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Short Note

Scattering attenuation in randomly layered structures
with finite lateral extent: A hybrid Q model

Tobias M. Müller1 and Serge A. Shapiro2

INTRODUCTION

Since the pioneering work of O’Doherty and Anstey (1971),
much research has been devoted to understand the effect of
stratigraphic filtering of seismic waves, i.e., the problem of mul-
tiple scattering in 1D random structures (e.g., Burridge et al.,
1993; Shapiro and Hubral, 1999). For many subsurface struc-
tures, such as sedimentary basins, the assumption of layering
is reasonable as a first approximation. However, real geostruc-
tures do not show perfect layering but exhibit a finite lateral
extent in their elastic properties. This becomes particularly im-
portant when studying overburden effects in reflection seis-
mology, where amplitude information is used in subsequent
data analysis. For example, Malme et al. (2003) showed that
the amplitude variation with offset (AVO) response for a ver-
tical seismic profile (VSP) experiment over a North Sea field
is significantly distorted by nonlayered overburden inhomo-
geneities. They demonstrated by seismic forward modeling that
pointlike diffractors and large-scale, gas-filled sand bodies can
be responsible for strong amplitude fluctuations.

In this short note, we study the transmission behavior of
seismic primaries when the finite lateral extent of the inhomo-
geneities is accounted for. Physically speaking, we intend to
quantify the combined effects of scattering attenuation due to
thin layering and random diffractions and refractions. It is im-
portant to understand that our approach describes scattering at-
tenuation of seismic primaries and not attenuation of the mean
field (ensemble averaged wavefield) as presented in earlier
works (e.g., Lerche, 1986). We use the model of an anisotropic
3D random medium. Anisotropy in this context means that
the randomly distributed inhomogeneities have three differ-
ent characteristic length scales and are characterized by a spa-
tially anisotropic correlation function. We also assume that the
medium is lossless, so that no intrinsic wave attenuation occurs.
A sketch of such a structure is shown in Figure 1, resembling
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a realization of a 2D anisotropic random medium. Obviously,
the applicability of this model implies that the statistical prop-
erties can be inferred from measurements such as well-log and
seismic data, as shown for example by Imhof and Toksöz (2000)
and Imhof and Kempner (2003). Also, statistical analysis of re-
flection traveltimes provides information about the horizontal
scale of the inhomogeneities in the overburden of a large-scale
reflector (Iooss et al., 2003; Kravtsov et al., 2003). In laboratory
experiments, X-ray computed tomography is used to estimate
sizes and shapes of heterogeneities and their spatial correla-
tions (Hackert and Parra, 2001).

Scattering attenuation of seismic primaries results from the
redistribution of wavefield energy from the vicinity of the first
arrival into later arriving signals that is from the ballistic part of
the pulse signal into the coda. Whereas in 1D inhomogeneous
media only multiple backscattering causes scattering attenua-
tion, in 3D inhomogeneous media random diffraction and re-
fraction cause additional attenuation. The latter mechanisms
become manifest in a random focusing of wavefield energy
and can be interpreted as the occurrence of intersecting rays
in the geometrical optics framework (Rytov et al., 1989). In
general, for arbitrary inhomogeneous media, all three mech-
anisms occur. Our strategy is to compute the amount of scat-
tering attenuation caused by these three mechanisms within
the precision of the Rytov approximation. The latter is a per-
turbation approximation and allows the quantification of the
coefficient of scattering attenuation, α, associated with the
primary seismic wavefield. In particular, we use the general-
ized the O’Doherty-Anstey (ODA) approach of Shapiro and
Hubral (1999), which corresponds to the Rytov approximation
for primary waves in 1D random media and includes multiple
backscattering. We also use the Rytov approximation to com-
pute α in 3D anisotropic random media. This 3D Rytov ap-
proximation takes into account random diffraction and refrac-
tion but neglects backscattering (Müller and Shapiro, 2003). By
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A Hybrid Q Model 1531

combining heuristically the ODA and 3D Rytov approaches,
we find a Q model that is applicable in 3D anisotropic random
media, where all of the aforementioned attenuation mecha-
nisms apply. Numerical experiments confirm the validity of the
combined scattering Q model.

The outline of this short note is as follows. In the next two
sections, we briefly review the results of the ODA approach for
scalar wave propagation and approximations for the scattering
attenuation coefficient in 3D anisotropic random media based
on the Rytov approximation. Then, a combined Q model by
the joint ODA approach and the Rytov approximation is pre-
sented. Numerical results illustrate the properties of this Q
model. Finally, we discuss some open problems and present
the conclusions.

SCATTERING ATTENUATION IN THINLY
LAYERED MEDIA — THE ODA APPROACH

For 1D random media, Shapiro and Hubral (1999) approxi-
mated the transmitted, primary wavefield with a second-order
Rytov approximation. An essential feature of their wavefield
description (the so-called generalized ODA approach) is its
ability to describe the wavefield in a single realization of the
random medium. This becomes possible due to the use of self-
averaged wavefield attributes. In 1D random media, scattering
attenuation is caused by interference of multiply backscattered
waves.

For a plane acoustic wave vertically impinging on a stack of
randomly distributed layers (for simplicity, we assume the den-
sity to be constant), the time-harmonic transmissivity T (t, ω)
can be written as (equation 4.19 in Shapiro and Hubral, 1999)

T (t, ω) = e−α1D L+iϕ1D Le−iωt , (1)

with

α1D = k2
∫ ∞

0
dr Bv(r) cos(2kr) (2)

ϕ1D = k + 3
2

k Bv(0) − k2
∫ ∞

0
dr Bv(r) sin(2kr), (3)

where k denotes the wave number corresponding to wave prop-
agation in the unperturbed background medium (k = ω/c0,
where c0 is the sound velocity) and L is the propagation dis-

Figure 1. Schematic plot of a layered structure structure with
finite lateral extent. The correlation scale in the x-direction, ax ,
is much larger than that in the z-direction, az . Thus, the ratio of
spatial anisotropy γ = az/ax is a small parameter. In this paper,
we consider the case of normally incident waves that mainly
propagate in the z-direction.

tance in the z-direction. Bv(r) is the correlation function of
the relative, zero-average velocity fluctuations ζv : Bv(r) =
〈ζv(z)ζv(z + r)〉, where r is the correlation lag in meters, and
the angle brackets denote ensemble averaging. In statistically
homogeneous media, Bv(r) is characterized by two parameters:
the variance of the fluctuations, σ 2

v = Bv(0), and the character-
istic size of the inhomogeneities, i.e., the correlation length
a‖. For example, for exponentially correlated fluctuations, we
have Bv(r) = σ 2

v exp[−|r |/a‖]. The quantities α1D and ϕ1D are
called the attenuation coefficient and the phase increment, re-
spectively. We note that, for elastic random media, one obtains
different expressions for α1D and ϕ1D , which are, however, of
the same structure as expressions 2 and 3. That is to say, α1D

and ϕ1D are then given by a sum of Fourier sine and cosine
transforms of the correlation functions of the respective elas-
tic properties. From equation 2, it follows that the reciprocal
quality factor Q−1 = 2α/k is maximum if ka‖ = 1. Applicability
of equation 1 is valid under the assumption

L <
max(2π/k, a‖)

σ 2
v

, (4)

or equivalently,


σ 2
v

L

a‖
ka‖ < 2π if ka‖ < 2π,

σ 2
v

L

a‖
< 1 if ka‖ > 2π,

(5)

which is deduced from equation 5.46 in Shapiro and Hubral
(1999) and defines the regime of weak scattering.

SCATTERING ATTENUATION CAUSED BY
RANDOM DIFFRACTION AND REFRACTION

Diffraction and refraction of waves by randomly distributed
inhomogeneities result in a random focusing and defocussing
of wave energy and, consequently, result in an increase of the
amplitude fluctuations measured at varying transversal posi-
tions with increasing propagation distances (Rytov et al., 1989).
Shapiro and Kneib (1993) showed that the variance of the log-
amplitude fluctuations, σ 2

χ , is directly related to the coefficient
of scattering attenuation of a plane wave, α, via the relation

α = σ 2
χ

L
. (6)

This means that the key to the description of attenuation due
to random diffraction and refraction is the computation of
the log-amplitude variance σ 2

χ . For 3D anisotropic random
media (a propagation medium with a constant background
squared slowness p2 = 1/c2

0, superimposed by a field of sta-
tistically anisotropic fluctuations), Müller and Shapiro (2003)
obtained

σ 2
χ = k2L

∫ +∞∫
−∞

d2r⊥
∫ ∞

0
dzFn(z, r⊥)

[
cos

(
z

2k
r2
⊥

)

− sin
(
r2
⊥L

/
k
)

r2
⊥L

/
k

]
. (7)

Fn(z, r⊥) is the Fourier transform of the correlation function
Bn(z, r⊥) in the transversal coordinates r⊥ = (x, y)T . In order
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1532 Müller and Shapiro

to obtain explicit results from equation 7, we have to spec-
ify the correlation function Bn . For example, in the case of
a Gaussian correlation function Bn(r) = σ 2

n exp(− x2

a2
x
− y2

a2
y
− z2

a2
z
)

with ax = ay = a⊥, az = a‖, and the variance of the squared slow-
ness fluctuations, σ 2

n , we obtain

σ 2
χ ≈ σ 2

n

√
π

4
a‖
a⊥

k3a3
⊥ D

[
1 − arctan(2D)

2D

]
(8)

in three dimensions and

σ 2
χ ≈ σ 2

n

√
π

4
a‖
a⊥

k3a3
⊥ D

[
1 − 1√

2D

√√
1 + 4D2 − 1

]
(9)

in two dimensions, where we used the dimensionless wave pa-
rameter D = L/(ka2

⊥). Note that in the case a‖ = a⊥ these results
could be derived from the expression of σ 2

χ in the isotropic case
(Müller et al., 2002). Therefore, the ratio γ = a‖/a⊥ addition-
ally controls the magnitude of the log-amplitude variance in
anisotropic random media. It is important to note that equa-
tion 7 is restricted by

σ 2
n γ

L

a⊥
(ka⊥)2 < 1 (10)

and

ka‖ � 1, (11)

which are the conditions of weak wavefield fluctuations and
small-angle scattering, respectively. We also note that the Ry-
tov approximation for σ 2

χ has an increased range of validity as
compared to the isotropic result if γ < 1.

A HYBRID SCATTERING Q MODEL

Typically, the wavelength of seismic waves greatly exceeds
the correlation length a‖ that is associated with the thin layer-
ing. Thus, the application of the scattering attenuation approx-
imation based on the Rytov approximation in 3D anisotropic
random media becomes impossible because the constraint
ka‖ � 1 is violated. Physically, it means that the mechanism of
backscattering becomes more important. On the other hand,
the exclusive application of the 1D Q−1 estimate results in an
underestimation of scattering attenuation while the horizontal
correlation length a⊥ is finite. To overcome these restrictions,
one should look for a combination of both attenuation esti-
mates as follows.

The simplest way to combine the attenuation estimates of the
ODA theory and the diffraction analysis (see previous two sec-
tions) is the linear combination of the attenuation coefficients
or, equivalently, the Q−1-estimates. Hence, a hybrid Q-factor
estimate can be constructed in the form

Q−1 = Q−1
1D + Q−1

diff , (12)

where Q−1
1D denotes the estimate for 1D random media

(based on equation 2) and Q−1
diff can be computed via

Q−1
diff = 2α/k = 2σ 2

χ/kL using equation 7. Assuming a statisti-
cally homogeneous random medium, the evaluation of scat-
tering attenuation according to equation 12 is then based on
the functional form of the correlation function involving the
correlation scales (a‖, a⊥) and the strength of the inhomo-
geneities (σv). Q−1 is also dependent on propagation distance

and the frequency. We note that we implicitly used the ap-
proximation σ 2

v ≈ σ 2
n , which introduces only a negligibly small

error if σ 2
n , σ 2

v � 1. Comparing the ranges of applicability of
the ODA and 3D Rytov approximations (equations 5 and 10),
we find that equation 12 is valid for any ka‖ and only limited
by the weak wavefield fluctuation assumption (equation 10).
The frequency dependence of Q−1 is shown in Figure 2 for the
case of a Gaussian correlated random medium. It is interesting
to note the increasing magnitude of Q−1 and the appearance
of an additional maximum at higher frequencies for decreas-
ing horizontal correlation lengths. This means that the more
the propagation medium deviates from a 1D random medium,
the more important the effect of random diffraction and re-
fraction. Maximal attenuation no longer occurs at frequency
ω = c0/a‖ (as predicted by ODA) but at ω ≈ c0/a‖

√
L/a⊥. We

note that the magnitude and frequency dependence of Q−1

strongly depend on the used correlation function. From Figure
2, we can obtain an error estimate of Q−1 if the effect of random
diffraction and refraction is neglected: in this example maximal

Figure 2. (Top) Frequency dependence of the reciprocal quality
factor Q−1 according to equation 12 in an anisotropic random
medium with c0 = 3000 m/s, σn = 0.1, and L = 4 km. The inho-
mogeneities are Gaussian correlated with a vertical correla-
tion length az = 5 m and varying horizontal correlation length
a⊥ indicated in the legend. The lowermost curve represents
Q−1 according to the ODA approach or, equivalently, to equa-
tion 12 with a⊥ = ∞. (Bottom) Travel-distance dependence of
Q−1 for the same medium at frequency 40 Hz and for varying
a⊥. For the case a⊥ = 50 m, the large travel-distance asymptote
(equation 13) is also shown.
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A Hybrid Q Model 1533

attenuation in the 1D random medium (γ = 0) can be observed
at frequency f ≈ 75H z. But even for γ = 0.018 (a⊥ = 275 m is
55 times larger than a‖), the overall attenuation is increased
by 60%. This demonstrates that neglecting the contribution
of diffraction results in a severe underestimation of the total
amount of scattering attenuation.

The dependence of Q−1 on the propagation distance is also
shown in Figure 2 (bottom). We note that the dependence of
scattering attenuation on the propagation distance is a signa-
ture of 3D inhomogeneous media and is due to the nonlin-
ear accumulation of the wavefield fluctuations with increasing
propagation distance (see equations 8 and 9). It can be ob-
served that the larger γ the stronger the L-dependence of Q−1

if L is small. On the other hand, for large propagation distances,
Q−1 becomes independent of L for any value of γ .

Explicit analytical formulas for Q−1 based on equation 12
can be rather involved for certain correlation functions of in-
terest. However, in some limiting cases, simpler results can
be obtained. To do that, we consider the case of large prop-
agation distances (where the value of L is still within the
limitations of the weak-scattering approximation). Comparing
formula 8 with the result for isotropic random media, isoσ 2

χ ,
we obtain the simple formula σ 2

χ = γ · isoσ 2
χ (see also Müller

and Shapiro, 2003). That is, the log-amplitude variance in
anisotropic random media can be obtained by multiplying the
log-amplitude variance in isotropic random media with the
parameter γ . It is well-known (Rytov et al., 1989) that, for
large L , the log-amplitude variance is approximately given by
isoσ 2

χ ≈ 2πk2 L
∫ ∞

0 dκκ�3D(κ), where �3D denotes the fluctua-
tion spectrum that is the 3D Fourier transform of the correla-
tion function. It is also known that, in isotropic random media,
the fluctuation spectra in one dimension and three dimensions
are related through (Ishimaru, 1978) �3D(κ) = − 1

2πκ

d
dκ

�1D(κ),
where �1D denotes the 1D fluctuation spectrum. Using the lat-
ter relation and the fact the attenuation coefficient of the ODA
theory can be expressed as α1D = 0.5�1D(2k), we finally obtain
the simple formula for large travel distances:

Q−1 � k
[
2γ�1D

a⊥ (0) + �1D
a‖ (2k)

]
, (13)

where the subscript of �1D denotes the correlation length
that has to be used in conjunction with the respective fluc-
tuation spectrum. In Figure 2, we plot equation 13 as a func-
tion of propagation distance for Gaussian correlated random
media (�1D

a‖ (κ) = √
πσ 2

n a‖ exp[−κ2a2
‖/4]). The asymptotic co-

incidence with Q−1 based on equation 12 can be observed.
Equation 13 can be easily interpreted: Scattering attenuation
due to random diffraction and refraction is described by the
first term, and only the spatial wavenumber κ = 0 yields a con-
tribution. The second term in equation 13 refers to scattering
attenuation in the ODA approximation, where only the spatial
wavenumber κ = 2k contributes.

In order to numerically validate the proposed Q−1 model, we
performed finite-difference simulations of seismic wave propa-
gation in 2D anisotropic random media. An initially plane wave
(a Ricker wavelet with dominant frequency of 45 Hz) propa-
gating in the homogeneous background medium impinges on a
realization of the random medium. The wavefield is recorded at
geophone lines that are placed perpendicular to the direction of
wave propagation. These numerical experiments are described
in detail in Müller and Shapiro (2003). The evaluation of Q

estimates is always associated with numerical instabilities. A
quantity that is more robustly estimated is the log-amplitude
variance, which is connected to the attenuation coefficient
via equation 6 and can be understood as the cumulative
attenuation. Figure 3 displays the numerically determined
log-amplitude variance as a function of propagation distance
(squares) for an experiment with a‖ = 11.25 m, a⊥ = 135 m
(γ = 1/12). The σ 2

χ values according to the ODA theory (the
straight dashed line) clearly underestimates the numerically
determined values for σ 2

χ . Also the log-amplitude variance
calculated with the 2D Rytov approximation (equation 9)
does not agree with the numerical result of σ 2

χ . However, the
sum of both approximations fits the numerical values quite
well (solid curve), indicating that the hybrid Q−1 model is
applicable in this case.

DISCUSSION AND CONCLUSIONS

It has been shown that the importance of diffraction effects
scales with the parameter γ = a‖/a⊥. In situations where the
correlation length associated with thin layering becomes rel-
atively small (say a‖ < 1m) so that γ becomes small too, the
contribution of random diffraction to Q−1 can be practically
neglected. However, analyzing the correlation properties of
well-log data shows that there is often an additional verti-
cal correlation scale involved which exceeds that of the thin
layering and corresponds to larger but still subwavelength in-
homogeneities (Goff and Holliger, 1999). That means in real
geostructures an effective value of γ can be sufficiently large,
and the effect of random diffraction can significantly increase
the amount of scattering attenuation.

The hybrid Q−1-model is able to describe scattering atten-
uation of seismic primaries in thinly layered structures with
finite lateral extent and is an extension to the generalized
ODA theory of Shapiro and Hubral (1999). In such quasi-1D
structures, seismic scattering attenuation is not only caused by
backscattering from thin layers but also due to diffractions and

Figure 3. The log-amplitude variance, which is a measure of
the plane-wave cumulative attenuation, as a function of travel
distance. For the numerical experiment, we used c0 = 3000 m/s,
σn = 0.1, a⊥ = 135 m, a‖ = 11.25 m, and a dominant frequency
of 45 Hz. Neither the ODA approach nor the 2D Rytov ap-
proach approximates the numerically obtained log-amplitude
variances (squares). However, the superposition of both ap-
proximations (solid line) yields a reasonable agreement with
the numerical experiment.
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1534 Müller and Shapiro

refractions from randomly distributed inhomogeneities. Since
the generalized ODA approach handles conversion scattering,
the presented approximations can be also used to model the
attenuation of P- and S-waves in elastic random media. We re-
stricted this analysis to wave propagation perpendicular to the
large characteristic length scale of the inhomogeneities, which
corresponds to the zero angle-of-incidence case in the layered
media limit. For arbitrary angles of incidence, we expect (1) that
the contribution of backscattering to the attenuation decreases
with increasing angle of incidence (in agreement with the ODA
theory) and (2) that the amplitude fluctuations increase and
therefore attenuation due to diffraction increases (amplitude
fluctuations are maximum for waves propagating along the
long characteristic length scale of the inhomogeneities). A full
analysis of this problem is a subject of future research.
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