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S U M M A R Y
A new approach for predicting traveltimes is proposed which makes use of sophisticated
smoothing and interpolation techniques applied to observations from large earthquake cat-
alogues. The technique produces 3-D empirical traveltimes directly from a database of ob-
servations and does not impose any arbitrary spatial scalelength on the data, for example by
smoothing observations over a pre-determined distance interval. This feature allows the spatial
variability in data density, as well as multiple length scales of heterogeneity, to be handled in a
natural way. After removing the empirical traveltimes from observed traveltimes, the remaining
residuals are spatially uncorrelated and, in this sense, all of the heterogeneity signal in the data
is accounted for.

Traveltimes predicted with the new approach compare favourably with those from 1-D and
3-D earth models. Application to nuclear blast data shows that traveltime residuals are reduced
by 62 per cent, and for earthquake residuals a reduction of up to 42 per cent is achieved across a
range of teleseismic phases. Our results show that the pattern of regional variability in P-wave
traveltimes can also be recovered accurately. In the epicentre determination of 25 nuclear blasts,
the use of empirical traveltimes in place of 3-D global velocity models reduced the average
mislocation by over 59 per cent.

This new approach can also be used to ‘de-noise’ large arrival time databases and to identify
outliers. The methodology is quite flexible and can equally well be applied to local and regional
seismicity.

Key words: earthquake location, global seismology, lateral heterogeneity, nuclear explosions,
seismology, traveltime.

1 I N T RO D U C T I O N

The accurate prediction of traveltimes is of critical importance to
many applications in seismology, such as hypocentre location and
body wave imaging of the mantle. The earliest 1-D traveltime tables
(e.g. Jeffreys & Bullen 1940) have been gradually improved in a
series of refinements (e.g. Dziewonski & Anderson 1981; Kennett
& Engdahl 1991; Kennett et al. 1995) to the point where the major
source of error in traveltime prediction comes from unmodelled
lateral heterogeneity.

At present, the effect of lateral heterogeneity on traveltime esti-
mation is usually accounted for in two ways. For short-scale litho-
spheric structure, methods based on station correction techniques
are often used (e.g. Wolfe et al. 1997). At longer scalelengths, per-
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turbations to 1-D traveltime tables in the form of 3-D earth models
parametrized by either spherical harmonics or rectangular cells are
popular.

20 years of body wave tomography have led to global 3-D models
featuring large-scale velocity anomalies (e.g. Su et al. 1994; Masters
et al. 1996); however, global tomography has only recently begun
to resolve structures smaller than 500 km (e.g. van der Hilst et al.
1997; Bijwaard et al. 1998; Boschi & Dziewonski 1999). Resolution
of global earth models is limited to structures larger than about 200
km. However, the influence of lateral heterogeneity on traveltime
residuals is apparent over smaller scalelengths (e.g. Gudmundsson
et al. 1990).

Most station correction techniques simply average residuals over
a large (pre-determined) volume to reduce the effects of noise,
and clearly any information at shorter distance scales is lost. Per-
haps more importantly, no account is taken of the spatial variabil-
ity in data density, and so simple averaging may over-smooth in
densely sampled regions and under-smooth in regions of sparse data.
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308 T. Nicholson, M. Sambridge and Ó. Gudmundsson

Nevertheless, some impressive recent studies along these lines have
been performed (Piromallo & Morelli 1998, 2001), providing the
motivation for the present work.

We propose a new approach, which we call 3-D empirical trav-
eltimes (ETT). The basic idea is to estimate a traveltime, for any
phase between any source–receiver pair, by directly interpolating
and smoothing over a corresponding database of arrival times and
their inferred hypocentres. In principle, the complete set of arrival
time observations recorded at a particular receiver contains all of
the information available. The philosophy in this paper is to use
this database directly to infer traveltimes, rather than using an earth
model, which is itself derived from the observations. In this way we
aim to build a flexible tool which avoids the necessary assumptions
built into the parametrization of an earth model, but which perhaps
more importantly accounts for the effects of lateral heterogeneity
on a wide range of spatial scalelengths, and thereby improves the
accuracy of traveltime prediction.

Our approach may be thought of as station corrections, which
continuously vary throughout a 3-D volume, or as a 3-D traveltime
table (although the full table need not be constructed), and is in
that sense similar to the Kriging approach that has been applied
successfully in two dimensions (e.g. Myers & Schultz 2000).

We demonstrate the potential of the new approach using examples
from International Monitoring System (IMS) stations in Australia,
Canada and Finland. We investigate the accuracy of ETTs using
a large number of observations of events from the catalogue of
Engdahl et al. (1998) together with a standard set of 25 teleseismi-
cally recorded explosions, and compare their accuracy with those
produced by 1-D and 3-D earth models.

We investigate several sources of error that may propagate into
ETTs, including the influence of errors in the assumed origin times
and locations of the database events. Finally, we relocate 25 explo-
sions using ETTs and compare our results with those found using
both a 3-D earth model and a station correction approach.

2 S TAT I O N C O R R E C T I O N
T E C H N I Q U E S

The simplest station correction procedures involve static correc-
tions, in which a single correction is applied to all observations of
a given phase at a station, irrespective of the event location (e.g.
Cleary & Hales 1966; Souriau & Woodhouse 1985; Robertson &
Woodhouse 1997). They are usually calculated by averaging the trav-
eltime residuals of all observations made at the station. Despite the
simplicity of this approach, Antolik et al. (2001) found that the mis-
location of sparsely sampled ground truth events could be reduced
by up to 19 per cent by applying static station corrections, calculated
from observations of ground truth events, even when compared with
the locations found using a 3-D global reference earth model. Joint
hypocentre determination (JHD) (Douglas 1967; Dewey 1972) and
master event techniques (e.g. Fitch 1975) implicitly apply a form of
static station correction.

Some station correction techniques involve different corrections
for individual source regions (e.g. Piromallo & Morelli 1998;
Richards-Dinger & Shearer 2000). The simplest of these are cap
averages, which, for global studies, involve dividing the Earth up
into many small regions and calculating a correction by averaging
the traveltime residuals of observations made at a station from all
events within a cap. Cap averaging has the advantage of being sim-
ple to apply; however, since the caps are usually large (5◦ × 5◦ caps
are the most common) they often cannot resolve correlations in the
residual pattern at length scales smaller than approximately 500 km.

Consequently, the signal due to smaller-scale structure is lost. Fur-
thermore, the size of the cap is fixed and so they do not adapt to data
density and are often invariant with depth. In addition, cap average
corrections are discontinuous from one cap to the next.

Richards-Dinger & Shearer (2000) proposed a different form
of cap average based on averaging only the residuals of ‘nearby’
events. This approach can adapt to data density. Their application
of cap-averaged traveltimes to event location in a regional catalogue
resulted in a significant reduction of scatter in the earthquake distri-
bution. Piromallo & Morelli (1998) proposed a ‘double-ended’ cap
average method called empirical heterogeneity corrections (EHC),
which are a form of summary rays. They average over stations as
well as events, so each heterogeneity correction applies to all sta-
tions in a region. The EHC calculated from observations made at
nearby stations can be used at a new station. Piromallo & Morelli
(2001) showed that the application of EHCs can reduce the mis-
location of explosions and earthquakes by 17 per cent and 12 per
cent respectively. Hypocentre location algorithms based on double
differencing (Got et al. 1994; Waldhauser & Ellsworth 2000) can
also be viewed as station correction approaches, although they are
rarely described in these terms.

Kriging has been used to smooth and interpolate traveltime resid-
uals to produce continuous 2-D source-specific station corrections
for relatively small groups of events (Schultz et al. 1998; Myers &
Schultz 2000). The application of kriging represents a statistically
more sophisticated approach to the modelling of variations in trav-
eltime residuals, and the basic statistical tools are similar in nature
to those used in the ETT approach developed in this paper. (One
difference is that kriging is computationally more demanding than
the technique presented here. A brief comparison appears in the
Appendix).

3 T H R E E - D I M E N S I O N A L E M P I R I C A L
T R AV E LT I M E S

By examining station correction techniques we can identify the
properties that an ideal traveltime estimator needs to possess. These
are: (1) the ability to account for traveltime perturbations spanning
all spatial scales; (2) the ability to adapt to different densities and
levels of noise in the observational data (in some self-consistent
way); (3) to be computationally efficient for the largest databases
available, for example those with millions of observations; and (4) to
be practical enough to repeat (perhaps many times) as newer (higher
quality) observations become available. Each of the station correc-
tion approaches described above have some of these properties, but
none has them all. We propose a new procedure in which all of these
objectives are met.

The specific problem addressed here is the estimation of teleseis-
mic traveltimes, for a given phase, to a given seismic station using
global arrival time databases. Such data sets are a major informa-
tion source for seismic mantle tomography; however, the events are
unevenly distributed across the globe and contain noise arising from
several sources, not least of which are the mislocations of database
events. To obtain a continuous, and robust, predictor of traveltime
residuals we must overcome noise by averaging or smoothing the
observations and filling in the gaps between events by some form
of interpolation.

The issue of hypocentre location errors requires further comment.
It is widely accepted that hypocentre errors contain both system-
atic and random components. We distinguish between the two by
defining random hypocentre errors as those that are spatially uncor-
related (i.e. in terms of source position), and thus lead to spatially
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incoherent time residuals, and defining systematic hypocentre errors
are those that are spatially correlated. Of course other factors influ-
ence residuals, for example picking errors and lateral heterogeneity.
Both may give rise to either correlated or uncorrelated residuals. We
treat all factors leading to uncorrelated residuals as ‘noise’ and all
factors leading to spatially correlated residuals as ‘signal’. This is
a pragmatic definition, but a clear limitation, although certainly no
worse than common practice in seismic body wave tomography. The
hope is that a traveltime estimator removes as much of the uncor-
related error as possible leaving only the signal, which represents
the influence of lateral heterogeneity and the unwanted effects of
correlated picking and systematic hypocentre errors.

The influence of correlated and systematic errors may be limited
by working with a database of high quality earthquakes with clear
impulsive recordings and well-determined hypocentres. However,
the use of such a database makes removing random errors more
difficult because of the small number of data. The use of a small
database also limits the resolution of the medium. Furthermore,
the highest quality ground truth data are only available from near-
surface events. On the other hand, a large database allows the effect
of random errors to be suppressed more effectively and small-scale
structure to be resolved. However, this introduces more systematic
errors because the locations of small events are more vulnerable to
systematic bias (Billings et al. 1994). We choose to concentrate on
teleseismic traveltimes, and use the large database of Engdahl et al.
(1998) (EHB) as a balance between these two extremes.

The procedure for constructing 3-D ETTs for a given phase from
a particular location x to a station at y consists of four steps.

(1) Identify an appropriate set of observations surrounding the
location x.

(2) Interpolate and smooth the chosen traveltime residuals to
produce a preliminary interpolant in the vicinity of x.

(3) Use the preliminary interpolant to identify and remove out-
liers from the database.

(4) Repeat the procedure on the filtered set of observations.

In principle, the final interpolant can be evaluated anywhere in
the region containing x to give the ETT to y; however, we will
normally only make use of it evaluated at x. The main steps of the
algorithm are discussed in turn below, starting with interpolation
and smoothing. It is convenient to leave the event selection until
last. For the moment we simply assume that a set of N observations
at station y are available.

3.1 Interpolating and smoothing the observations

The procedures used to produce a smooth 3-D interpolant of the
traveltime field into a station are thin-plate splines (TPS) and gen-
eralized cross validation (GCV). Without smoothing, TPS interpo-
lation gives the 3-D ‘surface’ of minimum curvature that fits all
observations (from irregularly spaced events) exactly. Smoothing is
required to minimize the effects of random hypocentre errors and ob-
servational noise in the database. GCV is the technique that imposes
smoothing on the TPS interpolation. It is convenient because it is
an automated process in which the level of smoothing is determined
by the amount of noise in the observations. Mathematical details
of the two procedures are given in Section 4. Note, however, that
smoothing only accounts for random, spatially uncorrelated effects
and not for systematic errors in locations of events (as discussed
above).

These smoothing and interpolation tools were used in Nicholson
et al. (2002) for the hypocentre location problem. In this earlier work

they were applied to the construction of a hypocentre misfit func-
tion measuring the similarity between a new event and previously
well-located events. In the present study they are applied directly to
traveltimes to represent the structural signal ‘seen’ by a receiving
station.

3.2 Removal of outliers

In step 3, outliers in the traveltime residuals are filtered because
they can lead to over-smoothing of the ETT function. This can oc-
cur because generalized cross validation minimizes a least-squares
measure of prediction error. A large error in a single observation
can lead to an unrealistically large estimate of error across the en-
tire distribution and consequently to over-smoothing. Outliers may
be due to sporadic forms of noise, such as phase misidentification,
which have a large effect on a small number of observations but
have no effect on the vast majority. Fortunately, the preliminary
ETT function can be used to identify outliers reliably and remove
them. This is done by simply rejecting all observations for which
the ETT residual after step 1 is more than two standard deviations
from the mean, which results in the removal of approximately 5 per
cent of observations. This is reasonable because a large residual at
the first stage indicates a noisy traveltime residual which does not
correlate well with those of nearby events. (Further details of outlier
removal in large earthquake databases appear in Nicholson 2002.)

3.3 Finding the optimal number of observations

The selection of events in the vicinity of x can be performed ei-
ther by taking all events within a specific epicentral distance, or just
the nearest N events. The latter approach guarantees a fixed num-
ber of data available for each interpolation and is used throughout
this study. The choice of N will influence the accuracy of the esti-
mated traveltimes, and some experimentation is required to find an
optimum value.

We calculate ETTs for 10 000 randomly chosen P arrivals from
the EHB catalogue and examine their accuracy as a function of N . In
each case the ETT was based on corresponding arrivals observed at
the same station, from the N events nearest the estimated hypocen-
tre location. The spread of the differences between calculated and
observed arrival times was determined for each value of N Note
that spread is a robust analogue of standard deviation, and is used
throughout this paper It is defined as the median of the absolute de-
viations from the median. A normalization factor of 1.4826 is used
to yield approximately the same value as the standard deviation for
data with a Gaussian distribution. For further details (see Hampel
et al. 1986).

Fig. 1 shows the spread of the prediction errors (i.e. the difference
between the ETT and the observed times) as a function of N . Note
that for each of the 10 000 calculations the observed arrival time is
not included in the corresponding database (i.e. it does not predict
itself). Therefore this is a true cross-validation test in which the
ETT performance is judged on its ability to estimate independent
data. The spread of the ak135 residuals is 1.20 s. Clearly the ETT
is significantly below this value for all N . The largest reduction in
spread, of 42.4 per cent over ak135, is found with 400 observations,
although any value between 200 and 800 observations could be used
without increasing the spread significantly. We choose a value of 400
for N irrespective of the epicentral distance between events. If fewer
than 400 observations are available at a station we take them all.

In summary, to calculate the ETT from a location x, we take the
nearest 400 ak135 residuals in the database, interpolate and smooth
them using thin-plate splines and generalized cross validation to
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50 100 200 400 800
0.68

0.7

0.72

0.74

0.76

0.78

0.8

Number of observations (N)

Sp
re

ad
 (

ob
se

rv
ed

−E
T

T
) 

(s
)

Figure 1. The spread of ETT prediction errors for 10 000 excluded P
observations as a function of the number of observations used to calculate
the ETT function. The spread of the ak135 residuals was 1.20 s. All values
of N reduced the residual spread significantly, but N = 400 produced the
largest reduction.

obtain a preliminary ETT function. We then evaluate the prelim-
inary ETT function at the locations of the 400 observations and
compare these predictions with the observed values. Those obser-
vations with significantly large residuals are removed as outliers.
The interpolation and smoothing are then repeated with the reduced
data set to produce the final ETT.

4 T H I N - P L AT E S P L I N E
I N T E R P O L AT I O N A N D G E N E R A L I Z E D
C RO S S VA L I DAT I O N

In this section we outline the statistical tools used in the 3-D
ETT procedure. Some further technical details are given in the
Appendix. Thin-plate spline (TPS) interpolation has been widely
used in a range of disciplines including airborne geophysical sur-
veys (Billings 1998), mapping deformations of the human heart
(Sanchez-Ortiz 1996) and earthquake hypocentre determination via
pattern recognition (Nicholson et al. 2002). Exact TPS interpola-
tion can be used to produce the curve or, in multiple dimensions,
hyper-surface, of ‘minimum curvature’ that fits an arbitrarily dis-
tributed set of traveltime observations exactly at the locations of the
events. This is a ‘least structure’ approach and is similar to the Oc-
cam’s inversion commonly used in geomagnetism (e.g. Constable et
al. 1987). Note that each traveltime residual is associated with the
location of the event from which it was observed.

The expansion of the thin-plate spline interpolant, s, at any point
x = (x , y, z) has the form

s(x) = p(x) +
N∑

n=1

λn(‖x − xn‖)2ln(‖x − xn‖), (1)

where ‖.‖ is the standard Euclidean norm. The set of N weights
{λn :n = 1, . . . , N} are defined at the N nodes or centres {xn :n =
1, . . . , N} (these are the locations of the N observations), and the
polynomial p(x) is given by

p(x) = a1 + a2x + a3 y + a4z. (2)

This polynomial accounts for the scalar mean of the distribution
and large-scale linear trends in the function across the entire data

distribution, while the weights represent the smaller-scale signal.
Therefore the second term in eq. (1) accounts for small-scale cor-
relations in the data. The calculation of the parameters λn and ai

from the data constitute the construction phase of the procedure, the
details of which are given in the Appendix. Once the polynomial
coefficients and weights have been determined we can calculate the
value of the TPS interpolant anywhere simply by evaluating eq. (1).
Therefore, if we wanted to store all the information necessary to re-
construct any interpolant we would need only 4N + 4 floating-point
numbers (i.e. the 3N coordinates of the locations of the observations,
the N weights and the four polynomial coefficients).

An illustration of TPS interpolation is shown in Fig. 2(a) for a
simple 1-D example. Here the problem is to reconstruct the function
c (the solid black/red curve) from the noisy data (shown as crosses).
In Fig. 2(a), each ‘observation’ is generated using

c(x, ε) = sin(x) + 0.25sin(10x) + ε, (3)

where the first two terms on the right represent the signal and the last
term the noise in each of the 200 ‘observations’ of the function c. In
this case, ε is a zero-mean Gaussian random variable with a standard
deviation of 0.25. Note that, in this 1-D example, no error is present
in the locations of the observations. The long-period oscillation is
clear in the observations. However, the short-period oscillation has
a similar amplitude to the noise and is therefore more difficult to
distinguish. This short-period oscillation would be very difficult to
resolve simply by averaging over a series of bins, even if we had
prior knowledge of the frequency of the oscillation.

Fig. 2(b) shows the exact TPS interpolant of the data (in
dark grey/blue). Note the large overshoots, which stem from the
minimum-curvature property of the TPS interpolation and the
(present) requirement that the curve fit the data exactly. Even with
the overshoots the curve is actually ‘smooth’, in terms of minimiz-
ing second derivatives, and so fits the long-period oscillation quite
well in some parts. It is clear that the requirement of exact data fit
must be relaxed in order to reduce the effects of noise in the data.

To determine a smoothed version of the TPS interpolant, for any
given smoothing parameter (µ), one minimizes a new quantity H ,
which is a combination of data misfit and curvature:

H (s, µ) =
N∑

i=1

[s(xi ) − ci ]
2 + µJ (s), (4)

where xi is the location of the ith observation, ci is the value of that
observation, s(xi) is the value of the interpolant at xi, and J (s) is a
measure of the smoothness of s(x). For details of how this function
is minimized see the Appendix. J (s) is the curvature measure that
exact TPS interpolation minimizes. Thus to determine an appro-
priate level of smoothing we must consider the common trade-off
between data fit and smoothness, which is regulated by the smooth-
ing parameter µ.

An arbitrary choice of µ may result in under- or over-smoothing,
both of which reduce the accuracy of the interpolant. Generalized
cross validation (GCV) provides an automated way to select µ based
on a quantitative measure of the noise in the data and is commonly
used with TPS interpolation (e.g. Wahba 1990). The basic proce-
dure is to cycle through a range of µ values and for each to calculate
N interpolants such that the ith interpolant is constructed with the
ith datum excluded. Each interpolant can then be used to predict the
value of the excluded datum. Noisy observations are likely to result
in large differences between predicted and observed values. A
quantity, G(µ), is defined as the sum of the squares of the differences
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Figure 2. A simple 1-D synthetic example. We are attempting to reconstruct
the black/red line, which is the noise-free function (ε = 0) given by eq. (3).
(a) The crosses show 200 ‘observations’ with random x in the range [0, 2π ]
and c given by eq. (3). (b) The exact TPS interpolant of the observations.
Note the large overshoots. (c) The smoothed TPS interpolant (dark grey/blue
line), with smoothing parameter chosen by GCV. The two light grey lines
denote the 95 per cent confidence interval for the smoothed interpolant. The
smoothed interpolant fits the true function well and the true function lies
within the confidence intervals for almost all values of x.

between the observed and predicted times. Specifically, G(µ), is
given by

G(µ) =
N∑

i=1

(si [xi ] − ci )
2, (5)

where si is the smoothed TPS interpolant calculated from all the
data points except the ith datum. G provides a measure of the ef-
fectiveness of that value of µ. A large G implies a poor fit to the
observations. For a small µ the interpolant will tend to fit the noisy
data very well (as in Fig. 2) and be a poor predictor of each excluded
datum, leading to high G. At the opposite extreme, a high µ will
give a very smooth interpolant which will also fit the excluded data
poorly, and lead to high G. At some intermediate value of µ a mini-
mum of G will be found, which can be taken as an optimal choice of
smoothing parameter. Hence one needs to minimize G with respect
to µ.

It would appear then that a large number of interpolants need to
be calculated to find an optimal µ, i.e. one for each value of µ and
each excluded data point. Fortunately, this is not the case because an
analytical expression is available to estimate an optimal µ (Craven
& Wahba 1979, see the Appendix for details). (A plot of G against
µ and a comparison between the analytical and exact value is shown
in Fig. 14, for the traveltime problem discussed in Section 7.)

In the 1-D example the smoothed interpolant is shown in Fig.
2(c) and corresponds to a smoothing parameter of 0.578 × 10−3.
The larger wavelength sine function has been resolved across all
values of x, and the smaller-wavelength oscillations are now clearly
visible. Recovery of the original function is, of course, not perfect.
In particular, the fourth and ninth peaks are poorly resolved, which
can be attributed to the random alignment of several data points
near these peaks, as shown in Fig. 2(a). Confidence intervals for
the interpolated curve can also be calculated, and the 95 per cent
confidence interval for the 1-D example is shown in Fig. 2(c). The
ability to estimate confidence intervals can be used to give error
bounds on the recovered signal. Here they are shown as an outer
(light grey) pair of curves and almost everywhere the true curve lies
within them.

In TPS interpolation and GCV smoothing we have a minimum-
curvature approach to interpolation and an automated way of deter-
mining the optimal smoothing parameter based on the level of noise
in the data. In the next section we use these tools to construct 3-D
ETT ‘surfaces’ from a database of arrival time observations.

5 E T T S AT I N T E R N AT I O N A L
M O N I T O R I N G S Y S T E M S TAT I O N S

Our goal is to represent the Earth as ‘seen’ by a particular receiver.
In this section we show several examples of the empirical tech-
nique, for P arrivals observed at the primary International Moni-
toring System (IMS) arrays called WRA, YKA and FINES in Aus-
tralia, Canada and Finland respectively. These stations were chosen
for their longevity of operation and because they are a reasonably
representative, if small, sample of the overall distribution of pri-
mary IMS stations. Note that, throughout this paper, all calculations
of ETTs for a particular source, receiver and phase exclude the orig-
inal database observation. Hence all assessments of ETT accuracy
are based on proper ‘cross-validating’ tests.
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5.1 Regional and teleseismic P observations made
at WRA between 1966 and 1998

Fig. 3(a) shows the observed ak135 residuals of 49 546 P and Pn
arrivals reported from WRA, plotted at the EHB location of each
event. The median residual, of −0.83 s, has been removed from all
the traveltime residuals shown in Fig. 3(a) for plotting purposes.
Despite the noise in the residuals, several features clearly stand out

Figure 3. The observed traveltime (left) and ETT (right) minus that predicted by ak135, plotted at the EHB locations of the events, for three IMS stations. (a)
and (b) P and Pn observations made at WRA; (c) and (d) P observations made at YKA, (e) and (f) P observations made at FINES.

in Fig. 3(a). Arrivals from shallow events in the Tonga subduction
zone are fast since large portions of their ray paths lie within the
subducting slab. This may also be an indication of a fast near-receiver
anomaly since the arrivals from events at mid-ocean ridges south
and southeast of the station, which we would expect to follow slow
near-source paths, also have large negative residuals.

Most arrivals from events west of the station follow slower-
than-average paths, which supports the presence of a low-velocity
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3-D empirical traveltimes 313

Figure 4. The observed traveltime (left) and ETT (right) minus that predicted by ak135, plotted at the EHB locations of the events, for P and Pn arrivals at
WRA. The median residual in each region has been subtracted from each time. The ETT residuals represent the correlated portion of the ak135 residuals. Note
that the ETTs resolve the residual variation as a function of depth well. This is particularly clear in (a) and (b), where shallow events (to the east) have negative
residuals while deep events have positive residuals.

anomaly, at a depth of greater than 300 km, beneath the west Aus-
tralian Craton (Gorbatov, private communication). The pattern of
residuals appears to be more complicated north of the station. Ar-
rivals from events in the Indonesian, Mariana, Ryuku and Kurile
subduction zones are all slow while those from the Philippine and
Japan subduction zones are fast. The Pn arrivals from shallow events
in Indonesia and New Guinea follow very fast paths to WRA, indi-
cating that the fast anomaly known to exist beneath the station (e.g.
van der Hilst et al. 1998), at depths shallower than 250 km, extends
at least part of the way to these locations.

The ETTs to the locations of these events are shown in Fig. 3(b).
All of the features that are clear in the raw residuals are also clear in
the ETTs. In particular, the fast arrivals from shallow events in the
Tonga and Philippine subduction zones are apparent, as well as the

slow arrivals from the continental and mid-ocean-ridge seismicity
to the west of the station. There is good agreement between the raw
residuals and ETTs in the very sparsely sampled intraplate seismic-
ity in east Africa, the Indian Ocean and the Hawaiian Islands. The
very early Pn arrivals for a group of events just north of Australia
stand out as by far the largest deviation from ak135. The amplitude
of the correlated signal in the raw residuals is also well reproduced
by the ETTs.

In Fig. 4 we focus on arrivals from the Tonga and Japan subduc-
tion zones. The raw residuals (4a) from events in the Tonga subduc-
tion zone show significant variation with depth as well as epicentral
position and are well reproduced in the ETT map (4b). Arrivals
from shallow events are likely to follow paths that pass through the
subducting slab, and are therefore fast. A smaller portion of the ray
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paths from deeper events lie within the slab so they follow slower-
than-average paths. The same trend is seen in the Ryuku and Japan
subduction zones, although the contrast is less marked.

The shorter-scale features in the residual pattern are also well re-
solved by the ETTs. We note that the sizes of some of these features
are of the order of the distance between events and are well beyond
the resolving power of summary rays or cap averages because these
procedures perform simple averaging of many nearby events. Given
that we are dealing with seismic waves with a wavelength of approx-
imately 10 km, one would expect that the sensitivity of arrival times
to heterogeneity would be at much larger distance scales. However,
we do not impose any minimum scalelength on the procedure and
so all effects are included.

5.2 Teleseismic P observations made at YKA between
1976 and 1998

Fig. 3(c) shows the traveltime residuals of all P arrivals at the YKA
station in Yellowknife, Canada. The median residual, of −0.56 s,
has again been subtracted from each figure. The Yellowknife array
lies on the northern shore of the Great Slave Lake at the western
edge of the Canadian Shield. As was the case for the WRA station
there is considerable correlation in the pattern of residuals; however,
the amplitude of most of the residuals at YKA appears smaller than
at WRA. Most observations south, east and north of the station have
negative residuals because the near-receiver portion of their ray path
passes through the fast shield. However, some regions in southern
Europe and continental Asia have positive (slow) residuals. Fur-
thermore, since the Yellowknife array is on the western edge of the
Canadian Shield, the majority of arrivals from the Pacific subduc-
tion zones, to the west of the station, have positive (slow) residuals.
Even so, small groups of events, such as those near Vanuatu and
deep events in the Kuriles, follow faster paths. Fig. 3(d) shows the
ETTs from the same locations. All the major features in the ak135
residuals are clear in the ETTs as well as numerous smaller features
in the Pacific and in continental Asia. As before the ETTs have
been successful in reproducing the correlated signal of heterogene-
ity while removing the random noise due to observational noise and
random location errors.

5.3 Teleseismic P observations made at FINES between
1993 and 1998

The last station we consider in detail is the array beam reference
point (FINES) of the FINESS array in southern Finland. This array
has been in operation since an upgrade in late 1993. 13 785 P arrivals
are reported in the EHB catalogue from this station. The array lies
on the Fennoscandanavian Shield and therefore has a large negative
median residual (−0.90 s). Figs 3(e) and (f) show the ak135 residuals
and ETTs to FINES, respectively. Arrivals from events west of the
station, in particular in large parts of the Mid-Atlantic ridge and
Central America, tend to follow slow paths. The same is true for
the majority of arrivals from events east of the station, in particular
those in continental Asia and the Indonesian subduction zone. As
expected, most arrivals from events in the Pacific subduction zones
follow fast paths. Contrary to the trend seen in most subduction
zone regions, shallow events in the southern Japan and northern
Mariana islands follow slow paths while deeper events are neutral.
Arrivals from events in the portion of the Atlantic ridge just north of
Scandinavia follow fast paths. This may be due to the fact that a large
portion of their path lies in the fast keel of the Baltic Shield. Fast
paths are followed by the arrivals of events near Greece since this
seismicity is downdip from the Hellenic slab. The ETTs reproduce

the amplitude and shape of all these features well, without being
influenced by the random noise that blurs the underlying pattern in
Fig. 3(e).

5.4 Residual histograms and autocorrelation functions

Fig. 5 shows histograms of the observed minus ak135 times and
observed minus ETTs for the three IMS stations shown in Fig. 3.
For all three stations the distribution of ETT residuals (i.e. the
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Figure 5. On the left, the ak135 and ETT residual distributions for the
observations and ETTs shown in Fig. 3. The letters used in this figure corre-
spond to those used in Fig. 3. On the right, the autocorrelation functions for
these residuals. The ak135 residuals are correlated on many scalelengths,
but the ETT residuals are totally uncorrelated.
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observed time minus the ETT) has a mean of zero, and the spread
of the ETT residuals is over 14.4 per cent less than the spread of the
ak135 residuals. The largest reduction is in the spread of the FINES
residuals (31.2 per cent).

To measure the degree of spatial correlation in the residuals we
use an autocorrelation function. The autocorrelation, a, of the jth
and kth observations, r j = r (x j ) and rk = r (xk), at coordinates xj

and xk is defined as

a j,k = a(x j , xk) = E{r (x j )r (xk)}. (6)

Here E{} represents the expectation operator. We assume that the
statistics of the residuals, r, are stationary and isotropic such that
the autocorrelation is only a function of the distance from xj to xk :

a j,k = a(‖x j − xk‖). (7)

We can then estimate the autocorrelation function by binning the
aj,k according to the distance ‖xj − xk‖ and averaging the products
rjrk within each bin. The bins vary between 50 and 200 km across
depending on data density.

When the mean is removed from the residuals before comput-
ing the autocorrelation, as we have done in all cases, it becomes
equivalent to the autocovariance. The interpretation of the autoco-
variance is simple. When the distance is zero the residuals are only
correlated with themselves. Therefore, a(0) is the variance of the
residuals, which may in part be due to structure and in part be due
to noise. If the autocorrelation is greater than zero at any finite dis-
tance, then the residuals are positively correlated over that distance.
That correlation must be due to structure if we assume that the noise
processes in the residuals are spatially incoherent. Conversely, if the
autocorrelation is negative then the residuals are anti-correlated, and
if the autocorrelation is zero then the residuals are not correlated over
that distance. We hope that the autocorrelation of the ETT residuals,
and the residuals of 3-D earth models (see Section 7) are zero over
a wide range of distances such that the signal due to heterogeneity
contained in the raw residuals has been completely resolved. This
does not apply for zero distance, where we expect that the ETT
residuals will still contain finite noise yielding finite variance. In the
autocorrelations we show in this study we do not plot the variance
at zero offset.

Fig. 5 also shows the autocorrelation functions for the ak135
residuals, once a static station correction has been applied, and the
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Figure 6. The change in ETTs as random errors are added to the database. (a) Random errors added to the observation residuals. (b) Random errors added to
the locations of the database events. The smoothing used in the ETT approach has significantly damped the added error so that the ETTs are relatively weakly
effected.

ETT residuals. The ak135 residuals of all three stations are corre-
lated over a range of distances. The strongest correlations are seen
at very short distances (<200 km), which are well beyond the res-
olution of spherical harmonic models and at the limit of resolution
of many block models. The autocorrelation function of the ETT
residuals for all three stations is zero at all distances so the ETT
functions have successfully resolved all of the correlated signal in
the raw residuals and accurately represent the degree of correla-
tion present. Note that the autocorrelation is measured in s2 and,
although the amplitude appears quite small, it corresponds to sig-
nificant spatially correlated patterns across the region, as seen in
Fig. 3.

5.5 The influence of hypocentre errors

Here we perform two simple tests to demonstrate how random errors
in the database influence the resulting ETTs. Both use P observa-
tions from the station MAT and involve calculating ETTs for the
6262 observations shown in Fig. 12(a). We separately examine the
influence of the random errors in picking and origin times, which
directly affect the observations, and hypocentres, which indirectly
contribute to residuals. In the first test we compare ETTs calculated
directly from the database with those where random Gaussian noise
has been added to residuals. This simulates the effects of random
noise in the picking and origin times. Fig. 6(a) shows the difference
between the original ETTs and the ‘noise-added’ ETTs as a function
of the noise spread. The figure clearly shows that the influence of
random observational error is minimal.

In the second test we add random Gaussian noise to the locations
of the events and recalculate the ETTs. The standard deviation of
the depth noise is twice that of the epicentral noise. Fig. 6(b) shows
the change in the ETT spread as a function of the induced location
error. Again the figure shows clearly that the hypocentre errors have
only a small effect on the resulting estimated traveltime.

In both these examples the spread change is less than 0.2 s for
realistic amounts of added noise—a small change compared to the
size of the residuals (see Fig. 8a). In addition, as the amount of added
noise increases, the effect of adding even more noise diminishes. The
propagation of random errors from both picking and hypocentre
sources is effectively minimized by the statistical smoothing of the
ETT algorithm.
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316 T. Nicholson, M. Sambridge and Ó. Gudmundsson

Figure 7. ETTs for P arrivals reported by WB2. The ak135 time has been
subtracted from each traveltime. The median time (−0.84 s) has also been
subtracted for plotting purposes. Note how similar this figure is to Fig. 3(b).

5.6 The influence of station picking practices

A useful test of the ETT procedure is to compare the pattern of
arrivals produced for two nearby stations. If they differ significantly
there is the potential for a significant contribution from the picking
routine used at either receiver. To assess the influence of picking
practices we compare the ETTs for the Warramunga array (WRA)
with those for WB2, a three-component station near the crossing of
the two arms of WRA. These stations are at the same location, but
have differing picking procedures. At WB2 the arrivals are identified
manually, while at WRA an automated array processing method is
used.

For each P or Pn observation made at WB2, we calculated an
ETT using observations from WRA and vice versa. The station
WB2 has only been in operation since 1974, and has made less
than half (23, 134) of the number of observations of WRA. Fig.
3(b) shows the ETTs obtained from the WRA data. The ETTs are
almost indistinguishable from those of WB2 (shown in Fig. 7). It is
not surprising then that distributions of residuals are similar, with
medians of −0.81 s and −0.84 s, and spreads of 0.61 s and 0.58 s, for
WRA and WB2 respectively. Using WRA data to predict traveltimes
observed by WB2, we get a spread of 0.75 s, and using WB2 data
to predict the WRA residuals the spread becomes 0.71 s; both of
which are less than the 1-D reference model ak135 for which the
residual spread is 0.95 s.

We can conclude that, for this example at least, the manual and
automated picking procedures lead to similar ETTs. Hence picking
procedure is not a significant factor. The use of one station to predict
observations at another is in this case only used as a check of the
methodology. However, where very few observations are available
at a station, more reliable predictions might be possible by using
the observations made at a nearby station (with greater recording

length) than by using simply the observations of the actual station.
This is the case for the MAJ0 (134 observations) and MAT (43
893 observations) stations in Matsushiro, Japan. Using MAT ETTs
reduces the spread of the MAJ0 residuals by 24 per cent.

To summarize this section, we have shown that the ETT procedure
reproduces all of the spatially correlated signal in the observations
at a single station, leaving only uncorrelated noise. The influence of
the random component of hypocentre and picking errors, as well as
the picking practices at recording stations, have a relatively minor
effect on the estimated traveltimes.

6 A C C U R A C Y A N D R E S O L U T I O N

6.1 Teleseismic phases

In this section, we measure the accuracy of the ETT procedure for
12 of the most commonly reported teleseismic phases, including P,
S, Pn, Sn and PKP branches, at globally distributed ISC stations.
For each phase, a large number of arrivals are randomly chosen from
the EHB catalogue and excluded one at a time from the database.
An ETT is then estimated at the location of the excluded datum and
compared with the observed traveltime to give a cross-validating
measure of the accuracy.

Throughout we compare the accuracy of ETTs with that of ak135
alone and, for comparison, ak135 with static station, ellipticity and
elevation corrections. In all cases spread is used in place of the more
common variance reduction. ETTs were only calculated if more than
100 observations were available for a given phase and station. We
quote the percentage of observations that satisfy this requirement in
each case and assume throughout that the EHB phase identifications
are correct.

Fig. 8 shows the distribution of ak135 residuals and ETT resid-
uals for each phase. Overall it was possible to calculate ETTs for
99 252 of 100 000 randomly chosen P observations from the EHB
catalogue. As expected, ak135 predicts the median of the obser-
vations well and produces a symmetrical distribution of residuals
that is approximately Gaussian in the −2 s to +2 s range. The tails
are broader than a Gaussian, consistent with previous studies (e.g.
Buland 1986). The spread of the 99 252 ak135 residuals is 1.20
s. When station statics, ellipticity and station elevation corrections
are applied the residual spread becomes 0.98 s. The overall spread
of the ETT residuals is 0.70 s, which is a reduction of 29 per cent
over ak135 plus corrections and 42 per cent over ak135 without
corrections. Note that, despite this improvement, the tails of the
two distributions are almost identical, indicating that ETTs do not
reduce the residuals of outliers.

Fig. 8(c) shows the distribution of ak135 residuals for 10 000
randomly chosen Pn observations from the EHB catalogue. The
spread of ak135 Pn residuals is 1.84 s. This is a considerably higher
spread than for teleseismic P residuals, which is not surprising as
Pn has a longer propagation path within the strongly heterogeneous
near-surface layers (for further details see Nicholson 2002). The
application of corrections only reduces the spread by 1 per cent
to 1.82 s. In this case it was possible to calculate ETTs for 94.1
per cent of the Pn arrivals, and the resulting residual spread was
1.11 s, which is a reduction of 40 per cent over the reference model.
The most likely explanation of this large improvement is that the
bulk of the signal from heterogeneity cannot simply be attributed to
the portion of the ray path directly beneath the station and therefore
static station corrections are not effective. A density plot of ETT and
ak135 residuals from 117 000 randomly chosen P and Pn arrivals
as a function of epicentral distance is shown in Fig. 9. Note that the
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Figure 8. The ak135 and ETT residuals for a large number of observations of seven common phases. For each ETT, the observation being predicted was
excluded from the database. Using ETTs in place of ak135 significantly reduces error for all seven phases. The number of arrivals shown in each case represents
the number of observations (out of 100 000 for P and 10 000 for the other phases) for which ETTs were possible (see text).

spread reduction for ETT residuals lies between 35 and 50 per cent
across the complete range of epicentral distances.

Fig. 8(e) shows the ak135 residuals for 9583 S arrivals, which
have a spread of 4.18 s. Engdahl et al. (1998) simply approximate
static station corrections for S-wave arrivals as

√
3 times the corre-

sponding P correction. However, this relies on the proportionality of
P and S residuals. Although this assumption is often reasonable, the
application of static station, ellipticity and elevation corrections has
little effect on the residual spread, which is only reduced by 5 per cent
to 3.99 s. ETTs have the potential to give a much greater reduction
since they are calculated directly from S arrival time observations.
Fig. 8(f) shows the distribution of ETT residuals for these arrivals.
The spread has been significantly reduced (30.5 per cent), indicating

that the EHB approximate static station corrections are inappropri-
ate and/or that the traveltime perturbation due to near-source and
deep heterogeneity is large.

Similar results are shown in Figs 8(g) and (h) for Sn arrivals. The
spread reduction achieved with ETTs is larger than for S (39.9 per
cent). In this case, simple station corrections actually increase the
ak135 residual by 2 per cent. Fig. 10 shows the distribution of ak135
and ETT residuals for 82 000 S and Sn arrivals as a function of epi-
central distance. The gap in residuals near 83◦ is due to the difficulty
in distinguishing S arrivals from SKS arrivals. As was found for P
phases there is a greater density of ETT residuals around zero than
ak135 residuals across the whole range of epicentral distances. En-
gdahl et al. (1998) attribute the unusually large number of negative
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318 T. Nicholson, M. Sambridge and Ó. Gudmundsson

Figure 9. The distribution of ak135 (above) and ETT (below) residuals as a function of epicentral distance for P and Pn arrivals. The use of ETTs in place of
ak135 reduces the spread of the residuals by over 30 per cent at all distances.

ak135 residuals between 5◦ and 10◦ to the presence of many paths
from oceanic events to continental stations. Note that the feature
is absent for the density plot of ETT residuals, indicating that this
source of heterogeneity signal has been successfully reproduced in
the ETTs. The shape of the density distribution is also much more
symmetrical.

The ak135 and ETT residual distributions for PKPdf , PKPbc and
PKPab are shown in Figs 8(i)–(n). The use of simple corrections was
effective in reducing the ak135 residual spread by between 18 and 22
per cent for these phases. This is probably because the PKP phases
travel steeply through most of the mantle and therefore have large
ellipticity corrections. Using ETTs reduces the residual spread by a
further 10–18 per cent.

Table 1 shows a summary of the results for all the phases dis-
cussed above and five others. In every case the ETT residuals have
a smaller spread than those of ak135 with simple corrections ap-
plied. However, the differences become smaller for the less frequent
phases. This is likely to be due to the low number of observations
available in these cases.

6.2 Confidence intervals for estimated traveltimes

As mentioned in Section 4, a confidence interval on ETTs can be es-
timated using the theory of TPS interpolation (Wahba 1990). These
bounds may be useful in a variety of applications requiring travel-
time estimation, for example as weights in hypocentre location or
as a ‘forward modelling’ error in seismic tomography.

Here we test the accuracy of the estimated confidence intervals
for a large number of P and S arrivals. We do this by comparing
an ‘observed’ to a ‘predicted’ error histogram, for each phase. The
observed error histogram is calculated from empirical minus ob-
served arrival times. The predicted error histogram is formed from
the same number of randomly generated residuals, each one being a
sample from the estimated error distribution for the corresponding
arrival given by Wahba (1990).

Fig. 11 shows predicted and observed error histograms for the 99
252 P and 9583 S arrivals used in Section 6.1. The match between
predicted and observed histograms is very good for P arrivals, indi-
cating that the estimated error distributions are statistically accurate.
The only difference lies in the tails, where the removal of outliers in
step 3 (see Section 3) has led to slightly higher tails in the observed
histogram. (Note that the error estimation would be improved if step
3 were omitted, and outliers were allowed to remain in the database,
but of course this would decrease the accuracy of the traveltime
estimation itself !) For S arrivals, the predicted error histogram is
slightly narrower than the observed one, which is also likely to be
due to the removal of outliers. Overall the fit between observed and
estimated histograms is good, and we can have some confidence that
the error estimates are reasonably accurate, in a statistical sense.

6.3 Computational costs

The most computationally expensive part of the ETT estimator is
the calculation of the smoothing parameter using generalized cross
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3-D empirical traveltimes 319

Figure 10. The distribution of ak135 (above) and ETT (below) residuals as a function of epicentral distance for S and Sn arrivals. As for P-wave arrivals the
spread is significantly reduced at all distances. In addition, the asymmetry at 5–10 degrees is removed.

validation. This is proportional to approximately the cube of the
number of data used. As an example, the CPU time of a single trav-
eltime estimation based on 400 nearby arrivals took approximately
6 s on a Compaq XP1000 (500 MHz, specfp95=52.2). On a more
modern workstation this can be reduced to between 1 and 2 s. With
200 nearby arrivals the CPU time is reduced by almost an order
of magnitude with comparatively little reduction on accuracy (see
Section 3.3). A further point to note here is that the evaluation of
eq. (1) is trivial once the data are selected and the coefficients of
the polynomials determined. Therefore using it to give estimates
of traveltimes in the ‘vicinity’ of an event, rather than just at the
location of the event, can drastically reduce the overall computation
cost. This issue is discussed further in Section 8.1 in the context of
hypocentre estimation.

7 C O M PA R I S O N W I T H T O M O G R A P H I C
E A RT H M O D E L S

7.1 Reproducing the pattern of teleseismic residuals

In this section, we compare the accuracy of ETT estimates with
those from two 3-D tomographic earth models, using earthquakes
and nuclear explosions. We use the degree 12 spherical harmonic
model S&P12/WM13 (Su et al. 1994), and the high-resolution block

Table 1. Comparison of ETT prediction error with that of ak135 and ak135
with station corrections for a range of phases. For the P phase 100 000 arrivals
were used. For the other phases, 10 000 arrivals were used.

Phase Per cent for which Spread of prediction errors (s)

ETTs were possible ak135 ak135 with ETTs
simple corrections

P 99.3 1.20 0.98 0.70
S 95.8 4.18 3.99 2.91
Pn 94.1 1.84 1.82 1.11
Sn 88.3 4.09 4.17 2.46
PKPdf 95.1 1.76 1.36 1.10
PKPbc 87.8 0.95 0.74 0.58
PKPab 77.1 1.45 1.17 1.05
PKiKP 56.2 2.06 1.44 1.40
pP 92.1 2.24 2.12 2.08
pwP 82.1 2.80 2.71 2.56
sP 83.5 3.31 3.31 3.25
PcP 84.6 2.65 2.48 2.42

model of Gorbatov et al. (2001) (hereafter referred to as G01), which
consists of 2◦ × 2◦ surface blocks and 18 depth layers. Both models
are taken as typical examples of tomographic models within each
parameter class.
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320 T. Nicholson, M. Sambridge and Ó. Gudmundsson

Figure 11. The observed traveltime minus the ETT for (a) 99 252 P arrivals and (b) 9583 S arrivals. The predicted residual distribution was calculated from
the ETT error estimates. See text for further details. The predicted and observed residual distributions are in good agreement.

We compare traveltime estimates for P observations from 4870
southeast Asian events at the station MAT in Matsushiro, Japan.
(Note that this station is co-located with MJAR, a primary IMS
array.) Fig. 12(a) shows the observed ak135 residuals plotted
as a grey-scale/coloured dot at the EHB location. Note that the
median residual has been subtracted from each observation. The
seismicity south of 6◦S lies in the roughly northward-dipping
slab of the Indonesian subduction zone, while the seismicity
north of 2◦N lies in the Molucca subduction zone, which dips to
the west.

Arrivals from shallow events in the Indonesian subduction zone
follow fast paths at the eastern and western ends and slow paths in
between. Fast paths are also followed from shallow events beneath
the islands of Seram (4◦S, 130◦E) and Sulawesi (the large island to
the west) as well as from events in a narrow band in the Molucca
subduction zone. Almost all the arrivals from deep events follow
slow paths. The autocorrelation function shows that the residuals
are strongly (positively) correlated over distance scales shorter than
200 km and between 1100 and 1300 km, which we interpret as un-
modelled heterogeneity signal. In Figs 12(b), (c) and (d) the median
residual has also been removed.

Fig. 12(b) shows the traveltimes produced by S&P12/WM13
(hereafter referred to as SP12). SP12 correctly reproduces strong
negative residuals in the southeast corner, weak positive residuals
at the eastern end of the Indonesian subduction zone, and part of
the positive residuals in areas in the Molucca subduction zone, but
their predictions are poor throughout the remainder of the region
shown. In particular, the positive residuals of deep events are not
reproduced. These features are reasonable since SP12 is truncated at
harmonic degree 12, corresponding to a minimum wavelength only
slightly smaller than the dimensions of the region. The autocorrela-
tion function shows that the SP12 residuals (i.e. the observed minus
SP12 times) are correlated on the same scalelengths as the ak135
residuals, indicating that SP12 resolves little of the correlated signal
in the data. Consequently, the spread of residuals after correction
for SP12 is no smaller than that of ak135.

Fig. 12(c) shows the traveltimes predicted by G01. The sign of
the residuals is correctly reproduced throughout most of this re-
gion; however, their amplitude is underestimated. In particular, the
large, correlated ak135 residuals around Sulawesi, Seram and the

Molucca subduction zone are poorly reproduced. This may be due
to the damping applied in the determination of the model, or even
to the spatial averaging resulting from the construction of summary
rays. The autocorrelation function shows clear correlation in the
G01 residuals at distances shorter than 150 km. This correlation
is significantly reduced compared with the corresponding autocor-
relation peak in Fig. 12(a) for the raw residuals. That is in turn
primarily caused by a lower level of correlation beyond a scale of
100 km, which is close to the resolution limit of the G01 model
imposed by the finite size of summary ray regions and inversion
cells. The other two main features of the autocorrelation function
for raw residuals (Fig. 12a), a minimum at 900 km and a maximum
centred on 1200 km scales, are also clearly reduced to amplitudes
that are marginally distinguishable from zero. The degree to which
these features remain is an indirect indication of damping in the G01
model. The change in autocovariance at about the 1000 km scale of
0.09 s2 in the raw residuals is reduced to about 0.025 s2 in the G01
residuals, indicating that the G01 model explains a significant por-
tion of the traveltime signal at that scale. The use of G01 instead of
ak135 is marginally successful in predicting the observed traveltime
residuals, reducing the spread from 0.92 s to 0.88 s.

The corresponding results for ETTs are shown in Fig. 12(d). Here
all the main features present in the ak135 residual pattern are repro-
duced. In particular, the size, shape and amplitude of the negative
residuals from events in Sulawesi, Seram and shallow events in the
Indonesian and Molucca subduction zones are well reproduced, as
are the positive residuals from events in the Molucca subduction
zone and from deep events throughout the region. The ETTs are
also able to resolve smaller-scale features, unlike models SP12 and
G01. The autocorrelation function shows that the ETT residuals
are uncorrelated over all distance scales. As a result, they have a
significantly reduced residual spread of 0.75 s.

From these experiments we conclude that ETTs predict travel-
times for events in this region to the MAT station significantly
better than the spherical harmonic and block models. Unlike the
parametrized earth models, ETTs reproduce all of the spatially
correlated signal in the pattern of residuals. These results sug-
gest that current tomographic models leave a significant part of
the heterogeneity of the Earth unmodelled, primarily at small
scales (<200 km).
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3-D empirical traveltimes 321

Figure 12. 4870 P observations made at MAT. In each case, the median observed (a) or predicted (b, c, d) residual has been subtracted from each value. On
the left, (a) the observed ak135 residual, (b) the S&P12/WM13 time minus ak135, (c) the G01 time minus ak135, (d) the ETT minus ak135. On the right, the
autocorrelation functions for the observed traveltimes minus those predicted by (a) ak135, (b) S&P12/WM13, (c) G01 and (d) ETTs.

7.2 The influence of the reference model

Another issue for the proposed traveltime estimator is the influence
of the background 1-D earth model. Recall that the interpolation
and smoothing techniques are applied to traveltime residuals with
respect to the 1-D reference model, ak135. To test the influence of
the choice of reference model we repeated the calculation for the
observations shown in Fig. 12, but this time applied the method
directly to traveltimes rather than residuals. The result was that the
average accuracy of the ETTs was reduced by 0.03 s (equivalent to
less than 4 per cent of the average ak135 residual). This suggests that,
while a reference model can be beneficial in improving the accuracy
of the estimated traveltime, the results are not significantly biased

by the choice. We note here that just as in many other studies there
is no particular restriction on the nature of the reference model, and
so a laterally varying one could equally well be used.

7.3 ETTs for nuclear and chemical explosions

In the previous section, the ETTs from earthquakes were compared
with the traveltimes determined from the EHB catalogue, using esti-
mated hypocentres. As discussed above, the influence of the random
component of hypocentre errors is minimized by the smoothing pro-
cesses. However, high-precision ground truth events provide a useful
cross-check on the accuracy of the traveltime estimator. Here we use
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322 T. Nicholson, M. Sambridge and Ó. Gudmundsson

Table 2. Comparison of ak135, BDP98 and ETT traveltime prediction errors based on 25 teleseismically recorded
explosions. The explosions are those used by Smith & Ekstrom (1996). Elevation, ellipticity and static station
corrections were used for the BDP98 traveltimes.

Id Latitude Longitude No. of Median residual (s) Residual spread (s)

(◦) (◦) arrivals ak135 BDP98 ETT ak135 BDP98 ETT

A 37.197 −74.352 60 1.21 0.19 0.44 1.15 0.86 1.03
B 37.130 −116.064 127 0.06 −1.10 − 0.30 1.04 0.87 0.43
C 38.634 −116.215 146 0.24 −0.92 − 0.03 0.86 0.68 0.72
D 37.295 −116.456 165 −0.11 −1.33 − 0.30 1.25 0.73 0.43
E 39.406 −107.948 49 0.07 −1.08 − 0.08 1.08 0.67 0.78
F 49.924 78.956 189 −1.11 0.14 − 0.66 1.01 0.71 0.37
G 49.769 78.034 210 −0.70 −0.87 0.07 0.96 0.60 0.26
H 51.472 179.107 342 −2.83 −2.58 − 2.02 1.63 1.43 1.34
I 49.765 78.059 91 −0.80 −0.81 0.26 0.83 0.37 0.33
J 49.927 78.758 242 −1.02 −1.02 − 0.68 0.84 0.58 0.38
K 39.793 −108.366 74 −0.30 −1.20 − 0.12 0.78 0.50 0.69
L 50.956 110.983 81 −0.10 −0.03 0.21 0.76 0.52 0.48
M 51.362 53.306 120 −1.27 −1.94 − 0.14 0.74 0.70 0.22
N 51.367 53.327 119 −1.22 −1.92 − 0.17 0.78 0.65 0.15
O 51.380 53.340 113 −1.21 −1.89 − 0.06 0.77 0.70 0.21
P 46.783 48.315 61 −1.30 −2.94 − 0.20 0.61 0.52 0.12
Q 46.788 48.297 60 −1.23 −2.96 − 0.15 0.60 0.50 0.22
R 46.767 48.311 60 −1.44 −2.97 − 0.23 0.56 0.41 0.16
S 46.749 48.303 61 −1.50 −3.08 − 0.29 0.53 0.34 0.19
T 46.754 48.289 64 −1.33 −2.88 − 0.13 0.56 0.37 0.23
U 46.766 48.274 66 −1.49 −2.98 − 0.28 0.64 0.59 0.20
V 51.358 53.319 132 −1.20 −1.99 − 0.12 0.78 0.61 0.24
W 51.390 53.351 136 −1.25 −1.97 − 0.18 0.75 0.65 0.29
X 51.371 53.337 130 −1.31 −2.03 − 0.18 0.77 0.61 0.26
Y 37.252 −116.377 239 0.16 −1.26 − 0.04 0.77 0.62 0.32
Median over all explosions (s) −1.20 −1.89 − 0.15 0.77 0.61 0.29

P arrivals from the 25 nuclear and chemical explosions studied by
Smith & Ekstrom (1996). (See Table 2 for a summary.) Residuals are
calculated for ak135, a high-resolution 3-D block model, BDP98,
(Boschi & Dziewonski 1999), and ETTs. In all cases residuals are
determined using ground truth hypocentral coordinates. The trav-
eltimes from the model BDP98 also include ellipticity and station
elevation corrections taken from the EHB catalogue, and a correc-
tion for the local crustal structure beneath the station based on the
CRUST5.1 model of Mooney et al. (1998).

For the ETT calculations we use the EHB catalogue as the refer-
ence database (together with its erroneous hypocentres), but com-
bine this with GT0–GT5 ground truth events from the Prototype
International Data Centre. Only ground truth events that also ap-
pear in the EHB catalogue are included. For ground truth events,
traveltimes were determined from EHB arrival times and ground
truth hypocentres. As previously, to avoid biasing ETTs towards the
‘correct’ values, the traveltime corresponding to each explosion was
omitted from the database when predicting itself.

In total, ETTs were possible for 3157 of the 3170 P arrivals.
A summary of results appear in Table 2 and Fig. 13. Events A–K
were used as test events for the construction of ak135, and so their
median ak135 traveltime residuals are significantly lower than those
of events L–Y. Overall, the median of the ETT residual is more than
a second smaller than those of ak135 and BDP98, while the median
spread of residuals is about 62 per cent smaller for ETT compared
with ak135 and 52 per cent compared with BDP98. Comparing
event by event, we notice that the spread of the ETT residuals is
smaller than those of ak135 for all the events used and less than the
BDP98 residuals for all but four of the events. In general, accuracy
appears to correlate positively with the local density of ground truth

Figure 13. The spread in prediction errors for the observed traveltimes of
the 25 explosions shown in Table 2. ETT residuals have the smallest spread
for 21 events. The median, over all these events, of the ETT spread is less
than half of the BDP98 spread.

events. This is to be expected because a high density of accurate
database observations in the vicinity of a test point will allow the
interpolation and smoothing procedures to work effectively.

In all of these examples the ETT estimator clearly gives more
accurate results than either the spherical harmonic or block model.
It can also resolve much smaller-scale correlations in the pattern
of residuals than the longer-wavelength parametrized models. The
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3-D empirical traveltimes 323

Table 3. Epicentre mislocations for the 25 explosions used by Smith & Ekstrom (1996) when SP12, EHCs and
ETTs are used for the calculation of predicted traveltimes.

Id Year Month Day Time Latitude Longitude Mislocations (km)
(◦) (◦) SP12 EHC ETT

A 1965 7 15 14:16:08.10 37.197 −74.352 10.3 11.20 9.43
B 1967 5 20 15:00:00.20 37.130 −116.064 4.4 7.61 5.69
C 1968 1 19 18:15:00.10 38.634 −116.215 5.4 5.81 7.54
D 1968 4 26 15:00:00.10 37.295 −116.456 3.1 4.91 1.91
E 1969 9 10 21:00:00.10 39.406 −107.948 9.3 4.91 9.07
F 1969 11 30 3:32:59.70 49.924 78.956 6.2 7.28 6.73
G 1971 4 25 3:32:59.90 49.769 78.034 5.4 9.82 1.73
H 1971 11 6 22:00:00.06 51.472 179.107 6.2 19.27 10.49
I 1972 8 16 3:16:59.80 49.765 78.059 6.2 10.98 1.52
J 1972 11 2 1:27:00.20 49.927 78.758 6.2 10.98 3.74
K 1973 5 17 16:00:00.00 39.793 −108.366 7.3 16.58 11.45
L 1977 8 10 22:00:00.10 50.956 110.983 6.2 6.94 7.89
M 1983 7 10 3:59:59.99 51.362 53.306 13.6 —– 1.34
N 1983 7 10 4:04:59.94 51.367 53.327 6.2 9.57 2.50
O 1983 7 10 4:09:59.85 51.380 53.340 0.0 8.50 2.38
P 1983 9 24 5:00:00.03 46.783 48.315 13.6 —– 2.47
Q 1983 9 24 5:05:00.03 46.788 48.297 7.0 3.11 0.40
R 1983 9 24 5:10:00.08 46.767 48.311 5.4 2.20 1.25
S 1983 9 24 5:15:00.14 46.749 48.303 8.5 4.39 7.22
T 1983 9 24 5:19:59.93 46.754 48.289 7.6 4.91 1.69
U 1983 9 24 5:25:00.00 46.766 48.274 8.5 3.11 6.25
V 1984 7 21 2:59:59.81 51.358 53.319 6.6 6.21 1.42
W 1984 7 21 3:04:59.71 51.390 53.351 2.2 7.28 2.02
X 1984 7 21 3:09:59.84 51.371 53.337 4.4 6.21 1.31
Y 1988 7 7 15:05:30.07 37.252 −116.377 3.8 9.05 5.47
Root Mean Square Mislocation (km) 7.21 8.90 5.60
Median Mislocation (km) 6.20 6.94 2.50

fact that residuals from the empirical procedure are uncorrelated
over all distance scales suggests that no coherent effects of seismic
heterogeneity remains unaccounted for.

8 H Y P O C E N T R E D E T E R M I N AT I O N
U S I N G E T T S

In the context of the Comprehensive Test Ban Treaty, and more gen-
erally, the teleseismic location of nuclear explosions has received
considerable attention recently (e.g. Antolik et al. 2001; Piromallo
& Morelli 2001; Chen & Willeman 2001). Although 1-D travel-
time tables combined with simple station corrections are commonly
employed for hypocentre location (e.g. Engdahl et al. 1998), it has
long been known that the failure to take account of the Earth’s lat-
eral heterogeneity is a significant factor in limiting improvements.
Smith & Ekstrom (1996) relocated a set of 25 nuclear and chemical
explosions using a 3-D laterally heterogeneous earth model together
with crustal and station corrections and observed a reduction in the
rms mislocation of up to 40 per cent. Piromallo & Morelli (2001)
used the same set of 25 explosions to show that improvements of
up to 17 per cent can be achieved when a form of source-specific
station correction called empirical heterogeneity corrections (EHC)
is applied.

The success of the empirical approach in estimating traveltimes
of ground truth events lends considerable encouragement for their
application to hypocentre location. Here we examine the usefulness
of ETTs in location by performing similar experiments to Smith
& Ekstrom (1996), Antolik et al. (2001) and Piromallo & Morelli
(2001) in relocating 25 explosions (largely from the Nevada and
Semiplatinsk test sites) and comparing results. This is done first us-

ing all available P arrivals, and then with a reduced set of traveltimes,
as was done by Antolik et al. (2001).

8.1 Relocation of chemical and nuclear explosions

A minor difference between the relocations performed here and
those of Smith & Ekstrom (1996) and Antolik et al. (2001) is that
we use a robust grid search location algorithm rather than an iterative
linearized method. Another difference is that in the earlier studies
the 3-D velocity model was used to produce a single ‘region to sta-
tion’ correction for each ray path. This correction was held fixed
while the hypocentre was iteratively updated, and hence repeated
ray tracing through 3-D earth models was avoided. This is a rea-
sonable approximation when the length scale of velocity variation
is much larger than perturbations in the hypocentres. For the ETT
estimator it is straightforward to evaluate the traveltime estimation
through eq. (1) and hence take account of the changes in traveltimes
caused by movements in the hypocentres. However, it would become
computationally burdensome to repeat the four steps (Section 3) for
every station and every point in a dense grid search. Therefore we
introduce a simplifying approximation. To explain this, we first note
that, in calculating a single ETT between a particular source, xs, and
receiver, xr, we actually obtain a complete 3-D function of travel-
times centred on xs. Specifically, when we solve for the coefficients
λn and ai in eq. (1) (see Appendix) we obtain s(x; xs, xr, N). This
is the ETT ‘surface’, evaluated at x, for a receiver at xr, using the N
nearest database events to xs. To date we have only used the single
value s(xs; xs, xr, N), but in principle we could equally well use it to
give ETTs from the location (xs + δ x) to the receiver xr. In this case
no recalculating of the coefficients is required and we simply need
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324 T. Nicholson, M. Sambridge and Ó. Gudmundsson

Table 4. ETT epicentre mislocations for the 25 explosions used by Smith & Ekstrom (1996) when only a limited
number of observations are used.

Id Latitude Longitude 8 observations 30 observations

(◦) (◦) Median per cent within Median per cent within
mislocation (km) 17.84 km mislocation (km) 17.84 km

A 37.197 −74.352 18.85 42 11.96 74
B 37.130 −116.064 12.06 63 6.68 84
C 38.634 −116.215 20.66 41 9.15 88
D 37.295 −116.456 16.81 52 7.00 87
E 39.406 −107.948 25.69 29 11.44 84
F 49.924 78.956 9.40 71 5.99 90
G 49.769 78.034 8.63 70 4.75 90
H 51.472 179.107 23.00 35 17.59 52
I 49.765 78.059 7.28 74 4.92 81
J 49.927 78.758 9.22 75 7.02 91
K 39.793 −108.366 35.53 30 16.83 53
L 50.956 110.983 16.08 57 8.22 100
M 51.362 53.306 6.06 87 2.64 100
N 51.367 53.327 5.24 92 2.92 100
O 51.380 53.340 5.74 87 2.91 100
P 46.783 48.315 4.98 97 3.47 100
Q 46.788 48.297 3.76 97 1.58 100
R 46.767 48.311 5.51 85 2.42 100
S 46.749 48.303 5.83 99 4.80 100
T 46.754 48.289 4.32 97 2.02 100
U 46.766 48.274 10.26 71 3.59 97
V 51.358 53.319 5.78 83 3.70 98
W 51.390 53.351 6.59 90 4.42 100
X 51.371 53.337 7.20 82 3.56 100
Y 37.252 −116.377 10.64 70 6.27 96
Median 8.63 74 4.8 97
Mean 11.40 70.1 6.23 91.0

to evaluate the traveltime approximation for each source location,
which is trivial. Note that the approximation being used here is

s(xs + δx; xs + δx, xr, N )≈s(xs + δx; xs, xr, N ). (8)

Note also that this would be exact if the N database events closest
to xs + δ x and xs were the same. For δx ∼tens of km, this is often
likely to be the case. To proceed, we use eq. (8) in all relocation
experiments, while removing the arrivals of the event being relocated
from the database in each case.

The results of relocations are shown in Table 3, along with a
summary from Smith & Ekstrom (1996) and Piromallo & Morelli
(2001). The maximum epicentral mislocation of ground truth events
found with ETTs is 11.5 km, which is within the allowable toler-
ance specified by the Comprehensive Nuclear Test Ban Treaty (1000
km2). With ETTs the rms and median mislocations are 5.6 and 2.5
km, which represent a reduction of 22 and 60 per cent compared
with model SP12 with azimuthally varying station corrections, and
a reduction of 37 and 64 per cent compared with empirical hetero-
geneity corrections (EHCs). The ETT procedure also results in more
accurate locations for 18 of the 25 explosions compared to SP12 with
corrections applied, and 20 out of 25 compared to locations using
EHCs.

8.2 Relocation with sparse data sets

In Section 8.1, nuclear tests, with more than 50 P-wave arrivals,
were relocated using all available data from stations at teleseis-
mic distances. These events were observed at more stations than
might be available for any new nuclear test, particularly given the

currently limited number of primary and secondary IMS stations.
Antolik et al. (2001) argued that it is important to know how loca-
tion procedures are affected by having relatively few observations.
To examine this we relocate each of the explosions in Table 3 100
times using only a limited number of randomly chosen arrivals. We
follow Antolik et al. (2001) and use first eight and then 30 randomly
chosen teleseismic P arrivals.

Antolik et al. (2001) found that with the 3-D tomographic model
BDP98 (Boschi & Dziewonski 1999) and ground truth station cor-
rections, 58.3 per cent of the relocations made using only eight
arrivals, and 79.6 per cent of those made using only 30 arrivals were
within 17.84 km of the true locations. They also found mean mislo-
cations of 28.6 and 10.8 km using model BDP98 with eight and 30
arrivals, respectively. The results for three other global tomographic
models, SP12, the block model of van der Hilst et al. (1997), and
MK12 (Su et al. 1997), were slightly worse. Relocations using ETTs
are summarized in Table 4. In this case 70.1 and 91.0 per cent of the
relocations fall within the required 17.84 km radius from the true
value, for eight and 30 arrivals, respectively. Average mislocations
of 11.40 and 6.23 km were achieved for eight and 30 arrivals respec-
tively using our ETT approach. Note that our results are not directly
comparable with those of Antolik et al. (2001) because they also
included five Chinese explosions whose data were not available for
the present study. Nevertheless, the use of ETTs appears to give a
clear improvement in location quality. Although our experiments are
encouraging the data set is clearly limited. Improvements in location
may also result from further refinements, for example by using an
L1 misfit norm (as in Shearer 1997), or by incorporating regional
P, S and PKP arrivals.
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Figure 14. A test of how well GCV chooses the optimum smoothing pa-
rameter (see text for details). The smoothing parameter chosen by GCV is
shown as a red dot. Clearly, the choice of smoothing parameter is vital and
the GCV smoothing parameter is very close to the optimum.

9 C O N C L U S I O N S

A new empirical approach to traveltime estimation has been pre-
sented based on direct interpolation and smoothing of a large ar-
rival time database. By avoiding parametrization of the Earth, the
technique is able to reproduce the pattern of teleseismic residuals
observed at seismic receivers over a wide range of distance scales.
Furthermore, it can extract all spatially coherent signal in travel
(arrival) times caused by, for example lateral heterogeneity, Earth’s
ellipticity of figure and topography. Spatially incoherent contribu-
tions to the residual pattern are regarded as noise and automatically
eliminated. It is also efficient enough to be used ‘on the fly’, without
extensive pre-processing of local, regional or global databases.

Extensive numerical tests show that the new approach performs
well in reproducing traveltimes of globally distributed P S, Pn, Sn,
PKPdf and depth phases as well as those from tightly constrained
nuclear events and earthquakes. Relocation of ground truth and nu-
clear explosion data shows that the empirical approach produces
smaller mislocations as compared with 1-D traveltime tables and
3-D earth models combined with azimuthally and spatially varying
station corrections.

The influence of hypocentre errors in the arrival time database has
also been investigated. Results show that the propagation of random
hypocentre errors into traveltime estimations is significantly damped
by the smoothing processes in the algorithm. Systematic hypocen-
tre errors are spatially correlated and cannot be distinguished from
heterogeneity signal. As with most other studies a judicious choice
of database events is required to limit the influence of systematic
hypocentre errors.

In addition to a traveltime estimation itself the procedure also
provides formal measures of traveltime error. Tests show that these
error estimates are statistically accurate, and hence may be useful
in applications such as hypocentre location or seismic tomography.

The traveltime estimator may be used in any situation where a
sufficient database of previously recorded events is available for
a region. In cases where data are sparse or irregularly distributed,
one could introduce synthetic traveltime data corresponding to a
preferred earth model, and hence estimated times would smoothly

change from being data-dependent to model-dependent within the
volume of interest.

In addition to event relocation the ETT estimator may be useful
in structural studies. The algorithm automatically filters spatially
incoherent noise and could therefore be used to de-noise a data set
prior to tomographic imaging. This, in turn, could reduce the need
for damping in the tomographic inversion and lead to improved
resolution.
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A P P E N D I X A : T H I N - P L AT E S P L I N E
I N T E R P O L AT I O N A N D G E N E R A L I Z E D
C RO S S VA L I DAT I O N

A1 Thin-plate spline interpolation

The theoretical basis of thin-plate spline interpolation has been
developed by many authors (Duchon 1976; Wahba 1990; Nychka
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1988; Hutchinson & Gessler 1994) in conjunction with significant
improvements in computational efficiency (Elden 1984; Hutchin-
son & de Hoog 1985; Sidje & Williams 1997). The thin-plate spline
expansion has the form

s(x) = p(x) +
N∑

n=1

λn(‖x − xn‖)2ln(‖x − xn‖), (A1)

where ‖.‖ is the Euclidean norm. The set of N weights {λn :n = 1,
. . . , N} are defined at the N data points {xn :n = 1, . . . , N}, and
the polynomial p(x) is given by

p(x) = a1 + a2x + a3 y + a4z, (A2)

where x is the position of any point in the medium and has coor-
dinates (x, y, z). This polynomial models the scalar mean of the
distribution and large-scale linear trends in the function across the
entire data distribution while the weights model the smaller-scale
signal. Therefore the second term in eq. (A1) models the small-scale
correlations in the data values. This formulation, in which the influ-
ence of the nth weight actually increases with distance from the nth
datum, seems counterintuitive but has been shown to be very useful
in the interpolation of discretely sampled data (e.g. Powell 1992).

There are N + 4 unknowns in eq. (A1), namely the (λn)s (n = 1,
2, . . . , N ) and the four coefficients in the polynomial p. Together
the weights and polynomial coefficients are called the function co-
efficients. N constraints are obtained by requiring that s(x) fit the
data exactly at the N data points:

s(xn) = cn, for n = 1, . . . , N , (A3)

where cn is the observation at the nth data point. A unique interpolant
is produced by requiring that the weights satisfy the following con-
ditions:

N∑
n=1

λn pi (xn) = 0, forall i = 1, . . . , 4, (A4)

where p1(x) = 1, p2(x) = x , p3(x) = y, p4(x) = z (see eq. A2).
Together (A3) and (A4) can be written as the linear system[
A P

PT 0

] [
λ̄

a

]
=

[
C

0,

]
(A5)

where Amn = ‖xm − xn‖2ln(‖xm − xn‖), Pmk = pk(xm), λ̄ =
(λ1,λ2, . . . , λN )T, a = (a1,a2,a3,a4)T and C = (c1, c2,. . . , cN )T.
In eq. (A5) A is an NxN matrix and P is an Nx4 matrix, while
0 represents a matrix of zeros. If λ̄TAλ̄ > 0 (or λ̄TAλ̄ < 0) for
all λ̄ such that PTλ̄ = 0, then eq. (A5) can be transformed into a
positive-definite form (e.g. Golub & Van Loan 1996). This is also
a requirement for a valid semi-variogram or covariance function in
kriging (Myers 1988). The positive-definite form can then be solved
by LU decomposition (e.g. Golub & Van Loan 1996). In practice,
however, eq. (A5) for the unsmoothed TPS is not ever solved.

Duchon (1976) showed that when we solve eq. (A5) to obtain
λ̄ and a and use them in eq. (A1) we obtain the thin-plate spline
interpolant, s, which fits the data and in three dimensions minimizes

J (s) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

([
∂2s

∂x2

]2

+
[

∂2s

∂y2

]2

+
[

∂2s

∂z2

]2

+2

[
∂2s

∂x∂y

]2

+ 2

[
∂2s

∂x∂z

]2

+ 2

[
∂2s

∂y∂z

]2
)

dx dy dz.
(A6)

Here J is a measure of curvature and therefore the solution, s, is
the function with minimum curvature that fits the data exactly. The

minimum-curvature property ensures that the interpolated function
has a relatively smooth appearance even in the presence of noise.
However, it can also result in large overshooting of data values when
there are two or more very nearby noisy data points and the inter-
polant struggles to pass through all the data in a smooth manner.
This problem will be alleviated when smoothing is applied.

A2 Smoothing the interpolant and generalized
cross validation

Generally there are two sources of noise in the data: errors in the
locations of the data points and errors in the value of the function
at these points. The interpolated function is smoothed to reduce the
effects of both sources of noise. The unsmoothed TPS interpolant
minimizes the curvature function, J (s), under the constraint that
it must fit the data exactly. This constraint is relaxed in order to
increase the smoothness. The smoothed interpolant for any given
smoothing parameter (µ), minimizes H , which is a combination of
data misfit and curvature:

H (s, µ) =
N∑

i=1

[s(xi ) − ci ]
2 + µJ (s), (A7)

where the parameter µ governs the trade-off between the goodness
of fit and the smoothness.

We address the problem of determining the smoothed interpolat-
ing function, s, for a given smoothing parameter before dealing with
the determination of the optimal smoothing parameter. One obvious
way of at least approximately solving eq. (A7) is to substitute eq.
(A1) into eq. (A7). This gives the discrete regularized least squares
problem,

min(λ̄,a) : (s − Pa − Aµ)T(s − Pa − Aµ) + µλ̄T�λ̄, (A8)

where Ω is a positive-definite matrix. Indeed it can be shown that the
solution to eq. (A8) is also the exact solution to eq. (A7). Moreover,
the matrix Ω is identical to the matrix A (Duchon 1976; Mitasova &
Mitas 1993). Taking derivatives of eq. (A8) and rearranging terms,
the solution of eq. (A8) satisfies the matrix system (e.g. Wahba 1990)[

(µI + A) P

PT 0

] [
λ̄

a

]
=

[
C

0

]
. (A9)

Thus apart from the addition of the positive constant µ to the di-
agonal, the matrix system is identical to that for exact interpolation
given by eq. (A5). This system can be converted to a positive-definite
form (Mitasova & Mitas 1993; Billings 1998) and therefore always
has a solution.

Eq. (A9) is an expression for the coefficients of s for any given
µ; however, the optimal µ must still be found. GCV is essentially a
bootstrap method for determining the predicted error of the function.
The GCV measure of data fit is calculated by removing each datum
in turn, taking the difference at the node between an interpolant
fitted to the remaining data points and the observed value, and then
summing the squares of the residuals. Thus GCV minimizes the
following least-squares quantity:

G(µ) =
N∑

i=1

[si (xi ) − ci ]
2, (A10)

where si is the smoothed interpolant calculated from all the data
points except the ith one, using a smoothed TPS interpolant. Note
that the dependence of G on µ is via each ‘sub’-interpolant si(xi).
Craven & Wahba (1979) showed that an implicit GCV measure can
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be used in place of eq. (A10),

G(µ) = (C − AC)T(C − AC)

tr (I − A)
, (A11)

where tr(I − A) is the trace of the matrix I − A. G can then be
minimized as a function of µ by a number of search algorithms.
Here we use a simple grid search approach.

To test that the appropriate amount of smoothing is chosen by
GCV, we randomly excluded half the data shown in Fig. 12(a) and
predicted their residuals using ETT functions. The ETT functions
were calculated from the other half of the data and a range of smooth-
ing parameter values were used. Fig. 14 shows the resulting spread
of ETT residuals as a function of smoothing parameter. Clearly, a
good choice of smoothing parameter is vital to obtain an accurate in-
terpolant. In this case, GCV choose a smoothing parameter slightly
smaller than the optimum smoothing parameter. However, the GCV
smoothing parameter is very close to the optimum. This result has
been verified for many different cases.

Wahba (1983) and Silverman (1986) showed that the 95 per cent
confidence interval, CI .95, for the interpolated function is given by

C I.95 = ±1.96
√

bT
x Vbx , (A12)

where bi,x = (‖ x − xi‖)2 ln(‖ x − xi‖) and V is the error covariance
matrix of the function coefficients. These confidence intervals must

be interpreted ‘across the function’, as opposed to point-wise. If
the interpolation and smoothing were repeated for the same f with
new random noise from the same noise distribution then 95 per
cent of the true values at the nodes would lie within the confidence
intervals..

A3 Kriging

The formal equivalence of splines and kriging is well known (Math-
eron 1980; Wahba 1990); however, their formulations are quite dif-
ferent. In principle, if the data is well modelled as a spatial random
field by a variogram and if the parameters in this variogram have
been estimated successfully, then the kriging function is more accu-
rate than a spline interpolation because the kriging function is the
best linear predictor that can be obtained from the data. In practice,
there is usually little difference between the fit of the kriging func-
tion and that of the thin-plate spline function. Hutchinson (1993)
showed that the same is true of fits to simulated data, even when
the same assumptions are used in the simulation as are used in the
variogram of the kriging function. Therefore, as Billings (1998) and
Hutchinson (1993) observed, since it is difficult to decide whether
the kriging assumptions are indeed met, and since the use of a
thin-plate spline requires significantly less calculation and fitting,
there is much to be said for using thin-plate splines in place of
kriging.
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