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ABSTRACT

The Central Asian Orogenic Belt is one of the largest accretionary terrains on 

Earth and records a ca. 800 Ma history of arc and microcontinent accretion, from 

south to north, during evolution and closure of the southwest Pacifi c-type Paleo-Asian 

ocean in the period ca. 1020 to ca. 325 Ma. We contest the evolutionary model for the 

belt proposed by previous authors in terms of a single, long island arc.

Accretion of ophiolites, arcs, and Precambrian microcontinents took place in 

southern Siberia in late Neoproterozoic to Cambrian times. Ultrahigh-pressure sub-

duction and metamorphism occurred in the Cambrian at Kokchetav, Kazakhstan, 

and high-pressure metamorphism took place in the Gorny Altai, together with arc-

ward accretion of a seamount. In the Chinese Altai, Precambrian microcontinents 

and island arcs collided into the accreting margin.

Overall the Central Asian Orogenic Belt records the formation of small forearc 

and backarc ocean basins that probably evolved between island arcs and microconti-

nents and were closed during continuous accretion between the Neoproterozoic and 

Paleozoic. During this time the southward-growing southern margin of the Siberian 

craton always faced an open ocean. Final closure of the Paleo-Asian ocean probably 

occurred in the late Permian when the North China craton was attached to the oro-

genic belt.

Large volumes of felsic volcanic rocks and the presence of Precambrian zircon 

xenocrysts as well as ancient detrital zircons in arc-derived sediments suggest sub-

stantial reworking of old crust despite seemingly primitive Nd isotopic character-

istics. Similar characteristics in arc terranes of the Arabian-Nubian shield in Saudi 

Arabia suggest that previously proposed anomalously high crust-formation rates in 

both the Central Asian Orogenic Belt and Arabian-Nubian shield require revision.

Keywords: accretion, Arabian-Nubian shield, central Asia, Kazakhstan, Mongolia, 

zircon geochronology.

INTRODUCTION

The Central Asian Orogenic Belt (or Altaids) extends from 

northeastern Asia to the Ural Mountains and is one of the largest 

accretionary terrains on Earth (Zonenshain et al., 1990; Şengör 

et al., 1993; Mossakovsky et al., 1993; Yakubchuk et al., 2001; 

Yakubchuk, 2002) (Fig. 1). There have been many studies on the 

origin and evolution of this belt since Şengör et al. (1993) pro-

posed an innovative but highly speculative model, deriving the 

entire orogen from one single, giant intra-oceanic island arc, the 

Kipchak arc, from the early Cambrian (ca. 540 Ma) to the Perm-

ian (ca. 260 Ma). The alternative, and more widely accepted, 

interpretation explains the Central Asian Orogenic Belt in terms 

of southwest Pacifi c-style accretion of arcs and microcontinents 

and fi nal collision between the Siberian and North China cratons 

(e.g., Mossakovsky and Dergunov, 1985; Coleman, 1989; Mossa-

kovsky et al., 1993; Abdulin et al., 1995; Fedorovsky et al., 1995; 

Ruzhentsev and Mossakovskiy, 1996; Filippova et al., 2001; 

Buslov et al, 2001; Badarch et al., 2002; Dobretsov et al., 2003; 

Kheraskova et al., 2003; Xiao et al., 2003, 2004a, 2004b). Which-

ever model is correct, the Central Asian Orogenic Belt represents 

a site of major crustal growth in the Phanerozoic (Şengör et al., 

1993; Jahn et al., 2000, 2004; Jahn, 2004), comparable, in many 

respects, to the Neoproterozoic Arabian-Nubian shield (Reymer 

and Schubert, 1987; Johnson and Woldehaimanot, 2003).

Much new information has become available since the 

Şengör et al. (1993) synthesis was published, particularly as 

a result of IGCP (International Geological Correlation Pro-

gramme) Project 473 (for summary see Jahn et al., 2004) and 

the international project “Atlas of lithological, paleogeographic, 

structural, palinspastic, and geoecologic maps of central Eurasia” 

of the Geological Surveys of central Asian countries, Russia, and 

China (Fedorenko and Militenko, 2002; Filippova et al., 2001). 

However, there is still a paucity of geochemical data, precise 

zircon ages, and detailed structural work for many of the ter-

ranes proposed in Kazakhstan, Mongolia, northwestern China, 

and southern Siberia. Nevertheless, a crude age zonation, from 

north to south, is now apparent in the Central Asian Orogenic 

Belt (Kröner et al., 2004) that we interpret to have resulted from 

successive ocean basin closure and accretion of arcs and micro-

continents in the long-lived Paleo-Asian ocean (Zonenshain et 

al., 1990; Khain et al., 2002, 2003). The oldest ophiolitic rocks 

were generated ca. 1020–1035 Ma near the present margin of the 

Siberian craton (Khain et al., 2002), followed by the ca. 800 Ma 

https://www.researchgate.net/publication/250148394_Middle_Paleozoic_subduction_belts_the_leading_factor_in_the_formation_of_the_Central_Asian_fold-and-thrust_belt_Russ_J_Earth_Sci_3405-426?el=1_x_8&enrichId=rgreq-702bd483-4ecb-4828-a8b5-911c5d23eb6f&enrichSource=Y292ZXJQYWdlOzIzNTc2OTIxNDtBUzoxMDMzMjI4OTE1ODc1ODRAMTQwMTY0NTUwNTExNA==
https://www.researchgate.net/publication/249551250_The_Central_Asian_Orogenic_Belt_and_growth_of_the_continental_crust_in_the_Phanerozoic?el=1_x_8&enrichId=rgreq-702bd483-4ecb-4828-a8b5-911c5d23eb6f&enrichSource=Y292ZXJQYWdlOzIzNTc2OTIxNDtBUzoxMDMzMjI4OTE1ODc1ODRAMTQwMTY0NTUwNTExNA==
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Shishkhid arc and ophiolite complex in northernmost Mongolia 

(Konnikov et al., 1994; Kuzmichev et al., 2005) and the large 

ca. 665 Ma Bayankhongor ophiolite in western Mongolia. Far-

ther south, a broad belt of 570 Ma ophiolites extends from south-

ern Tuva (Agardagh Tes-Chem; Pfänder and Kröner, 2004) into 

Mongolia via Dariv and Khantaishir (Khain et al., 2003; Matsu-

moto and Tomurtogoo, 2003).

Early Paleozoic arc formation dominates much of Kazakh-

stan (Heinhorst et al., 2000; Degtyarev and Ryazantsev, 2007; 

Kröner et al., 2007) and Mongolia (Ruzhentsev and Burashnikov, 

1996; Badarch et al., 2002) and, as documented below, was fol-

lowed by Carboniferous ophiolite formation south of Ulaan-

baatar (Tomurtogoo et al., 2005), Silurian to Permian arc forma-

tion in southern Mongolia (Lamb and Badarch, 1997; Badarch et 

al., 2002), and fi nally, late Permian suturing and accretion of the 

southern Central Asian Orogenic Belt to the North China craton 

(Xiao et al., 2003). This indicates that this belt is a long-lived 

accretionary orogen, details of which still have to be unraveled.

Şengör et al. (1993) proposed that an area of more than fi ve 

million square kilometers of juvenile crust was generated in cen-

tral Asia in the Paleozoic, making this the largest Phanerozoic 

area of crustal growth, comparable, in crust-production rates, 

to the Neoproterozoic Arabian-Nubian shield (Reymer and 

Schubert, 1987). However, one striking aspect of the Central 

Asian Orogenic Belt in comparison to the Arabian-Nubian shield 

is the large volume of felsic volcanic rocks, particularly in Mon-

golia, and the relative paucity of true andesites. Furthermore, 

there is increasing evidence from precise zircon geochronology 

that Precambrian basement is more widespread in the belt than 

previously assumed (e.g., Yarmolyuk et al., 2005; Kozakov et al., 

2007). In this contribution we particularly examine this aspect 

and summarize our fi eld relationships and precise zircon ages 

from Kazakhstan and Mongolia in order to test which of the tec-

tonic models proposed so far is most compatible with the avail-

able age and isotopic data. Bykadorov et al. (2003) and Windley 

et al. (2007) have already advanced important arguments why the 

Central Asian Orogenic Belt is unlikely to have evolved from a 

single, long-lived arc, and we discuss some of this evidence and 

further arguments against the single-arc hypothesis after presen-

tation of our fi eld and age data.

SOUTHERN SIBERIA, NORTHERN AND WESTERN 

MONGOLIA

The earliest history of ocean opening, probably linked to initi-

ation of the Paleo-Asian ocean, is recorded by the 1020 Ma forearc 

Dunzhugur ophiolite in East Sayan, southern Siberia, that, together 

with a volcanic arc and blueschist accretionary wedge, was thrust 

onto the margin of the Siberian craton (Khain et al., 2002), prob-

ably during an accretion-obduction event prior to 790 Ma (Kuzmi-

chev et al., 2001). Farther northeast at Lake Baikal, the ca. 1035 Ma 

Nurudukan arc and ophiolite suite records a similar tectonic setting 

(Khain et al., 2002; Dobretsov et al., 2003).

The next younger event, farther south, is exemplifi ed by the 

evolution of the large but tectonically complex ca. 920–630 Ma 

Baikal-Muva-Dzhida-Yenisei arc and ophiolite terrane (Khain 

et al., 1997; Sklyarov et al., 2003), including the 800 Ma Shish-

khid ophiolite complex of northern Mongolia that formed in an 

extensional island-arc environment (Kuzmichev et al., 2005). 

Kuzmichev et al. (2005) have recently identifi ed a 600 km-long 

~750 Ma accretionary prism, known as Oka belt, in southern 

Siberia and adjacent northern Mongolia and considered this to be 

an ancient analog of the Tertiary Shimanto belt in Japan.

The largest ophiolite complex of the Central Asian Oro-

genic Belt at Bayankhongor, western Mongolia (Buchan et al., 

2001), has now been dated at 665 ± 15 Ma (sensitive high-reso-

lution ion microprobe [SHRIMP] zircon age of anorthosite from 

a layered gabbro sequence; Kovach et al., 2005) and lies in the 

same tectonic position as Shishkhid on the margin of the Tuva-

Mongolia block. Kovach et al. (2005) also pointed out that the 
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Figure 1. Simplifi ed tectonic divisions of central Asia. The Central 
Asian Orogenic Belt (CAOB), also known as the “Altaid tectonic col-
lage” (Şengör et al., 1993), is situated between the Siberian craton in 
the north and the Sino-Korean and Tarim cratons in the south. Red ar-
eas are exposed Archean to Paleoproterozoic rocks. Yellow-brown area 
surrounding Siberian craton is late Meso- to Neoproterozoic part of 
the Central Asian Orogenic Belt. Brown area is Paleo- to Neoprotero-
zoic Yangtze-Cathaysia craton. Green pattern, including the Japanese 
islands, represents Pacifi c fold belts. K—Kokchetav (in northern Ka-
zakhstan); SKC—Sino-Korean craton. Long broken lines are political 
boundaries; short broken line is approximate border between “Baika-
lian” and Phanerozoic domains of the Central Asian Orogenic Belt. 
The approximate locations of Figures 2 and 3 are indicated. Modifi ed 
from Jahn (2004).
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Bayankhongor ophiolite has a geochemical signature comparable 

to that of the Ontong Java Plateau; this may be the fi rst oceanic 

plateau to be defi ned in the Central Asian Orogenic Belt, and the 

comparison is consistent with the fact that this 300 km long ophi-

olite is far larger than any other ophiolite in the orogenic belt.

This was followed, still farther south, by a broad belt of 

late Neoproterozoic ophiolites and arc terranes extending from 

Tuva in southern Siberia (Tes-Chem ophiolite, 570 Ma; Pfänder 

and Kröner, 2004) to western Mongolia and including the well-

exposed and complete ophiolite sections of Dariv and Khan-

taishir (both ca. 570 Ma; Khain et al., 2003; Matsumoto and 

Tomurtogoo, 2003).

The northernmost part of the Central Asian Orogenic Belt 

adjacent to the Siberian craton was strongly deformed and meta-

morphosed after having been accreted to the Siberian margin, and 

signifi cant crustal thickening leading to extensive granulite for-

mation occurred at ca. 475 Ma (Donskaya et al., 2000) during a 

transpressive collisional event. This is particularly well exempli-

fi ed by the Olkhon terrane fringing the craton along the northern 

shore of Lake Baikal (Fedorovsky, 1997, 2004), where a Neopro-

terozoic passive margin sequence and an early Paleozoic island-

arc assemblage (previously interpreted as Paleoproterozoic base-

ment) were thrust over Paleoproterozoic rocks of the craton in the 

early Paleozoic (Fedorovsky, 1997; Fedorovsky et al., 2005). The 

marginal region of the Siberian craton also shows that orogenic 

episodes, previously separated into a Neoproterozoic “Baikalian 

orogeny” (yellow-brown area on Fig. 1) and an early Paleozoic 

“Caledonian orogeny” are, in fact, part of a continuous sequence 

of accretion and collision events in the northern Central Asian 

Orogenic Belt (Fedorovsky et al., 2005).

Similarly, the Tuva-Mongolian Massif, previously inter-

preted as a Precambrian microcontinent because of the occur-

rence of high-grade rocks (Mossakovsky et al., 1993; Berzin 

and Dobretsov, 1994), has now been shown to consist of discrete 

Neoproterozoic tectonic domains, juxtaposed by thrusting prior 

to 497 Ma and subjected to high-grade metamorphism between 

497 and 489 Ma (Kozakov et al., 2003, 2005; Yarmolyuk et al., 

1999; Salnikova et al., 2001).

South of Lake Baikal and extending into northernmost Mon-

golia is the Dzhida terrane where late Neoproterozoic to early 

Paleozoic ophiolite, island arc, and backarc basin complexes 

are interpreted to have accreted in the Paleo-Asian ocean and 

onto the southward-growing Central Asian Orogenic Belt (Gor-

dienko and Mikhaltsov, 2001; Gordienko and Filimonov, 2005). 

This terrane also contains a boninite suite (Almukhamedov et 

al., 2002) and a large allochthonous seamount (Gordienko and 

Filimonov, 2005).

These results imply that a large part of the northern Cen-

tral Asian Orogenic Belt, including southern Siberia and north-

ern Mongolia, had accreted to the Siberian craton through the 

Neoproterozoic until the end of the Ordovician during what were 

previously considered discrete and different orogenic events, 

named “Baikalian” (Neoproterozoic) and “Caledonian” (early 

Paleozoic) in the Russian literature (Zonenshain et al., 1990; 

Gordienko, 2006). Windley et al. (2004, 2007) suggested that this 

accreted and stabilized terrane extended as far south as the Main 

Mongolian Lineament (Yarmolyuk, 1983; Windley et al., 2004), 

a major tectonic line to the south of which lay an open ocean, the 

subduction of which gave rise to Silurian, Devonian, and Carbon-

iferous island arcs and accretionary complexes (Fig. 2).

SOUTHERN KAZAKHSTAN

In Kazakhstan, several microcontinental fragments with 

Precambrian granitic gneisses have been identifi ed (Abdulin 

et al., 1995) (Table 1), variously considered to be derived by 

Neoproterozoic rifting from the Siberian margin (Berzin and 

Dobretsov, 1994) or the East Gondwana margin (Mossakovsky 

et al., 1993; Kheraskova et al., 2003). The latter view is based 

on (1) similarities in the late Neoproterozoic and early Paleo-

zoic stable margin sequences between Kazakhstan, Australia, 

China, and Tarim (Eganov and Sovetov, 1979) and (2) the fact 

that Kazakhstan has consistently drifted northwards from at 

least the Early Ordovician through the Permian as indicated by 

paleomagnetic data (Bazhenov et al., 2003; Collins et al., 2003; 

Alexyutin et al., 2005). Some investigators consider this rifting 

event to be related to breakup of the Rodinia supercontinent 

(e.g., Kheraskova et al., 2003), but the origin of continental 

fragments in the Central Asian Orogenic Belt remains uncertain. 

We have dated zircons from one of these crystalline complexes 

exposed in the Chu-Yili microcontinent (Nikitin and Nikitina, 

2000), in the Russian literature also known as the “Zheltau 

Massif” or “Anrakhai-Altynemel microcontinent” (Avdeyev et 

al., 1990; Abdulin et al., 1995), and also from the accretion-

ary terranes in traverses southwest of Lake Balkhash (Figs. 3 

and 4). For this we used SHRIMP and the Pb-Pb evaporation 

technique, complemented by Sm-Nd whole-rock data. We have 

specifi cally investigated the fi eld relationships in the Koyandi-

sai-Uzunbulak area, the Kendyktas Mountains, the Sulu River 

area, and at the southwest end of Lake Balkhash near the village 

of Chiganak (Fig. 3).

The basement complex in the Anrakhai Mountains consists 

of strongly deformed and partly migmatized granitoid gneisses, 

granites, strongly foliated amphibolites and rare crystalline 

schists of likely sedimentary origin. The zircons from a well-foli-

ated granite-gneiss exposed in the Koyandisai River in the Uzun-

bulak area (Fig. 3) were dated on the Perth SHRIMP II and are 

long-prismatic with rounded terminations and show oscillatory 

zoning under cathodoluminescence and in backscattered images 

(Fig. 5A), typical of magmatic growth. Four grains were ana-

lyzed (sample KZ 19, Table 2), and the discordant data yielded 

an upper concordia intercept at 2791 ± 24 Ma and a lower inter-

cept at 1661 ± 43 Ma (Fig. 6A). The older age is interpreted to 

refl ect the time of gneiss protolith emplacement, whereas the 

lower intercept age probably refl ects Pb loss. However, there is 

no recorded event at this time in the basement of Kazakhstan, 

and the zircons do not reveal younger overgrowths (Fig. 5A), so 

we are hesitant to consider this “age” to signify a major thermal 

https://www.researchgate.net/publication/240793862_The_Vendian-Early_Paleozoic_History_of_the_Continental_Margin_of_Eastern_Paleogondwana_Paleoasian_Ocean_and_Central_Asian_Foldbelt?el=1_x_8&enrichId=rgreq-702bd483-4ecb-4828-a8b5-911c5d23eb6f&enrichSource=Y292ZXJQYWdlOzIzNTc2OTIxNDtBUzoxMDMzMjI4OTE1ODc1ODRAMTQwMTY0NTUwNTExNA==
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event. In any case, the above age documents Archean basement 

in the Anrakhai gneiss terrain.

A sample of well-foliated granite-gneiss in the Serektas River 

(KZ 12) that is intrusive into a sequence of fi ne-grained felsic 

gneisses of probably sedimentary origin contains long-prismatic, 

euhedral zircons, and evaporation of four grains produced a mean 
207Pb/206Pb age of 1789.1 ± 0.6 Ma (Table 3; Fig. 7A). Another 

sample of fi ne-grained felsic gneiss (KZ 18) from the Uzunbulak 

River northwest of Kopa (Fig. 3) contains long-prismatic zircons 

with rounded terminations (Fig. 5B) of which four grains yielded a 

mean 207Pb/206Pb age of 2187.1 ± 0.5 Ma, whereas one xenocrystic 

grain is as old as 2431.0 ± 1.0 Ma (Table 3; Figs. 7B and 7C). The 

mean Nd crustal residence age of this sample is 2.3 Ga (Table 4).

Extensive rifting in the Anrakhai basement is documented by 

Neoproterozoic bimodal volcanic sequences dominated by dacitic 

to rhyolitic lavas and tuffs and locally known as the Kopa For-

mation. We dated single zircons from a coarse-grained, porphy-

ritic and sheared rhyolitic rock (KZ 1) collected in the Kendyktas 

Mountains (Fig. 3), using the evaporation technique. The grains 

are long-prismatic with slight rounding at their terminations and 

well-developed oscillatory zoning defi ned by low- and high-U 

domains (Fig. 5C). The mean 207Pb/206Pb age is 775.9 ± 0.8 Ma 

(Table 3; Fig. 7D), and we interpret this to refl ect the time of base-

ment rifting and felsic volcanism. This corresponds to the wide-

spread end-Riphean rifting event documented in central Kazakh-

stan and the Russian Platform (Kheraskova et al., 2003). The 

mean Nd crustal residence age of this sample is 1.87 Ga (Table 4) 

and shows that the source of felsic volcanism is of crustal origin 

and refl ects melting of Paleoproterozoic basement.

Red gneissic granite in the hills northwest of Aschisu 

(Fig. 3) may be related to the above rifting event since six single 

zircons of one sample (KZ 22) yielded a mean 207Pb/206Pb age of 

741.5 ± 0.7 Ma (Table 3; Fig. 7E). Since the gneiss is overlain by 

Paleozoic supracrustal rocks, its deformation records a late Neo-

proterozoic event in southern Kazakhstan. The overlying strata 

consist of coarse clastic sediments, including conglomerates and 

interlayered felsic volcanic rocks. Zircons of a strongly deformed 

metadacite (KZ 20) collected in the northwestern part of the 

Aschisu River (Fig. 3) vary from perfectly euhedral with only 

slight rounding at their terminations and well-developed oscilla-

tory zoning (Fig. 5D) to well-rounded with older cores (Fig. 5E). 

Five grains were analyzed on SHRIMP and are highly variable 

in their isotopic composition (Table 2). The youngest, euhedral 

grain is concordant (Figs. 5D and 6B) and has a 206Pb/238U age of 

534 ± 7 Ma. Three additional grains defi ne a discordia line whose 

upper concordia intercept age of 1365 ± 24 Ma is determined by 

one concordant analysis (Fig. 6B), and the lower intercept is at 

503 ± 178 Ma, compatible with the youngest concordant grain. 

The core of one additional well-rounded grain (Fig. 5E) has a 

minimum 207Pb/206Pb age of 2441 ± 9 Ma (Table 2; Fig. 6B, 

inset). We interpret the 1365 and 2441 Ma ages to refl ect zir-

con inheritance from the basement complex, whereas the early 

Cambrian age of 534 Ma probably represents the time of dacite 

formation. The interlayered volcanic and sedimentary rocks here 
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Figure 2. Generalized map of Mongolia showing main tectonic units (from Windley and Xiao, 2004). 
Locations of Figures 9 and 17 are indicated.
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TABLE 1. ISOTOPIC AGE DATA USED IN STRATIGRAPHIC CHART OF THE EARLY PRECAMBRIAN OF KAZAKHSTAN AND KYRGYZSTAN 

No. Composition 
(rock, mineral) 

Sampling area Formation Method Age 
(Ma)

Laboratory

  1 Biotite-amphibole crystalline schist, 
metamorphogenic zircon first 
generation

Middle Tian Shan, Sarydzhaz 
area, Kuilyu River 

Kuilyu suite Pb-Pb isochron 2600 ± 50 Institute of Geology, Bishkek, 
Kyrgyzstan 

 evoba sa 0062 aidrocsid bP-U evoba sa evoba sa evoba sa 2  

 evoba sa evoba sa evoba sa 3  
207

Pb/
206

Pb 2570 ± 50 Kaz IMS, Alma-Ata, 
Kazakhstan 

  4 Biotite gneiss, metamorphogenic zircon 
first generation 

 ,kekhsiB ,ygoloeG fo etutitsnI 03 ± 0752 evoba sa evoba sa evoba sa
Kyrgyzstan 

 evoba sa 0481 evoba sa evoba sa evoba sa tsihcs enillatsyrc elobihpma-etitoiB 5  

 evoba sa 0091 evoba sa evoba sa evoba sa evoba sa 6  

  7 Quartz-garnet-muscovite schist; 
metamorphic zircons 

Kokchetav area, eastern 
shore of Lake Chelkar  

Berlykskaya suite, 
Zerendinskaya series 

U-Pb discordia >2000 KazIMS, Alma-Ata, 
Kazakhstan 

 evoba sa evoba sa evoba sa 8  
207

Pb/
206

Pb 1950 as above 

 ,seires ayaksnidnereZ fissam vatehckoK ssieng dezitinarG 9  
altered due to 
granitization

as above 1200 ± 75 GEOKHI, Moscow, Russia 

 evoba sa 56 ± 0501 evoba sa evoba sa evoba sa evoba sa 01

 evoba sa 08 ± 5811 evoba sa evoba sa evoba sa evoba sa 11

 aissuR ,wocsoM ,UGM 0021 aidrocsid bP-U evoba sa evoba sa evoba sa 21

13 Garnet-micaceous schists and 
muscovite schists 

Aktyuz-Boordy area, Malyi 
Kemin River 

Aktyuz complex, 
granitization,
mylonitization

Pb-Pb isochron 1140 ± 60 KazIMS, Alma-Ata, 
Kazakhstan 

 evoba sa 06 ± 0411 aidrocsid bP-U evoba sa evoba sa evoba sa 41

 evoba sa 05 ± 0321 norhcosi bP-bP evoba sa evoba sa evoba sa 51

 evoba sa 05 ± 0321 aidrocsid bP-U evoba sa evoba sa evoba sa 61

17 Garnet-micaceous schists, syntectonic 
gneiss-granites, metamorphic zircon 

Makbal area, western part of 
the Kyrghyz Ridge, Makbal 
River 

 ,,kekhsiB ,ygoloeG fo etutitsnI 001 ± 5612 evoba sa seires zigriK
Kyrgyzstan 

 ,atA-amlA ,SMI zaK 001 ± 0102 evoba sa evoba sa evoba sa evoba sa 81
Kazakhstan 

19 Quartzites and schists, detrital and 
metamorphic zircons (?) 

Makbal area, western part of 
Kyrghyz Ridge, Makbal 
River 

Kirgiz series U-Pb discordia 2028 ± 11 as above 

20 Quartz-garnet-muscovite schist, detrital 
and metamorphic zircons 

Makbal area, northern slope of 
Kyrghyz Ridge, Mamai-
Kaindy River 

as above 
207

Pb/
206

Pb 1870 as above 

 evoba sa 05 ± 0291 norhcosi bP-bP evoba sa evoba sa evoba sa 12

22 Quartz- eclogite rock, garnet Makbal area, west of the 
Kyrghyz Ridge, Tyuekarn 
Pass 

Tyuekaryn suite, Kirgiz 
series

K-Ar 1688 ± 75 as above 

 evoba sa 57 ± 8761 evoba sa evoba sa evoba sa evoba sa 32

24 Crystalline schists, metamorphic 
zircons, later (?) metamorphic stages 

 evoba sa 11 ± 8831 aidrocsid bP-U etius nybahcyraS evoba sa

25 Granites, magmatic zircons Karsakpai area, South Ulutau, 
west of Kar-sakpai village, 
north of Maityube  hill 

Zhaunkarskiy Complex, 
North-Sarysu Massif 

Pb-Pb isochron 2230 IGG, UNC 

(continued)
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TABLE 1. ISOTOPIC AGE DATA USED IN STRATIGRAPHIC CHART OF THE EARLY PRECAMBRIAN OF KAZAKHSTAN AND KYRGYZSTAN (continued)

No. Composition 
(rock, mineral) 

Sampling area Formation Method Age 
(Ma)

Laboratory

26 Granite-gneiss; magmatic zircons Junggar region Pi  aissuR ,wocsoM ,UGM 021 ± 5171 hT-bP-U fissaM reno

 evoba sa 0081 aidrocsid bP-U xelpmoc ssieng-etinarG evoba sa evoba sa 72

 norhcosi bP-bP fissaM renoiP evoba sa evoba sa 82
(microprobe)

1950 IGG, UNC 

29 Nepheline-syenite, magmatic zir  evisurtni ,fissaM iapkasraK evoba sa snoc
into the surrounding 
gneisses

U-Pb discordia 1675 ± 110 MGU, Moscow, Russia 

 norhcosi bP-bP evoba sa evoba sa evoba sa 03
(microprobe)

1380 IGG, UNC 

31 Sericite-feldspar schist, detrital zircons West Sarysai-Teniz region, 
upper reaches of Kirei River 

Opar suite 
207

Pb/
206

Pb 
U-Pb-Th 

3240 ± 480 MGU, Moscow, Russia 

 CNU ,GGI 0723 eborporcim bP-bP evoba sa evoba sa evoba sa 23

33 Quartz-biotite schist, detrital and 
metamorphic zircon 

 etius uatzigO aera uhC
207

Pb/
206

Pb 
U-Pb-Th 

1750 ± 50 Kaz IMS, Alma-Ata, 
Kazakhstan 

34 Quartz-garnet-micaceous schist, 
metamorphic zircon, later 
metamorphic phases 

Kokchetav area, Lake Chelkar Berlykskaya suite U-Pb discordia >2000 as above 

35 Pegmatite, muscovite Ishkeolmes area Granite-gneiss in 
Stepnogorsk series 

K-Ar 1880 ± 60 IGEM, Moscow, Russia 

36 Porphyroids, magmatic zircon Atasu-Mointy area, upper 
reaches of Atasu River 

Urkendeuskaya suite Pb-Pb isochron 1850 ± 30 MGU, Moscow, Russia 

 evoba sa 06 ± 0581 aidrocsid bP-U evoba sa evoba sa evoba sa 73

38 Granite-gneiss and granites, magmatic 
zircon

Karakamys area Localized in Karakamys 
suite

as above 1900 Kaz IMS, Alma-Ata, 
Kazakhstan 

39 Quartz-biotite crystalline schist, 
metamorpic zircon (late generation) 

 evoba sa 0571 norhcosi bP-bP etius symakaraK evoba sa

40 Quartz-biotite crystalline schist, 
metamorphogenic zircon (late 
generation)

 evoba sa evoba sa
207

Pb/
206

Pb 
U-Pb-Th 

1755 as above 

41 Biotite gneiss, metamorphic zircon (late 
generation)

Karakamys area, out-skirts of 
Anrakhai Mountains, middle 
reaches of Koyandsai River 

Uzunbulak suite, Anrakhai 
series

U-Pb discordia 1797 ± 8 as above 

42 Gneiss-granites and granitized 
crystalline schists, metamorphogenic 
zircon

Karakamys area outskirts of 
Anrakhai Mountains 

Product of granitization of 
the Anrakhai series 

as above 1800 ± 50 as above 

 evoba sa 07 ± 0261 norhcosi bP-bP evoba sa evoba sa evoba sa 34

 dna kalubyraS ,satkydneK ssieng-etinarG 44
Kerbulak blocks 

Sarybulak suite U-Pb discordia 1977 ± 14 as above 

 evoba sa evoba sa evoba sa 54
207

Pb/
206

Pb 1817 as above 

   Note: From Resolution of 3rd Kazakhstan stratigraphic conference on the Precambrian and Phanerozoic (1991, p. 18–21). 
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Figure 3. Sample location map and zircon ages of southern Kazakhstan. Base map is from Chakabaev et al. (1979).
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Figure 4. Geological map of southern Kazakhstan (simplifi ed from 
Chakabaev et al., 1979) showing major tectonic units and working tra-
verses (I–IV). Location of Figure 3 is indicated.

may represent an overlap sequence of a continental margin arc on 

the edge of the Anrakhai microcontinent.

There are many ophiolites in southern and central Kazakh-

stan that range in age from Vendian to Ordovician (Yakubchuk, 

1994; Avdeev et al., 1995). The Sulu River area near the town 

of Mirny exposes a sequence of strongly deformed clastic sedi-

ments consisting of medium-grained gray to reddish sandstone 

(Djambul sequence) and laminated sandstone-siltstone (Solus-

hai sequence). These rocks rest directly, with a well-preserved 

sedimentary contact, on fragmented basaltic pillow lava and red 

jaspilite. The basalts, in turn, are underlain by isotropic gabbro 

cut by diabase dikes and containing small pods and lenses of 

plagiogranite. There is no doubt that this succession constitutes 

part of an ophiolite sequence, and Avdeev (1984) interpreted 

the association of ophiolitic rocks with clastic sediments, which 

is typical of several ophiolite occurrences in southern Kazakh-

stan, as refl ecting formation in a relatively narrow ocean basin. 

We envision a situation such as in the Red Sea or the Gulf of 

California since ocean fl oor sediments in larger oceans usually 

consist of fi ne-grained pelagic, cherty, and jaspilitic material 

(Anonymous, 1972).

We dated zircons from one of the above plagiogranite pods 

(KZ 33, Figs. 3 and 4), and four short-prismatic, euhedral grains 

yielded a mean 207Pb/206Pb age of 512.6 ± 1.0 Ma (Table 3; 

Fig. 7F), which we interpret to refl ect ocean crust formation 

in the middle Cambrian. Detrital zircons from the clastic sedi-

ments resting on ocean fl oor basalts are highly variable in age. 

The youngest, long-prismatic, and euhedral grains (Fig. 5F) from 

a sample of Djambul sandstone directly resting on basalt (KZ 

23; Fig. 3) have a mean early Ordovician 207Pb/206Pb evaporation 

age of 489.6 ± 1.0 Ma (Table 3; Fig. 7G), whereas two rounded 

detrital grains (Fig. 5G) have Precambrian ages of 2037.6 ± 4.3 

and 2782.1 ± 2.1 Ma (Figs. 7H and 7I), probably refl ecting input 

from the nearby Anrakhai microcontinent. Three rounded, detri-

tal zircons from a sample of the Solusai siltstone (KZ 26, Fig. 3) 

higher up in the sedimentary sequence yielded virtually identical 

isotopic ratios with a mean 207Pb/206Pb age of 2230.6 ± 0.4 Ma 

(Table 3; Fig. 8A) and also document sedimentary input from the 

nearby basement.

The antiquity of most detrital zircons proves derivation of 

the above sediments from an ancient crustal source and supports 

the view of Avdeev (1984) that the oceanic domains between the 

microcontinents and early Paleozoic arc complexes in southern 

Kazakhstan were relatively narrow, probably marginal basins.

Finally, we dated zircons from a well-exposed, early Paleo-

zoic arc complex from the western end of Lake Balkhash, exposed 

in roadcuts and a railway cut near the village of Chiganak (Fig. 3). 

A metadacite (KZ 42) with oscillatory-zoned zircons (Fig. 5H) 

and a granodiorite (KZ 39) with similar zircons (Fig. 5I) from 

this terrane provided almost identical mean 207Pb/206Pb zircon 

evaporation ages of 477.7 ± 1.1 and 480.0 ± 1.0 Ma respectively 

and, surprisingly, contain zircon xenocrysts as old as 2288 Ma 

(Table 3; Figs. 8B–8F). The Nd mean crustal residence age of the 

metadacite is 1.11 Ga (Table 4), and we consider it unlikely for 

these rocks to have formed in an intra-oceanic environment, but 

favor an Andean- or Japan-type setting. This view is compatible 

with the model of Heinhorst et al. (2000) who, on the basis of 

geochemistry and Nd isotopic systematics, suggested the central 

and northern Kazakhstan crust to have formed behind ocean-

ward-drifting continental slivers.

In summary, our data do not support a purely juvenile origin 

for the early Paleozoic rocks in the accretionary belt of south-

ern Kazakhstan. Furthermore, evidence for early Ordovician to 

late Carboniferous island-arc magmatism in central and north-

ern Kazakhstan (Zonenshain et al., 1990; Heinhorst et al., 2000; 

Filippova et al., 2001; Kröner et al., 2007) argue against a stable 

Kazakhstan block as early as late Ordovician, as inferred by 

Bykadorov et al. (2003), but support continuous accretion until 

at least the Carboniferous.

Avdeev et al. (1995) reported ophiolite ages of 680 and 

570 Ma from the Altai Mountains and elsewhere in Kazakhstan, 

and this is complemented by our Middle Cambrian plagiogranite 
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TABLE 2. SENSITIVE HIGH-RESOLUTION ION MICROPROBE (SHRIMP) ANALYTICAL DATA FOR SPOT ANALYSES  
OF MAGMATIC ZIRCONS FROM GRANITOID GNEISSES OF SOUTHERN KAZAKHSTAN* 

Sample no. U  
(ppm)

Th  
(ppm)

206
Pb/

204
Pb 

208
Pb/

206
Pb 

207
Pb/

206
Pb 

206
Pb/

238
U

207
Pb/

235
U

206
Pb/

238
U age 

(Ma)

207
Pb/

235
U age

(Ma)

207
Pb/

206
Pb age

(Ma)

KZ 19-1
†
 197 95 26,643 0.1333 ± 13 0.1615 ± 9 0.4148 ± 48 9.24 ± 13 2237 ± 22 2363 ± 12 2471 ± 10 

KZ 19-2 233 93 11,797 0.1078 ± 13 0.1851 ± 9 0.4926 ± 58 12.58 ± 17 2582 ± 25 2648 ± 13 2699 ± 9 

KZ 19-3 538 155 11,122 0.0832 ± 8 0.1408 ± 6 0.3621 ± 40 7.03 ± 9 1992 ± 19 2115 ± 11 2237 ± 7 

KZ 19-4 135 55 9180 0.1154 ± 18 0.1786 ± 13 0.4708 ± 58 11.59 ± 18 2487 ± 25 2572 ± 14 2640 ± 12 

KZ 20-1 228 82 4967 0.1145 ± 13 0.0843 ± 11 0.2009 ± 23 2.34 ± 4 1180 ± 12 1223 ± 13 1301 ± 26 

KZ 20-2 164 101 4688 0.1792 ± 31 0.0871 ± 14 0.2371 ± 27 2.85 ± 6 1372 ± 15 1369 ± 16 1364 ± 31 

KZ 20-3 249 132 19,303 0.1455 ± 12 0.1586 ± 8 0.4376 ± 50 9.57 ± 13 2340 ± 23 2394 ± 12 2441 ± 9 

KZ 20-4 187 106 3824 0.1617 ± 27 0.0861 ± 12 0.2171 ± 25 2.58 ± 5 1267 ± 13 1294 ± 14 1340 ± 28 

KZ 20-5 103 64 299 0.2354 ± 186 0.0598 ± 79 0.0863 ± 11 0.71 ± 10 534 ± 7 546 ± 57 596 ± 294 

   *All analyses were performed on the Perth Consortium SHRIMP II. For analytical details such as instrumental conditions, data reduction procedure, 

and error assessment see Kröner et al. (2003) and references cited therein. All errors are 1σ.
†
1 is spot 1 on grain 1, 2 is spot 1 on grain 2, etc. 

Figure 5. Cathodoluminescence (CL) and backscattered (BS) images of zircons from southern Kazakhstan dated in this study. (A) BS image of 
zircon from sample KZ 19. White spot is burn-mark of SHRIMP ion beam. (B) CL zircon image of sample KZ 18. (C) CL zircon image of sample 
KZ 1; note dark (high-U) and light (low-U) zoning. (D) CL image of zircon with well-developed oscillatory zoning. (E) CL image of zircon 
from sample KZ 20 with older core and overgrowth. (F) CL zircon image of sample KZ 23 showing euhedral shape and oscillatory zoning. (G) 
CL image of well-rounded, detrital zircon from sample KZ 23. (H) CL image of oscillatory-zoned zircon from sample KZ 42. (I) CL image of 
oscillatory-zoned zircon from sample KZ 39.
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TABLE 3. SINGLE-ZIRCON EVAPORATION DATA FOR SAMPLES FROM SOUTHERN KAZAKHSTAN

Sample no. Zircon color and 
morphology

Grain no. Mass 
scan

1
Evaporation 
temperature

(°C)

Mean
207

Pb/
206

Pb 

ratio
2
 and 2σ error

207
Pb/

206
Pb age 

and 2σ error 
(Ma)

 5.1 ± 9.577 64 ± 840560.0 4951 79 1 1 ZK

 0.1 ± 8.577 23 ± 740560.0 1061 471 2 

 2.1 ± 9.577 93 ± 740560.0 9951 131 3 

pink to clear, long-
prismatic, ends 

rounded

4 66 1598 0.065051 ± 68 776.0 ± 2.2 
mean of four grains 1–4 468  0.065048 ± 21 *775.9 ± 0.8

 2.1 ± 4.8871 27 ± 733901.0 5951 501 1 21 ZK

 8.0 ± 5.9871 94 ± 604901.0 7951 131 2 

 1.1 ± 0.0971 66 ± 334901.0 9951 131 3 

clear to light brown, 
long-prismatic,

idiomorphic

4 86 1598 0.109299 ± 82 1787.8 ± 1.4 
mean of four grains 1–4 453  0.109378 ± 33 1789.1 ± 0.6 

 1.1 ± 0.4181 96 ± 788011.0 8951 221 5  

 8.0 ± 2.7812 36 ± 528631.0 6951 921 1 81 ZK

 8.0 ± 1.7812 06 ± 508631.0 8951 921 2 

 5.0 ± 3.7812 73 ± 618631.0 7951 801 3 

clear to light gray-
brown, long-prismatic, 
ends slightly rounded 

4 74 1598 0.136772 ± 106 2186.7 ± 1.3 
mean of four grains 1–4 440  0.136802 ± 37 2187.1 ± 0.5 

 0.1 ± 0.1342 09 ± 096751.0 8951 821 5  

 4.1 ± 2.147 14 ± 388930.0 8951 58 1 22 ZK

 4.1 ± 8.047 34 ± 769360.0 7951 441 2 

 0.2 ± 7.147 06 ± 300460.0 8951 221 3 

 6.0 ± 8.147 91 ± 940060.0 9951 602 4 

 9.0 ± 5.147 82 ± 799360.0 7951 231 5 

yellowish, transparent, 
long-prismatic,

idiomorphic

6 60 1597 0.063994 ± 99 741.4 ± 3.3 
mean of six grains  71 ± 599360.0 947 6–1 *741.5 ± 0.7

 4.1 ± 6.984 63 ± 059650.0 6951 901 1 32 ZK

 6.1 ± 5.984 24 ± 749650.0 7951 48 2 

yellowish to clear, long-
prismatic, idiomorphic 

3 84 1597 0.056954 ± 27 489.7 ± 1.1 
mean of three grains 1–3 277  0.056950 ± 20 *489.6 ± 1.0

 3.4 ± 6.7302 703 ± 326521.0 5951 34 4 red, well rounded 

5 86 1598 0.194678 ± 244 2782.1 ± 2.1 

 4.0 ± 5.0322 92 ± 362041.0 8951 88 1 62 ZK

 4.0 ± 6.4322 33 ± 795041.0 9951 16 2 

brownish, long-
prismatic, idiomorphic 

3  1597 0.140131 ± 27 2228.8 ± 0.3 
mean of three grains 1–3 277  0.140275 ± 33 2230.6 ± 0.4 

 6.0 ± 1.5242 15 ± 241751.0  6951 26  

 6.1 ± 9.215 24 ± 555750.0 5951 201 1 33 ZK

 9.0 ± 7.215 42 ± 155750.0 8951 88 2 

 7.0 ± 8.215 81 ± 255750.0 2951 561 3 

yellowish to dark red, 
short-prismatic,

idiomorphic

4 132 1596 0.057536 ± 27 512.1 ± 1.0 
mean of four grains 1–4 487  0.057548 ± 13 *512.6 ± 1.0

 0.1 ± 5.974 52 ± 196650.0 7951 921 1 93 ZK

 8.1 ± 2.084 64 ± 907650.0 8951 901 2 

clear, long-prismatic, 
idiomorphic

3 215 1598 0.056706 ± 22 480.2 ± 0.9 
mean of three grains 1–3 453  0.056702 ± 17 *480.0 ± 1.0

 0.1 ± 9.745 72 ± 384850.0 6951 891 4  
 2.5 ± 2.8822 434 ± 530541.0 7951 44 5  

 3.2 ± 0.774 85 ± 726650.0 0061 48 1 24 ZK

 1.1 ± 1.874 92 ± 556650.0 6951 19 2 

 6.1 ± 0.874 14 ± 256650.0 8951 611 3 

 1.1 ± 9.774 92 ± 846650.0 6951 801 4 

clear to yellowish, 
transparent,
idiomorphic

5 146 1597 0.056638 ± 13 477.5 ± 0.5 

mean of five grains 1–5 545  0.056644 ± 15 *477.7 ± 1.1
 0.2 ± 1.348 36 ± 371760.0 8951 99 6  

1
Number of 

207
Pb/

206
Pb ratios evaluated for age assessment. 

2
Observed mean ratio corrected for nonradiogenic Pb where necessary. Errors based on uncertainties in counting statistics. 

   *Error based on reproducibility of internal standard. For analytical procedures and error assessment see Kröner and Hegner (1998) and references 
cited therein. 
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Figure 6. Concordia diagrams for SHRIMP zircon analyses of rocks from southern Kazakhstan. 
Data boxes for each analysis are defi ned by standard errors in 207Pb/235U, 206Pb/238U, and 207Pb/206Pb. 
A: Well-foliated granite-gneiss sample KZ 19, Koyandisai River. B: Strongly deformed metadacite 
sample KZ 20, NW of Aschisu.

age of 512 Ma presented above. These and further ages reported 

from Mongolia by Khain et al. (2003) demonstrate that Siberia 

and the East European craton could not have had a common 

margin during the late Neoproterozoic and early Paleozoic, 

because oceanic crust of the Paleo-Asian ocean separated the 

various cratonic blocks and microcontinental fragments. This 

is further supported by paleomagnetic results (compare data for 

Siberia by Smethurst et al. [1998a] and Pisarevsky and Natapov 

[2003] with data for Baltica by Smethurst et al. [1998b], Popov 

et al. [2002], and Nawrocki et al. [2004]). The best available 

paleomagnetic and paleofaunal data (e.g., Hartz and Torsvik, 

2002; Murphy et al., 2004; Meert and Lieberman, 2004) indi-

cate that in the early Cambrian, when the Kipchak arc was sup-

posed to have formed (Şengör et al., 1993), Baltica and Siberia 

were separated by ~30° of paleolatitude by a wide ocean com-

monly called the Aegir Sea.

NORTHERN AND CENTRAL MONGOLIA

Late Neoproterozoic to early Paleozoic stable continen-

tal margin (carbonates) and arc formations dominate much of 

northern and central Mongolia (Badarch et al., 2002), overlain 
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and intruded by voluminous Permian felsic volcanic rocks and 

granites. We have investigated a north-south traverse from the 

Tarvagatay terrane in the north to the Haraa terrane around and 

west of Ulaanbaatar as well as volcanic sequences in the area 

around Mörön, in the Idermeg terrane southeast of Ulaanbaatar 

(Fig. 9). Most of the arc-related rocks of northern and central 

Mongolia consist of Ordovician to Silurian volcanic and volca-

niclastic sequences, intruded by a variety of granitoids, and these 

rocks were generated in the relatively short time period from 460 

to 417 Ma (A. Kröner, B.F. Windley, G. Badarch, unpubl. data) 

(Table 5). However, there are also Carboniferous arc sequences, 

particularly around Ulaanbaatar (Popeko, 2002). One striking 

aspect of these rocks is a predominance of felsic compositions, 

mainly dacites and rhyolites and their sedimentary derivatives 

(Fig. 10), and we found these rocks in great abundance north of 

and around Ulaanbaatar as well as south of Ulaanbaatar and in 

the Mörön area (Fig. 9). Although these rocks are chemically 

arc-related, andesites and basalts are relatively rare (Figs. 10 and 

11). Murphy and MacDonald (1993) have shown that discrimi-

nation diagrams developed for volcanic rocks, in particular HFS 

(high fi eld strength) elements, are useful to reconstruct the prov-

enance of chemically immature sediments such as those exposed 

in northern and central Mongolia. We have plotted some of our 

trace element data for arc-related sedimentary rocks in the Nb-

Zr-Y discrimination diagram of Meschede (1986), and there is a 

well-developed grouping in the volcanic arc fi eld (Fig. 12).

We consider it unlikely that these large volumes of predomi-

nantly felsic rocks were generated entirely from juvenile sources 

since some samples contain Precambrian xenocrystic zircons, 

and Nd mean crustal residence ages for some of these felsic rocks 

are between 600 and 1300 Ma, suggesting that at least some 

older material was involved in their generation. In fact, there is a 

relatively large crustal block with Archaean to Paleoproterozoic 

rocks in south-central Mongolia, known as the Baidrag terrane 

(Kozakov et al., 1997; Badarch et al., 2002). A comparison of Nd 

isotope data for Central Asian Orogenic Belt rocks from Tuva, 

Transbaikalia, and Mongolia shows that Transbaikalia and north-

ern Mongolia (Fig. 13) refl ect the input of older crust, perhaps 

derived from the Siberian craton, whereas southern Mongolia 

appears to be largely, but not exclusively, juvenile, supporting the 

data of Jahn et al. (2004) and Helo et al. (2006).

By the end of the Ordovician, the northern part of the oro-

genic belt had probably amalgamated to create a new continental 

margin (the Main Mongolian Lineament of Windley et al., 2004) 

(Fig. 2). Evidence of stabilization by this time of the northern 

region is provided by Eocambrian to Cambrian shelf carbonates, 

Ordovician clastic basins, and relatively little-deformed, exten-

sive Ordovician ash-fall tuffs, dacites, and rhyolites (Figs. 2 and 

10). The Main Mongolian Lineament appears to be a major tec-

tonic boundary separating crustal provinces with different isoto-

pic characteristics. This is in agreement with the conclusion of 

Kovalenko et al. (2004) that the Neoproterozoic to early Paleo-

zoic area to the north of the lineament (mean age of 570–475 Ma) 

has a Nd mean crustal residence age of 1.1–0.55 Ga, whereas the 

late Paleozoic area to the south (mean age of 420–320 Ma) has a 

T
DM

 of 0.8–0.5 Ga.

The above scenario of a stabilized accreted margin in 

Ordovician times in northern and central Mongolia is a perfect 

setting to generate large volumes of felsic volcanic rocks, and 

we quote from Bryan et al. (2002): “The largest volume silicic 

igneous provinces occur along accreted continental margins…

and ultimately refl ect large-scale crustal melting processes in 

response to lithospheric extension and high thermal input from 

underlying hot mantle. Partial melting of hydrous, mafi c-inter-

mediate composition (amphibolite) crust is critical in generat-

ing the large volumes of predominantly I-type silicic igneous 

melt. In these cases, subduction as much as hundreds of mil-

lions of years prior to the emplacement of the silicic igneous 

province seems crucial in producing a hydrous lower crustal 

source receptive to melting.”

We have reconnaissance-dated zircons from several felsic 

volcanic samples and clastic sediments, complemented by Sm-

Nd whole-rock isotopic systematics, and these data are summa-

rized in Table 5. Specifi c examples to illustrate our conclusion 

that older material was involved in the generation of many of 

these rocks are given below.

Stable depositional conditions in northern Mongolia are 

documented by a carbonate-quartzite sequence (Darhan For-

mation) of presumed late Neoproterozoic to earliest Paleozoic 

age that is exposed in the hills south of the city of Darhan 

(Byamba, 1996). We have dated detrital zircons from a quartz-

ite exposed in a small abandoned quarry, using SHRIMP and 

the evaporation method.

Three quartzite samples were taken, NM 16, M 02/115, and 

M 04/146, and the zircon populations are very heterogeneous, 

containing transparent, perfectly euhedral grains with no trace 

TABLE 4. Sm-Nd ISOTOPIC COMPOSITION OF IGNEOUS ROCKS FROM SOUTHERN KAZAKHSTAN 

Sample no. Rock type Age 
(Ma)

Sm
(ppm) 

Nd 
(ppm) 

147
Sm/

144
Nd 

143
Nd/

144
Nd ±2σ eNd(t) T

DM

(Ma)

KZ1 Metarhyolite 776 6.01 33.65 0.1079 0.511862 10 –6.4 1.87 

KZ18 Felsic gneiss 2190 4.57 25.03 0.1104 0.511594 12 2.1 2.30 

KZ33 Plagiogranite 513 5.61 24.33 0.1394 0.512771 14 6.2 0.81 

KZ42 Metadacite 478 3.60 24.24 0.0898 0.512263 14 –0.9 1.11 

   Note: For analytical procedures see Lackschewitz et al. (2003). Isotopic analyses were performed in the Max-Planck-Institut  
für Chemie, Mainz. T

DM
—Nd model age assuming a depleted mantle reservoir (DePaolo, 1981). 
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of sedimentary transport as well as mostly red to red-brown, 

strongly abraded, well-rounded to spherical grains. As expected, 

the euhedral zircons were the youngest, and evaporation of two 

grains from sample M 02/115 provided a mean 207Pb/206Pb age of 

389.3 ± 1.4 Ma (Table 5; Fig. 14F), whereas the youngest grain in 

sample NM 16 has a 207Pb/206Pb age of 462.2 ± 1.2 Ma (Table 5; 

Fig. 14A). It follows from these data that the depositional age of 

the quartzite must be younger than 389 Ma, presumably middle 

Devonian. The remaining detrital grains display various degrees 

of rounding, and the 207Pb/206Pb ages range from 812 to 1384 Ma 

(Table 5; Fig. 14), suggesting detrital input into the Darhan sedi-

ments from ancient continental sources. SHRIMP dating of fur-

ther detrital grains from sample M 04/146 produced ages varying 

between 784 and 2595 Ma (Table 5; Fig. 15D).

The area along the Haraa River northeast of Darhan is 

composed of basaltic, andesitic, and dacitic metavolcanic rocks 

of presumed early Paleozoic age, interlayered with volcanic-

derived sandstone, siltstone, and shale. Our sample M 04/143 

(location in Fig. 9) is a greenish sandstone, and the detrital 

zircons are almost exclusively well rounded. SHRIMP (non-

representative) reconnaissance dating revealed a large variation 

in ages with the youngest, idiomorphic grain at 498 ± 4 Ma 

and the remaining grains varying between 1693 and 2520 Ma 

(Table 5; Fig. 15A). An Ordovician depositional age is therefore 

likely for this sandstone, compatible with the volcanic rocks of 

this region (Table 5). Sample M 04/144 is a green sandstone 

of presumed Cambro-Ordovician age from a volcano-sedimen-

tary sequence similar to M 04/143 but farther to the southwest 

TABLE 5. SUMMARY OF ZIRCON AGES FOR VOLCANIC, GRANITOID, AND SEDIMENTARY ROCKS 
FROM NORTHERN AND CENTRAL MONGOLIA†

 ega nocriZ noitacol dna epyt kcoR .on elpmaS
(Ma)

Dating  
method

§

 .pavE 4.1 ± 0.164 ailognoM nrehtron ,nahraD fo S ,etiloyhR 41 MN

NM 16 Detrital zircons from quartzite N or Darham, northern Mongolia 462–840 Evap. 

 .pavE 0.1 ± 2.854 rataabnaalU fo EN ,etiloyhR 32 MN

 .pavE 0.1 ± 5.854 rataabnaalU fo EN ,ecneuqes cra otni evisurtni etinarG 42 MN

NM 26 Granite dyke, intrusive into arc sequence, NE of Ulaanbaatar 435.8 ± 1.0 Evap. 

 .pavE 0.1 ± 8.304 rataabnaalU fo N ,ffut cisleF 72 MN

 .pavE 9.1 ± 2.254 rataabnaalU fo N ,ffut citiloyhR 13 MN

NM 34 Rhyolite from Carboniferous volcanic sequence, S of Ulaanbaatar 348.8 ± 1.1 Evap. 

 .pavE 1.1 ± 3.433 rataabnaalU fo stricstuo nretsaehtron ,etiloyhR 06 MN

M 01/64 Quartz porphyry, Haraa arc sequence W of Ulaanbaatar      493 ± 5 SHRIMP 

M 01/91 Feldspar porphyry, arc sequence of Mörön area, east-central Mongolia 443.7 ± 3.4 SHRIMP 

 PMIRHS 3.4 ± 4.144 ailognoM nrehtron ,egnaR leetuB ,etiroidonarG 29/10 M

M 01/97 Leucogabbro from Haraa arc sequence, Mörön River, Herlen terrane      479 ± 3 SHRIMP 

M 02/115 Detrital zircons from quartzite S of Darhan, northern Mongolia 389–1384 Evap 

 .pavE 1.1 ± 5.063 ailognoM nrehtuos ,enarret leesT ,ssiengohtro cititamgiM 431/20 M

M 04/143 Detrital zircons from sandstone along Haraa River NE of Darhan 498–2520 SHRIMP 

M 04/144 Detrital zircons from Ordovician volcanic sandstone, Haraa terrane 512–2568 SHRIMP 

M 04/145 Detrital zircons from Ordovician volcanic sandsatone, Haraa terrane 483–1883 SHRIMP 

M 04/146 Detrital zircons from Eocambrian quartzite S of Darhan, northern Mongolia 784–2595 SHRIMP 

M 04/153 Detrital zircons from early Carboniferous sandstone, northern Mongolia 328–1065 SHRIMP 

 PMIRHS 7332–494 nuuraB fo N enotsdnas naicivodrO morf snocriz latirteD 451/40 M
†Data of A Kröner, B.F. Windley and G. Badarch, personal communication. 
§
SHRIMP (sensitive high-resolution ion microprobe)—U/Pb single grain age with 2σ error; Evap.—single grain evaporation 

207
Pb/

206
Pb age with 2σ (mean) error.
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(Fig. 9). The detrital zircon population is also similar, and two 

euhedral grains yielded concordant ages of 512 ± 48 and 556 

± 4 Ma, whereas the well-rounded remaining grains range in 

age from 790 to 2568 Ma (Table 5; Fig. 15B). This sample is 

therefore also compatible with an early Paleozoic depositional 

age and contains a record of substantial Precambrian continen-

tal input. Lastly, volcanic sandstone sample M 04/145 from the 

same general sequence was collected from a roadcut still farther 

west near the village of Bornuur (Fig. 8). As before, idiomor-

phic zircons are rare, and most grains are little to well rounded. 

SHRIMP dating produced one young, concordant, age of 483 

± 4 Ma, whereas the remaining analyses range in age between 

597 and 1883 Ma (Table 5; Fig. 15C). Again these data are 

compatible with a maximum Ordovician depositional age and 

substantial Precambrian detrital input.

We also analyzed detrital zircons from a volcanic-derived 

and fossiliferous early Carboniferous sandstone northeast of 

Ulaanbaatar (sample M 04/153, Fig. 9). This sample contains 

numerous clear, euhedral zircons showing virtually no sedimen-

tary transport, and the youngest concordant age of 328 ± 3 Ma 

(Table 5; Fig. 16A) suggests deposition in the Carboniferous, 

compatible with the fossil evidence. The remaining grains vary 

in age between 367 and 1065 Ma (Table 5; Fig. 16A), and here 

the input of ancient continental material is less pronounced than 

in the previous samples.

Our last sandstone sample from the early Paleozoic volcano-

sedimentary arc assemblage of northern Mongolia comes from an 

alternating sandstone-shale sequence exposed in a roadcut along 

the asphalt road just north of Bayangol, 153 km north of Ulaan-

baatar (M 04/154, Fig. 9). SHRIMP dating produced concordant 

ages ranging between 494 and 2337 Ma (Table 5; Fig. 16B), 

again revealing input of substantial Precambrian material and 

compatible with an Ordovician depositional age.

Input of ancient material is recorded not only in volca-

nic-derived arc sediments but also in igneous rocks of the arc 

sequences. A massive quartz porphyry from a sequence of 

strongly deformed felsic volcanic rocks west of Ulaanbaatar 

(sample M 01/64) yielded a mean SHRIMP 206Pb/238U age of 493 

± 5 Ma, based on the analysis of fi ve idiomorphic grains, whereas 

one euhedral zircon has a concordant age of 888 ± 6 Ma (Table 5; 

Fig. 16C) thus documenting at least some inheritance from the 

source terrain of the porphyry. A similar example of crustal con-

tamination is provided by a fresh leucogabbro sample (M 01/97) 

from a sequence of calc-alkaline volcanic rocks exposed on 

the Mörön River in the Herlen terrane (Fig. 9). The zircons are 

clear and idiomorphic, and eight concordant SHRIMP analyses 

provided a mean 206Pb/238U age of 479 ± 3 Ma, whereas four 

additional analyses are discordant but compatible with the above 

age (Table 5; Fig. 16D). However, three zircons in this sample 

are xenocrystic and provided ages of 810, 814, and 1982 Ma 

(Fig. 16D) thus again documenting involvement of older crust in 

the generation of the gabbro.

The above examples provide strong evidence for the conclu-

sion that early Paleozoic arc magmatism in northern and central 

Mongolia was not entirely intra-oceanic as previously assumed. 

This is also supported by whole-rock Sm-Nd isotopic systemat-

ics shown in Figure 13.

SOUTHERN MONGOLIA

Ocean crust formation still occurred south of the Main Mon-

golian Lineament in the early Carboniferous as indicated by a 

zircon age of 325 Ma for the Adaatsag ophiolite in south-central 

Mongolia (Tomurtogoo et al., 2005) that we ascribe to opening 

of the Mongol-Okhotsk ocean. Early to late Carboniferous mag-

matic activity in the Zam Bilgikh and Transaltai Ranges in the 

Gobi Desert of southern Mongolia is documented by zircon ages 

for a variety of granitoid rocks (K. Schulmann and A. Kröner, 

unpubl. data).

Several terranes of Mongolia containing metamorphic 

rocks and previously interpreted as Precambrian microconti-

nents have since been shown to be much younger, and a good 

example is the Tuva-Mongolian Massif of southern Siberia and 

northwestern Mongolia (Salnikova et al., 2001; Kozakov et 

al., 2005). The Tseel terrane in southern Mongolia (Fig. 17) is 

another example and consists of low-grade Early Devonian arc 

volcanics in the north dated at ca. 397 Ma (Kröner, Badarch and 

Windley, unpubl. data) (Fig. 17), which grade into successively 

higher-grade assemblages to the south with amphibolite-facies 

migmatitic gneisses (deformed arc granitoids), one of which (M 

02/134, Fig. 17) was dated at 360.5 ± 1.1 Ma (Table 3; Fig. 18). 

Rare granulite-facies rocks may correlate with a similar high-

grade assemblage in the Tsogt block farther west for which 

Kozakov et al. (2002) obtained a metamorphic age of 365 Ma. 

We interpret these high-grade rocks as representing the root 

zone of an arc system.

From southern Mongolia, Lamb and Badarch (1997) 

described a variety of Devonian and Carboniferous volcanic 

arcs ranging from submerged island arcs, mature oceanic arcs, 

and continental margin arcs. Helo et al. (2006) presented geo-

chemical and Nd isotopic data for metaigneous and metavol-

caniclastic rocks from a variety of ca. 470–290 Ma island-arc 

assemblages in the Gurvan Sayan and Zoolen Ranges, in order 

to defi ne their tectonic environments and their mode of crustal 

generation. These arc terranes formed during the last phases of 

the evolution of the Central Asian Orogenic Belt. The whole-

rock geochemical data are consistent with an origin in juve-

nile intra-oceanic arc/forearc and backarc settings. However, 

the remarkably wide range of initial ε
Nd

 values of ~+8 to –6 

indicates the presence of juvenile crust as well as much older 

material with mean crustal residence ages up to 1.5 Ga, and 

some Nd isotopic data indicate derivation of the host volca-

nic rocks from a variably rejuvenated Paleoproterozoic crustal 

domain (Helo et al., 2006). Our unpublished detrital zircon 

ages from arc-derived sediments in southern Mongolia (A. 

Kröner, M.T.D. Wingate, A. Demoux, G. Badarch) support this 

view (Fig. 17), and all these data convincingly demonstrate 

that the crust of the Central Asian Orogenic Belt in southern 
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Mongolia has an isotopically highly heterogeneous composi-

tion. Helo et al. (2006) speculated that a juvenile arc and backarc 

system was tectonically juxtaposed with a rejuvenated Paleopro-

terozoic microcontinent, a situation similar to that envisaged for 

Kazakhstan by Bykadorov et al. (2003). There appear to be only 

few areas in the orogenic belt where ε
Nd

(t) values are consis-

tently positive and as high as +8, and the Junggar terrane in the 

Xinjiang province of northwestern China is one of them (Chen 

and Jahn, 2004).

ARABIAN-NUBIAN SHIELD

The Arabian-Nubian shield is a wide Neoproterozoic accre-

tionary orogen at the northern end of the East African orogen 

(Kröner and Stern, 2005). It consists of continental-margin as 

well as intra-oceanic arc terranes and a few continental fragments 

containing Archean and Paleoproterozoic rocks. Magmatic ter-

ranes began to form at ca. 870 Ma, and terrane amalgamation 

was completed by ca. 600 Ma (for recent summary see Johnson 

and Woldehaimanot, 2003, and references therein). Reymer and 

Schubert (1987) calculated extraordinarily high crust-production 

rates for the shield, assuming that most of the arc-related rocks 

were juvenile, as suggested by low 87Sr/86Sr initial isotopic ratios 

and positive ε
Nd

(t) values. These rates are comparable, or even 

higher, than those proposed for the Central Asian Orogenic Belt 

by Şengör et al. (1993).

Recent SHRIMP dating of felsic metavolcanic and granitoid 

rocks from the northern Arabian arc sequences (Fig. 19) (Ken-

nedy et al., 2004, 2005; Hargrove et al., 2006) reveals zircon age 

patterns similar to the Mongolian felsic rocks. The majority of 

zircons in these samples are idiomorphic and constitute concor-

dant clusters, interpreted to refl ect the age of magmatism (Ken-

nedy et al., 2004, 2005) (Fig. 20). In addition, a variable number 

of grains, in some cases characterized by variously rounded mor-

phologies, exhibit substantially older ages (Fig. 20), in one case 

up to 2750 Ma, and these are interpreted as xenocrysts derived 

from an older basement (Kennedy et al., 2004, 2005; Hargrove 

et al., 2006). All these rocks refl ect various proportions of crustal 

input and are therefore unlikely to be entirely juvenile. Hargrove 

et al. (2006) were puzzled by the fact that their trace element and 

Nd isotopic signatures are primitive and speculated that large 

volumes of juvenile arc magmas could perhaps melt enough 

older crust to inherit xenocrystic zircons, yet retain their original 

arc and isotopic characteristics. Whatever the cause of zircon 

inheritance in the Arabian-Nubian shield rocks, it would appear 

that there was more old crust around than previously thought, 

and previous estimates for crust-production rates are almost cer-

tainly too high.

DISCUSSION AND CONCLUSIONS

The above zircon ages show that there appear to be remark-

able similarities between the Central Asian Orogenic Belt and 

the Arabian-Nubian shield, but the origin of ancient xenocrysts 

in seemingly juvenile arc-derived rocks remains enigmatic. We 

point out that the term “juvenile crust” cannot be defi ned pre-

cisely on the basis of Nd isotopic systematics alone. Even rocks 

with positive ε
Nd

(t) values may contain ancient crustal material, 

as shown for some of our samples from Kazakhstan and Mongo-

lia and as demonstrated for the shield by Kennedy et al. (2004, 

2005) and Hargrove et al. (2006). It is the proportion of mantle-

derived material versus material resulting from crustal recycling 

that counts, and such estimates contain a large degree of uncer-

tainty (e.g., Jahn et al., 2004). The high crust-production rates 

suggested for the orogenic belt and the shield were based on the 

simplistic assumption that most arc-derived rocks were juve-

nile, whereas more realistic estimates imply signifi cantly lower 

growth rates.

The Central Asian Orogenic Belt and the Arabian-Nubian 

shield have frequently been compared to the present southwest 

Pacifi c where ancient crustal fragments derived from Austra-

lia occur together with juvenile crust produced by subduction-

related magmatism, seafl oor spreading, and ocean plateau forma-

tion (Hall, 2002). This region, once accreted to Asia and caught 

up in the collision between Asia and Australia in ~50 m.y. from 

now, will probably look rather similar to the orogenic belt.

There have been some misconceptions about the role of gra-

nitic rocks (sensu lato) in the Central Asian Orogenic Belt. Şengör 

et al. (1993) considered that the subduction-accretion complexes 

of the Altaids were intruded by vast (granitic) plutons of mainly 

magmatic arc origin, and that half of these complexes, including 

the granitic rocks, were of juvenile origin. However, they failed 

to distinguish the relatively few granitic rocks in mature island 

arcs from the vast majority that can be broadly termed “crustal-

melt granites.” For example, granitic rocks occupy more than 

40% of the present surface area of the Chinese Altai, and most of 

these are posttectonic and garnet-bearing (Windley et al., 2002). 

From their Sm-Nd isotopic study of granitic rocks in several parts 

of the orogenic belt, Jahn et al. (2000) concluded that the major-

ity are of juvenile origin, “implying a massive addition of new 

continental crust.” However, these crustal-melt granitic rocks are 

only a proxy for the juvenile arcs that are the main component of 

the Central Asian Orogenic Belt. The granites are surrounded by, 

and presumably underlain by, juvenile arc-dominated rocks from 

which granitic material was derived by partial melting.

There are two different scenarios to explain the generation 

of silicic magmas. The fi rst is where felsic magmas are derived 

from a basaltic reservoir by fractional crystallization, or assimi-

lation combined with fractional crystallization (AFC). This gen-

erally produces relatively small magma batches, such as those 

described from seafl oor eruptions (Fiske et al., 2001), because 

to generate large volumes of felsic magmas, unreasonably large 

amounts of basalt must fi rst be crystallized (Riley et al., 2001). 

The second scenario is a continental margin where basaltic 

underplating provides heat for partial melting of crustal rocks, 

and this is considered more appropriate for large-volume felsic 

magma bodies such as the Sierra Madre Occidental in Mexico, 

the Choiyoi province of the Chilean Andes, and the large rhyolite 
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province in the Antarctic Peninsula and Patagonia (Riley et al., 

2001, and references therein).

The latter setting also seems applicable to the Central Asian 

Orogenic Belt of central and northern Mongolia that was stabi-

lized into a continental margin by early Ordovician time. We sug-

gest that the large volume of predominantly felsic magmatic rocks 

generated in Ordovician and Silurian times resulted from mixing 

between a fractionated mafi c underplate and partial melts of the 

previously stabilized lower continental margin crust that consisted 

predominantly of Neoproterozoic to Cambrian rocks. Therefore, 

many silicic rocks show apparent juvenile Nd isotopic signatures 

and model ages up to ca. 1100 Ma (Jahn et al., 2004; Kovalenko 

et al., 2004; our data for northern Mongolia; see Table 4). The 

Mongolian felsic rocks have trace element characteristics of sub-

duction-related magmas that are probably inherited from their 

source. Riley et al. (2001) observed that “water-assisted” genera-

tion of partial melts will occur across a broad region adjacent to 

an evolving arc, and the crust overlying the subduction zone will, 

over a period of time, become extensively intruded by hydrous, 

mantle-derived magmas. A large proportion of such magmas will 
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collect in the lower crust, generating a hydrous, amphibole-rich 

mafi c layer. We follow this model and suggest that such conditions 

were initiated in the Early Ordovician, or possibly earlier, through 

north-dipping subduction of oceanic lithosphere of the evolving 

Paleo-Asian ocean underneath the relatively young continental 

margin growing southwards away from the Siberian craton.

We thus agree with Şengör and Natal’in (1996) and Jahn 

et al. (2004) that juvenile crust formation in the Central Asian 

Orogenic Belt was considerable, but there was also a signifi cant 

amount of remelting of older, Archean to earliest Paleozoic crust, 

to produce the large Ordovician to Permian felsic volcanic prov-

ince observed in Mongolia and Kazakhstan. Therefore, crust pro-

duction was spread over a longer time-span than previously esti-

mated, and crust-production rates were not as high as assumed by 

Şengör and Natal’in (1996). As a corollary, the available ages and 

geochemical data for the orogenic belt make it unlikely that this 

vast accretionary belt was derived from one single, giant arc, and 

we favor a southwest Pacifi c-type scenario for its origin.
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trum plotted has been integrated from 439 ratios.

Figure 19. Terrane map of the Arabian part of the Arabian-Nubian shield 
showing major tectonic units (from Johnson, 1998). Magmatic rocks 
displaying variable degrees of crustal contamination as reported by Ken-
nedy et al. (2004, 2005) occur in the Hijaz, Afi f, Ad Dawadimi, and Asir 
terranes. Considerable inheritance is also described from the Jiddah and 
Hijaz terranes by Hargrove et al. (2006). f.z.—fracture zone.
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