdanov and Dobretsov (2002). After some simplification,

we propose three scenarios for interaction of oceanic islands

and subduction zones which are controlled by the thickness

of oceanic crust and the height of oceanic rises.

1. If oceanic crust thickness is less than 14 km, and the

height of oceanic rises is less then 2 km, most oceanic

islands and plateaus would be completely subducted

and only small fragments can be preserved in

olistostromes. The examples of this scenario were
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reported in Masson et al. (1990), Collot and Fisher

(1991) and Von Huene and Scholl (1991) and others.

2. If oceanic crust thickness is 15–20 km, and the height

of oceanic rises ranges from 2 to 4 km, larger

fragments can be preserved, e.g. sedimentary or

basaltic-sedimentary tops of islands, which were

detached during subduction and incorporated into the

subduction-accretionary complex.

3. If oceanic crust thickness is 20–30 km, and the height

of rises is more than 4 km, oceanic islands could be

accreted to an island arc or partly/completely ‘swal-

lowed’ up by a subduction zone due to their negative

buoyancy in response to their eclogitization and high-

pressure metamorphism. The possibility of such

transformations and velocity of exhumation depend

on the age and velocity of subduction, total weight of

an island and rheological properties of rocks. Eclogi-

tization and exhumation processes were discussed in

the models reported in Cloos (1993) and Dobretsov and

Kirdyashkin (1992, 1998). The examples are the

Akyoshi terrane in Japan (Kanmera and Sano, 1991),

and several terranes in Gorny Altai and Salair as

described in this paper.

The Carboniferous-Permian Akioshi terrane was one of

the first examples of such units to be recognized (Kanmera

and Sano, 1991). A thorough study of the Akioshi terrane

showed the presence of shallow-water reef limestones on

top of an oceanic island and slope sedimentary facies

composed of carbonate-siliceous rocks of spiculites, under-

lain by deep-water foot-hill radiolarites and turbidite

siliceous and carbonate-siliceous silts, sandstones and

siliceous tuffs bounding the slopes of the islands (Fig. 2).

There are several important aspects in paleogeographic

reconstruction of oceanic islands whose fragments are

incorporated into foldbelts. The first aspect implies the total

absence of terrigenous materials in the rock of oceanic

islands. The second point concerns lateral transition

between massive limestone and the radiolarian chert

succession through the detrital limestone succession con-

taining spicular chert interbeds and a spicular chert

succession containing lenses of redeposited limestone

(Fig. 2).

Since the early 1990s many geoscientists have attempted

to recognize oceanic terranes in the Altai-Sayan area (ASA).

The Katun and Baratal terranes, probably the fragments of

oceanic islands, were described in Buslov et al. (1993) and

shown to the participants of the IGCP 283 post-symposium

excursion. This paper presents new data obtained during the

1994–2000 field missions to Gorny Altai and Salair. These

data support the previous recognition of oceanic island

fragments and provide additional information on their

composition, structure, age and relationships with surround-

ing olistostromes and high-pressure metamorphic rocks

(Buslov and Watanabe, 1996; Buslov et al., 2001, 2002).

Gorny Altai and Salair are parts of Caledonian foldbelts

in the southern frame of the Siberian craton. The fragments

of ophiolites and oceanic islands once belonged to the

Vendian–Early Cambrian crust of the Paleo-Asian Ocean

(Dobretsov and Zonenshain, 1985; Zonenshain et al., 1990;

Buslov et al., 1993; Berzin and Dobretsov, 1994;

Dobretsov et al., 1995).

Fig. 1. The distribution of oceanic islands and islands in the world’s oceanic basins (Nur and Ben-Avraham, 1982).
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2. Tectonic setting

Southern Siberia (Fig. 3) comprises a Caledonian folded

area containing fragments of Vendian-Early Cambrian

island arcs (Zonenshain et al., 1990; Sengor et al., 1993;

Berzin and Dobretsov, 1994; Dobretsov et al., 1995; Buslov

et al., 2001). In the Vendian–Early Cambrian, an extended

system of island arcs existed between the Paleo-Asian

Ocean and the Siberian continent. In the present-day

structural pattern of southern Siberia and Mongolia

(Fig. 3), the fragments of the Vendian–Early Cambrian

ophiolites, island arcs and paleo-oceanic islands are

incorporated into accretion–collision units which were

faulted in the Late Paleozoic.

The accretion–collision zones consist of accretionary

wedge, fore-arc basin, primitive and normal island arcs

(Buslov and Watanabe, 1996; Buslov et al., 2001;

Dobretsov et al., 1995). The oceanic islands submerged

into the subduction zone and later were incorporated into

an accretionary wedge. Concerning the exhumation of

high-pressure rocks that also occur in the accretionary

wedges, we suggest that collision of oceanic islands with

an island arc generates reverse currents in the subduction

zone (Dobretsov and Kirdyashkin, 1992, 1998) which

cause the exhumation (blueschists, eclogites, etc.). In

Southern Siberia, the fragments of paleo-oceanic islands

in the accretionary wedges are usually cemented by

olistostromes containing fragments of the oceanic islands

and island arc units. We infer that in response to the

oceanic island-island arc collision, the subduction zones

jumped oceanwards. Fore-arc basins overlying these

complicated structures are filled with up to 6–8 km

thick pelagic sediments and turbidites. The turbidites

mainly consist of fragments and debris of island-arc and

accretionary units.

Temporal and lateral compositional changes of

magmatic rocks of island arcs in Southern Siberia are

similar to modern volcanic arcs. Vendian and earliest

Early Cambrian tholeiite—boninite series of the early

stage reveal similarities to boninites in the Bonin Islands,

Mariana and Tonga arcs. Tholeiite-calc-alkaline and, to a

lesser degree, calc-alkaline normal arc volcanic series of

the later stage, are similar to rocks of the mature Japan,

Kuril, and Kamchatka volcanic arcs. Laterally, volcanic

units within large fragments of normal island arcs range

in composition from tholeiitic high-Mg andesite and

basalt rocks near fore-arc basins, through calc-alkaline

rocks in the central parts to shoshonitic rocks in back-arc

basins.

Vendian – Cambrian units in southern Siberia and

Mongolia (Fig. 3) represent (1) Vendian–Early Cambrian

oceanic islands formed above within-plate hot spots of

Fig. 2. Composite columnar sections summarizing the lithostratigraphy and age of Akiyoshi terrane rocks and the sedimentary-framework model for oceanic

rocks (Kanmera and Sano, 1991).
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the Paleo-Asian Ocean, including N-MORB and E-MORB

lavas, (2) fragments of the Vendian–Early Cambrian

primitive boninite–tholeiitic island arc, and (3) normal

Cambrian island arc with a fore-arc basin. Typical examples

of these three types of terranes occur in Gorny Altai and

Salair (Fig. 4).

There are three main accretion–collision stages in the

evolution of the Paleo-Asian Ocean in Gorny Altai and

Salair (Buslov et al., 1993, 2002; Watanabe et al., 1994):

(1) Early-Middle Cambrian, (2) Late Cambrian-Early

Ordovician, and (3) late Paleozoic. The first and second

stages characterize the evolution of the Kuznetsk-Altai

and Salair island-arc systems shown in Figs. 3 and 4. In

the Late Cambrian–Early Ordovician, these island-arc

systems accreted to the Siberian continent resulting in

folding and thrusting and a subesquent Early Ordovician

hiatus in the stratigraphic records of the studied area. The

third stage includes two collisional events during the

closure of the Paleo-Asian Ocean: The first event

corresponds to the collision of the Gondwana—derived

Altai—Mongolian terrane with the Siberian continent and

the second one was caused by the collision of the Siberian

continent together with the Altai-Mongolian terrane with

the Kazakhstan continent (Buslov et al., 2001). In the late

Paleozoic, the accretion–collision structure of the Siberian

continent was disrupted by large-scale NE-striking strike-

slip faults which created a typical mosaic-blocky structure

and obscured the original relationships between tectonic

Fig. 3. The Vendian–Cambrian island arc fragments in the framework of the Siberian continent (Dobretsov et al., 1995).
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units. Our study of Gorny Altai and Salair has shown that

original relationships are better preserved in the western

part of the Altai-Sayan area (Fig. 4).

The oceanic island units consist of pillow-lavas and their

related chert-limestone sedimentary rocks. The largest

paleo-islands of Katun and Baratal have been found in

Gorny Altai (Figs. 5 and 6, location see in Fig. 4). The Katun

terrane is more than 120 km long and up to 40 km wide. The

Baratal terrane is 70 £ 20 km2 in size. These terranes are

incorporated into the Katun and Kurai accretionary wedges,

respectively. These Early–Middle Cambrian accretionary

wedges also include thrust sheets of mélange-olistostrome

and ophiolites.

3. The Kurai accretionary wedge: structure

and composition

The Kurai accretionary wedge is located in the south-

eastern Gorny Altai (Figs. 4 and 5). It has been thoroughly

studied in recent years. This part of Gorny Altai is well

exposed and accessible. The fragments of the accretion–

collision zone have been most completely preserved

there (Fig. 5). Oceanic island–island arc collision was

responsible for the closing of the subduction zone and

exhumation of eclogites, blueschists, garnet amphibolites

and metaperidotites of the Chagan-Uzun massif (Buslov

et al., 1993; Buslov and Watanabe, 1996).

Fig. 4. Vendian–Cambrian island—arc and paleoseamaunt units in Gorny Altai and Salair.
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The Cambrian accretionary prism (Fig. 5) hosts slivers

of the Baratal oceanic island having variable composition

and size. The slivers consist of oceanic sediments and

oceanic island basaltic units, Chagan-Uzun oceanic

ophiolites and serpentinitic mélange with the slivers and

minor blocks of eclogite, garnet amphibolite and actinolite

schists. The occurrence of these metamorphic rocks is a

specific feature of the Kurai accretionary prism. The

barroisite–actinolite schists often occur within the accre-

tionary prism as separate lenses. All of the above-noted

slivers and blocks are associated with the Early Cambrian

olistostrome. The accretionary prism was folded in the

Middle–Late Paleozoic.

Sedimentary rocks of the Baratal paleo-island demon-

strate changes of facies from shallow-water reef limestone,

through deeper-water sedimentary-volcanogenic units, to

island-slope facies represented by detrital rocks and

alternation products of cherts and limestones. The slivers

of paleo-island assemblages alternate with olistostrome and

lenses/fragments of an exotic terrane, consisting of dark-

gray to black ‘hydrosulfide’ limestones.

The dark-gray and black limestones differ from paleo-

island carbonate rocks in that they are of massive texture,

possess an H2S smell, and contain thin interbeds and

lenses of black cherty rocks. The black limestones contain

detrital garnet, tourmaline, sillimanite, staurolite and

corundum derived from metamorphic rocks of continental

origin. The black limestone sequence contains no

appropriate rocks for isotope dating, but Uchio et al.

(2001) tried to determine the age from the black

limestones using the Pb–Pb method. Their estimated

age is 577 ^ 100 Ma.

We suggest that the dark-gray and black limestones

comprised an exotic terrane which was transported into the

subduction zone together with the crust of the Paleo-Asian

Ocean. The thickness of tectonic sheets consisting of black

limestones is 250–300 m. The limestones alternate with

tectonics sheets of olistostrome. The matrix of the

olistostrome consists of calcareous clay and their olistoli-

tiths are black limestones.

The Baratal paleo-island comprises three types of rocks:

(1) basaltic rocks, (2) alternation of volcanic and sedimen-

tary rocks, and (3) reef limestone. The basaltic rocks are

mainly dark-gray and gray-green pillow-lavas and variolitic

lavas, with subordinate amounts of amygdaloidal sub-

alkaline andesitic basalts, diabase and gabbro-diabase dikes

and sills. The lavas show low-temperature, greenschist

facies regional metamoprphism, but they still possess OIB

Fig. 5. The geological scheme of the Kurai accretionary wedge, showing the large fragment of the Baratal oceanic island, metamorphic and ophiolitis sheets in

the basement.
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and MORB chemical characteristics (Gusev, 1991; Buslov

et al., 1993). The magmatic rocks are associated with sparse

lenses of dark-gray and gray limestone, dolomite, black and

gray cherts and rarely volcanoclastic sandstone. The

maximum thickness of basaltic sheets is 510 m (Gusev

and Kiselev, 1988). The second rock type is mainly

composed of brecciated basalts, sandstones, mudstones,

tuffs, and limestone. Dark-gray or reddish layered and

massive limestones intercalate with green-gray chlorite-

bearing shales and tuffaceous sandstones. The presence of

numerous fine fragments of clinopyroxene, orthopyroxene,

epidote, and hornblende suggests that the sedimentary rocks

were deposited close to volcanoes, possibly, at the bottom of

their sub-marine slopes. The fault-bounded sheets of these

rocks attain a maximum thickness of 550 m (Gusev and

Kiselev, 1988).

The third type of Baratal rocks includes gray reef

limestones and dolomites, that once comprised the top of

oceanic islands. Reef limestones and dolomites form small

bodies in the Kurai zone (Fig. 5). The largest body is

Fig. 6. The geological scheme of the Katun accretionary wedge with large fragment of the Katun paleo-oceanic island.
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exposed on the left bank of the river Akkaya (Fig. 5)

attaining 3 km in length and 1 km in width. These reef

limestones are underlain by conglomerates up to 4 m thick

containing fragments of basalts occurring down the

section. The thickness of the entire exposed section is

250–300 m.

Olistostromes that are tectonically mixed with the above

mentioned rocks are classified into: chert–limestone–

basaltic and polymictic. Gritstones and breccias comprise

the matrix of the first type olistostrome. It surrounds small

fragments of gray, light-gray and black cherts and red jasper

as well as rare basalt, carbonate, and thin-bedded carbonate

shales. The chert olistoliths are of flat or angular shape, up to

several tens of meters thick and hundreds of meters long.

The matrix of the polymictic olistostrome consists of

sandstone, clay, clay-marl and andesitic tuff. Their olisto-

liths vary in size and are represented by siliceous rocks,

limestone, dolomite, basalt and andesite.

Two types of olistostromes formed in different geody-

namic environments. The first type formed when an oceanic

island entered the trench. The second type formed after the

disruption of the Baratal oceanic islands terrane due to

subduction processes.

The Kurai accretionary wedge consists of meta-

morphic rocks and ophiolitic assemblages as it is

indicated by the section exposed to the south of Kurai

(Fig. 5). There, a volcanogenic sequence contains two

slivers of garnet amphibolite and amphibolite dipping

westward at 808. Their thickness varies from 10 to 80 m.

The amphibolites and garnet amphibolites possess

chemical characteristics of N-MORB (Gusev, 1991;

Buslov et al., 1993). The polymictic melange includes

blocks up to several meters long of serpentinized

pyroxene-olivine basalt, retrograde-metamorphosed garnet

amphibolites with eclogite relicts and amphibolites. Its

matrix consists of serpentinite schists and mylonites

formed after metamorphic rocks and basalts. The

serpentinitic melange consists of foliated serpentinite

incorporating blocks of massive serpentinite and light-

gray cryptocrystalline rodingite. The serpentinite bodies,

up to several meters long, extend over a distance of

many kilometers along the Baratal terrane.

A melange zone in the eastern part of the Kurai zone

near Chagan-Uzun Village, on the left bank of the Chuya,

consists of a 3 km-thick sequence of ultramafic rocks

which are known as the Chagan-Uzun massif. The upper

sheet of the massif is composed of massive ultramafic

rocks of weakly serpentinized lherzolite and harzburgite

(the upper half) and massive serpentinite (the lower half).

Massive and foliated serpentinites incorporate gabbro,

gabbro-diabase and diabase dikes in the upper part, and

basalts in the lower part. The lower sheet of serpentinitic

mélange is located at the base of massive ultamafics and

contains blocks of meta-olistostrome, limestone, basalt,

silicilite, amphibolite, garnet amphibolite, and eclogite

(Buslov et al., 1993).

A thick serpentinite melange is present in the eastern

part, on the right bank of the Chuya River. A several

hundred meters thick metamorphic sole of garnet-free

amphibolite occurs at the contact with ultramafics and

basalts. Amphibolites of the metamorphic sole contain

relicts of a pillow-lava texture.

The metamorphic rocks are of special interest because

their formation and further exhumation could have been a

result of oceanic island-island arc collision during subduc-

tion. The eclogite and garnet amphibolite bodies occur in

the melange.

The K–Ar amphibole ages of eclogites and their

crosscutting garnet amphibolites are 535 and 487 Ma,

respectively. Buslov et al. (2002) noted Ar–Ar amphibole

ages for eclogites at about 630 Ma. The K–Ar muscovite

age of metaolistostromes is 540 Ma. The ages of 535 Ma

(amphibole in eclogite) and 540 Ma (matrix of metaolistos-

trome) correspond to the Early Cambrian metamorphism of

subducted rocks. The K–Ar amphibole age of garnet

amphibolite is 473 Ma. The metamorphic sole at the base

of the Chagan-Uzun ophiolites consists of garnet-free

amphibolites, whose K–Ar amphibole age is 523 Ma

(Buslov and Watanabe, 1996).

Formally, there are three groups of geochronological

data (535–540, 523, and 473–487 Ma). They correspond to

subduction metamorphism, exhumation and later defor-

mation processes.

Boudinaged and deformed gabbro, gabbro-diabase, and

diabase dikes cut the lower ophiolitic thrust sheet and are

compositionally similar to the Early–Middle Cambrian

calc-alkaline island-arc series and represent the upper age

limit of exhumation (Buslov et al., 2002). PT-estimations

for metamorphic rock assemblages of the upper thrust sheet,

including eclogites, are 13–14 kbar and 620–700 8C. They

formed at a depth of 50–60 km, whereas the metagabbro,

rodingites and garnet-free amphibolites of the lower thrust

sheet formed at 2–3 kbar (6–8 km depth). We suggest that

the upper thrust sheet with eclogites is an assemblage

of subducted rocks, whereas the garnet-free amphibolites

at the bottom of the lower thrust sheet formed later during

incorporation of hot ophiolites into the accretionary wedge

or during their thrusting over the ocean floor basalts, as was

proposed for Oman ophiolites and other similar cases

(Nicolas, 1989).

In general, according to the structural position, rock

assemblages, and major and trace element chemistry, the

Baratal terrane can be regarded as an oceanic island with a

fragment of oceanic crust at the base. In the earliest

Cambrian, the Baratal terrane and adjacent segments of the

oceanic lithosphere (Chagan-Uzun ophiolite) were involved

in subduction and part of its rocks underwent low- to high-

grade metamorphism. In the latest Early Cambrian, the

Baratal oceanic island closed the subduction zone and

collided with the Kurai fragment of the Uimen-Lebed

primitive island arc. This collision generated reverse

tectonic currents in the accretionary wedge and rapid
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exhumation of the metamorphosed oceanic crust rocks such

as the Chagan-Uzun ophiolites, eclogites and garnet

amphibolites. The major and trace element chemistry

of high-pressure metamorphic rocks is similar to that of

MORB and OIB (Buslov et al., 1993, 2002).

4. Katun accretionary wedge

The Katun accretionary wedge is situated north of the

Kurai accretionary wedge and extends over a distance of

more than 120 km along the Katun River, south of

Gornoaltaisk (Fig. 6). It involves three types of paleo-

oceanic island rock units. The Type I units consist of

dark-gray bitumen-bearing limestones, black silicilites,

dolomites, shales, siliceous shales, and thin basaltic flows.

Sedimentary rocks dominate over volcanics. The Type II

units include high-Ti tholeiites and alkaline basalts

associated with lenses of cherts, carbonates and shales.

The Type III units consist of reef limestone and dolomite

with tuff interbeds.

These units are suggested to be fragments of a single unit

of carbonate, siliceous, terrigenous and ocean island

volcanic rocks formed an the oceanic island setting.

Carbonate and siliceous varieties have a breccia-like texture

and show traces of submarine slumping.

Fragments of paleo-oceanic islands occur in association

with olistostromes of two types, e.g. siliceous–carbonate–

basaltic and polymictic, analogous to the olistostromes of

the Kurai accretionary wedge. The first type olistostrome

formed during the ‘entrance’ of the Katun paleo-island into

the trench and consists only of paleo-island fragments:

basalt, chert, limestone and dolomite. The second type

olistostrome consists of the same rocks plus pebbles and

boulders of andesite, basaltic andesite, sandstone, mudstone

and limestone which could have been transported from an

island arc.

There are two types of Vendian–Early Cambrian

volcanics in the Katun paleo-island: (a) thin flows of

tholeiitic basalts—the relicts of oceanic crust—formed in

a deep-water setting; and (b) large volcanic buildups and

submarine plateaus of alkaline basalts with subordinate

tholeiites. The first type of volcanic rocks are aphyric

tholeiites with sporadic fine phenocrysts of olivine and

clinopyroxene which possess the chemical characteristics

of N-MORB (Buslov et al., 1993; Gibsher et al., 1996).

The second type of volcanic rocks are olivine-bearing

tholeiites, hawaiites, and alkaline basalts. The micro-

structure of alkaline volcanics is aphyric or Pl-porphyric

(up to 10% of plagioclase phenocrysts) with an

intergranular matrix containing olivine, plagioclase,

and pyroxene. The olivine tholeiites are aphyric,

and hawaiites (MgO ¼ 3–5%, K2O ¼ 0.4–0.7%) are

porphyric, consisting of olivine, pyroxene and plagioclase

phenocrysts and glassy matrix (Buslov et al., 1993;

Gibsher et al., 1996).

The rocks of the Katun paleo-oceanic island contain

abundant remnants of microphytoliths, calcareous algae and

sponge spicules indicating their Late Vendian to Early

Cambrian age (Terleev, 1991). Detailed description of this

sequence and its list of paleontological species were

reported by Terleev (1991). This paper provides a brief

description of its structure, rock assemblages and

microfossils.

The three sites of Edigan, Elandin and Cheposh are the

best examples of the structure and rock assemblages of the

Katun paleo-oceanic island. Their location is shown in

Fig. 7. The Edigan site (Fig. 7) is located on the right bank of

the Katun, namely in the waterdivide of its right tributaries

of the Edigan and Cheba Rivers. The Edigan monocline is

composed of paleo-oceanic island rocks. There are Late

Vendian–Early Cambrian sedimentary rocks (Eskongin

Formation), representing the slope facies of the paleo-

oceanic island, and volcanics of the Manzherok Formation

which consists of oceanic island bottom facies with top

facies reef limestones.

The sequence of the Eskongin Formation (from

Terleev (1991) with modifications) is as follows (line

I–II in Fig. 7):

1. Gray and dark-gray limestones and dolomites inter-

calate with volcanics, tuffaceous shales and quartzites

and attain a 200 m thickness.

2. Gray, dark-gray massive and fine-bedded dolomites

contain clastic material and microphytoliths Osagia

tenuilamellata Reitl and attain a thickness of 140 m.

3. Intercalating terrigenous and carbonate rocks. The

terrigenous sediments are shales, siliceous shales

and chlorite schists, fine-clastic basaltic tuffs, and

silicilith. Gray, dark-gray stratified limestone,

dolomitic limestones and dolomites are present

in subordinate amounts. Carbonate rocks contain

remnants of sponge spicules Monoxonellida, Hexacti-

nellida, Tetraxonida, and calcareous algae Epiphyton

sp. and SSF: Hyolithellus tenius Cambrotubulus

decurvatus, and Tiksitheca licis Anabolites sp. The

thickness of the package is 300 m.

4. Gray, dark-gray massive and fine-bedded dolomites,

locally with clastic material and chert interbeds

(1–5 cm thick), and thin limestone and shale interbeds.

Total thickness is 120 m.

5. A 60 m thick package of greenish-gray massive basaltic

porphyrites.

6. Gray, dark-gray massive and fine-layered limestones

contain separate thin layers of chlorite schists and

cherts attaining a 160 m thickness.

7. A 400 m thick package is compositionally similar to

package 3, but contains more cherts.

8. Gray, dark-gray massive and fine-bedded limestones

and dolomites frequently contain terrigenous material

and abundant microphytoliths (Osagia sp.) attaining a

thickness of 100 m.
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9. Intercalated shales and dark-gray limestones attain a

140 m thickness.

10. (A) Greenish-gray and green massive and schistose

volcanics; (B) tuffaceous sandstones and siltstones with

subordinate gritstones. The thickness of the package is

180 m.

11. A 400 m thick package compositionally resembles

package 3.

12. Gray to dark-gray, thin-banded and massive dolomites

locally contain stromatoliths and microphytoliths

(Osagia sp., Nubecularites catagraphus Reitl.). Sub-

ordinate sedimentary rocks are dark limestones, black

and greenish-gray tuffaceous siltstones, mudstones, and

quartzites. Carbonate rocks laterally change to fine-

clastic rocks. Land-slides are widespread and contain

irregularly shaped bodies of carbonate rocks and

siltstones. Total thickness is 450 m.

13. Intercalating dark thin-banded limestones and siltstones

with chert and dolomite lenses. The thickness is 60 m.

14. Massive and stratified dark-gray/gray dolomites, lime-

stones and tuffaceous shales 60 m thick.

15. Dark-gray to gray dolomites (up to 15 m) alternating

with the above sediments involve lenses of chert and

dolomite and attain a thickness of 200 m.

16. Intercalating thin beds of black limestone, black shales,

green-gray tuff-siltstones attaining a total thickness

of 60 m.

Sponge spicules, calcareous algae and SSF from package

3 are Lower Cambrian and the Cambrian-Precambrian

boundary is at the base of this package (Terleev et al., 2003).

The total thickness of the section is 3000 m. The

Eskongin Formation has a stratigraphic contact with

volcanics of the Manzherok Formation. This steeply

dipping contact and the presence of overturned beds

suggest that siliceous sediments of the Eskongin

Formation overlap the Manzherok volcanics. The basaltic

sequence attains a thickness of more than 2500 m.

The Elandin site is located in the Katun’s right bank,

near its right tributary of the Chechkysh Brook (Fig. 8).

Of special interest are Late Vendian–Early Cambrian

reef dolomites, which we suggest were formed on top of

a paleo-oceanic island. The dolomites overlap volcanic

rocks of the Manzherok Formation. An interbed of

sedimentary breccia consisting of volcanic boulders and

pebbles is found at the base of the dolomite sequence.

The light-gray to gray massive and clastic dolomites

contain stromatoliths and microphytoliths and attain a

thickness of 250 m. The microphytoliths are Nubecular-

ites punctatus Reitl., N.catagraphus Reitl., Osagia sp.,

Vesicularites flexuosus Reitl., Ves. lobatus Teirl.,

Ves. bothrydiophormis (Krasn.), Ves.reticulatus Varizh.,

Ves. igaricus Milstein, Ves. compositus Z.Zhur.,

Ves. pussilus Zabr., Nubecularites uniformis Z.Zhur.,

Ambigolamellatus horridus Z.Zhur., Radiosus sphaericus

Fig. 7. The geological sketch of the Edigan site of the Katun paleo-oceanic island (from Terleev (1991) with modifications).
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Z.Zhur., Volvatella vadosa Z.Zhur., Glebosites gentilis

Z.Zhur., osagia tenuilamellata Reitl., Vesicularites

textus Klinger. Microphytoliths Nubecularites punctatus

and N.catagraphus and alga Girvanella sp. indicate a

Late Vendian-Early Cambrian age for the dolomites

(Terleev, 1991).

The Cheposh site (Fig. 9) is located in the Katun

valley, near Cheposh villages (Fig. 6). There, the tectonic

sheets composed of paleo-oceanic island rocks alternate

with two types of deformed olistostrome. The accretionary

wedge is overlapped by basal conglomerates and then

Early Cambrian (Sanashtygol Horizon)-Middle Cambrian

sedimentary-volcanogenic rocks of a normal island arc

(Buslov et al., 1993).

The sequence in the right bank of the Katun River (line

I–II in Fig. 9) consists of several tectonic thrust sheets

consisting of paleo-oceanic island rocks and olistostromes:

1. A tectonic thrust sheet composed of Type I and Type

II deformed olistostromes. The Type I siliceous–

carbonate–basaltic olistostrome consists of olistoliths

incorporated into the breccia-sandstone matrix.

Fig. 8. The geological sketch of the Elandin site of the Katun paleo-oceanic island (from Terleev (1991) with modifications).
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Fig. 10a shows the structure of a fine-clastic

olistostrome where olistoliths are several tens of

centimeters in length. Large olistoliths are several

hundred meters long and tens meters thick and

consist of basalts and carbonate rocks. The Type II

olistostrome consists of olistoliths and fine-clastic

siliceous-carbonate-basaltic rocks and well-rounded

boulders and pebbles of basaltic andesite, andesite,

tuffs, sandstones, siltstones, and gray stratified lime-

stones. Fig. 10b shows an outcrop in the left bank of

the Cheposh mouth and the arrangement of boulders

and pebbles in the sand-siltstone matrix composed of

clasts of volcanic rocks, cherts, and carbonate rocks.

The boulders attain 20 cm in length. The total

thickness of the sheet exceeds 300 m.

2. Deformation zone composed of greenschists with blocks

of basalt, chert and dolomite attainsa thickness of2–3 m.

3. A 120 m thick siliceous-carbonate-basaltic tectonic

sheet.

4. Deformation zone similar to 2 of a 3–5 m thickness.

5. The 8–10 m thick Type I olistostrome.

6. Deformation zone similar to 2.

7. A 150 m thick tectonic sheet composed of pillow-lava.

8. Greenschists derived from basalts of 1–2 m thickness.

9. A 60 m thick tectonic sheet of black cherts.

10. Basaltic and carbonate rocks outcropping after a 80 m

break attain a thickness of 60 m.

The Katun accretionary wedge is overlain by basal

conglomerates containing carbonate rocks of the Shashku-

nar Formation, which occur in the lowest position of the

Early–Middle Cambrian island arc sequence. The Early–

Middle Cambrian age (Botomian–Amgian) of the island arc

comprising the carbonate–terrigenous rocks of the Cheposh

and Barangol Formations and volcanic rocks of the

Ust-Syoma Formation is evidenced by numerous archae-

ocyathean and trilobites (Repina and Romanenko, 1964).

The tectonic sheets of the accretionary wedge and carbonate

rocks of the Shashkunar Formation are cross-cut by island-

arc dikes of pyroxene-plagioclase porphyrites, diabase, and

gabbro. The dikes preserve the original orientation and are

only locally deformed. They are comagmatic with

Fig. 9. The geological sketch of the Cheposh site of the Katun paleo-oceanic island (from Terleev (1991) with modifications).
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the volcanic rocks of the Ust-Syoma Formation in the Katun

zone (Fig. 6).

The Early–Middle Cambrian rocks of the normal island

arc do not exhibit greenschist facies metamorphism in

contrast to the accretionary wedge rocks.

Volcanogenic, siliceous-limestone and carbonate paleo-

oceanic units extend to the northeast, from the Katun

terrane to Gornaya Shoriya, and form a 40 £ 250 km2

structure. In the northwestern part of the Katun

accretionary wedge, the tectonic sheets and olistostromes

are surrounded by serpentinitic melange and basalts with

N-MORB characteristics (Buslov et al., 1993; Gibsher

et al., 1996). The melange consists of chrysotile-antigorite

schists containing large inclusions of ultramafic rocks and

gabbro. Northwards, the northwestern part of the Katun

zone is replaced by the Early Cambrian accretionary

wedge of Salair.

5. Salair accretionary wedge

In the Salair accretionary wedge (Fig. 11), there are

numerous late Paleozoic thrust and strike-slip faults. Like in

the Kurai zone, there are ophiolitic rock assemblages,

metamorphic rocks, and paleo-oceanic island rocks. The

ophiolitic rocks are largely hidden under Meso-Cenozoic

sediments of the Biya-Barnaul basin (Fig. 4). Fig. 11 shows

the location of ophiolitic bodies according to borehole and

geophysical data. The ophiolitic bodies are several large

tectonic sheets (up to 15 £ 5 km2) consisting of layered

Fig. 10. The sketches of two types of tectonized olistostrome-conglomerate from the Katun River bank, near Cheposh Village (Figs. 6 and 9): a—olistostrome,

b—polymyctic conglomerate.
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pyroxenite-gabbro and serpentinitic melange. The layered

gabbro-pyroxenite complex is intruded by gabbro dikes.

The serpentinitic melange contains fragments of ultramafic

rocks, pyroxenite, gabbro, basalt, and bedded siliceous

rocks. Large carbonate-siliceous and carbonate bodies

(20 £ 5 km2), which were possibly fragments of an oceanic

island, are associated spatially with ophiolites. The lenses of

ophiolitic assemblages alternate with the olistostrome

tectonic sheets. The olistostromes might occupy a large

area beneath the Cenozoic sediments of the Biya-Barnaul

basin.

The olistostromes are better exposed in southern Salair

(Fig. 11) and contain fragments of ophiolites and oceanic

islands. Olistoliths of plagioclase-bearing pillow-lavas (up

to 4 £ 10 m2), gabbro, clayish limestones and massive

limestones occur in a rhythmically-bedded clay-sandstone

groundmass, west of Popovichi Vilage (Fig. 11). Olistoliths

of oceanic island varieties-siliceous-limestone sediments,

metabasalts and tuffs-are incorporated into turbiditic matrix

and are abundant in the quarry near Pushtulim Village.

Fig. 12a and b show the structure of one large olistolith of

sedimentary rocks. In the lower part, this olistolith consists

Fig. 11. The geological scheme of the Salair accretionary wedge.
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of limestone breccia and its fractures are filled with red

chert. In the upper part, there are alternating limestone and

siliceous beds. The limestones are seen to have undergone

sliding and synsedimentary folding. We suggest that the

limestone-siliceous sediments originally accumulated on

the oceanic island slope. Near the slope bottom, the

limestones and siliceous rocks were brecciated and the

fractures were filled with biosilica material (sponge spicules

and radiolaria microfossils have been poorly preserved).

The metamorphic unit consists of several tectonic

sheets (Fig. 11). Near Popovichi Village, there are

tectonic sheets of garnet amphibolites, amphibolites,

and blueschists. They are separated by tectonic lenses

of graphite-bearing carbonate rocks and gabbro. These

structural units are surrounded by serpentinitic schists

with fragments of pyroxenite, gabbro, diabase, basalt, and

ultramafic rocks.

The oceanic island structural unit consists of several

sheets of basalt, gray bedded siliceous rocks and limestones,

which alternate with olistostrome lenses.

6. Discussion

Accretion – collisional processes obviously play a

significant role in the early stages of continental crust

growth. In general, the evidence for the early continental

crust growth before the collision of large continents and

Fig. 12. Two sketches of olistostrome outcrop from the Salair accretionary wedge, near Pushtulim Village (for location see Fig. 11).
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microcontinents comes from fragments of oceanic islands

in accretionary wedges, like in Gorny Altai and Salair,

where we recognize three main stages of accretion–

collisional processes. Using the Edigan site as an example,

we can estimate the height of the paleo-oceanic islands

(Fig. 7). Taking into account the average angle of 308 for

the slopes of oceanic island and the 3000 m and more

thickness of the slope deposits of the Eskongin Formation,

the height of that volcanic buildup would be more than

5000 m. Collision of a high paleo-oceanic island and an

island arc resulted in several phases of accretionary wedge

formation during the early stages of continental crust

growth (Fig. 13):

1. Vendian subduction of the Paleo-Asian oceanic

crust was accompanied by formation of a primitive

island arc.

2. An accretionary wedge formed during the Late Vendian-

Early Cambrian, and paleo-oceanic islands and adjacent

oceanic lithosphere (Chagan-Uzun ophiolites) were

involved in subduction.

3. The Early Cambrian collision of paleo-islands and

accretionary wedges resulted in reverse currents and

exhumation of subducted rocks. During the latest Early

Cambrian, paleo-islands were incorporated in the subduc-

tion zone and collided with the Uimen-Lebed primitive

islandarc.Due tothiscollisionandits relatedreverseflows,

the metamorphosed parts of the oceanic crust, including

Chagan-Uzun ophiolites, eclogites, and garnet amphibo-

lites, were rapidly transported to the surface and incorpor-

ated into the accretion wedge (Buslov et al., 1993; Buslov

and Watanabe, 1996).

4. In the Early–Middle Cambrian, a normal island arc was

formedanditsaccretionarywedgewas intrudedbygabbro-

diabase dikes.

5. During the Middle–Late Cambrian, the Anui-Chuya fore-

arc basin was formed.

Later, the rocks underwent Ordovician and Late

Paleozoic folding and related deformation.

Fig. 13. Geodynamic model of the Gorny Altai and Salair accretionary wedges origin.
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7. Conclusions

The Vendian and Early Cambrian evolution of sedimen-

tation in the open-ocean realm is recorded in the

stratigraphy of accreted oceanic rocks in the Baratal,

Katun and Salair accretionary wedges. The oceanic

sediments are reconstructed as extensive continuous masses

ranging from a shallow-water reef complex on a basalt-

based island to deep-water siliceous sediments on the ocean

floor around the island. The deformation fabrics of

limestone document collision of the island, in which

large-scale collapse of the reef complex, probably induced

by normal faulting in the outer trench-slope area, played the

most important role. The collapse resulted in formation of

extensive disrupted products, ‘broken’ limestone and lime-

stone breccia. Numerous olistostrome bodies contain

pebbles and boulders of island-arc rocks showing a deep-

trench setting of sedimentation.

The Gorny Altai and Salair examples demonstrate that

fragments of oceanic crust in the accretionary wedge consist

not only of ophiolitic rock units, but also paleo-oceanic

island units whose height exceeded 5000 m, and are

important features in the structure of foldbelts. The study

of their geochemistry, isotopic age, lithology and paleontol-

ogy would allow a complete reconstruction of the ancient

oceans and lead to better understanding of the petrological

processes that resulted in formation of paleo-oceanic crust

and early continental growth.

8. Uncited Reference
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