JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 109, B12301, doi:10.1029/2003JB002867, 2004

Accelerating seismic release from a self-correcting
stochastic model

Steven C. Jaumé
Department of Geology and Environmental Geosciences, College of Charleston, Charleston, South Carolina, USA

Mark S. Bebbington
IIS&T, Massey University, Palmerston North, New Zealand

Received 28 October 2003; revised 1 September 2004; accepted 8 September 2004; published 1 December 2004.

[1] We investigate the conditions under which the “stress-release model,” a stochastic
version of the elastic rebound model, produces synthetic earthquake sequences
characterized by Accelerating Seismic Release (ASR). In this model, the level, or
“stress,” of the process accumulates linearly with time through tectonic input and
decreases as the result of earthquakes. These ““stress drops” correspond to some power of
the energy released in the earthquakes, either £° (Benioff strain) or £ (seismic moment).
Earthquakes occur in a point process with rate controlled by the level of the process.
We hypothesize that the critical factor in the appearance of ASR is the manner in which
the event sizes depend on the level of the process. This is modeled by the square root of
energy released following either a tapered Pareto or truncated Gutenberg-Richter
distribution, with maximum earthquake size controlled by a “tail-off or “truncation”
point. As the tail-off point becomes large, so does the average size, corresponding to an
“acceleration to criticality” of the system. We found that those cases where the underlying
level of the process corresponded to accumulated seismic moment produced numerous
ASR sequences, whereas those cases using accumulated Benioff strain as the level did not.
These results suggest that the occurrence of ASR is strongly dependent on how large
earthquakes affect the dynamics of the fault system in which they are embedded, and
hopefully provide some insight into the mechanics of acceleration to criticality, i.e., on the
possible causes of occurrence/nonoccurrence of ASR.  INDEX TERMS: 3220 Mathematical
Geophysics: Nonlinear dynamics; 3210 Mathematical Geophysics: Modeling; 7209 Seismology: Earthquake
dynamics and mechanics; 7223 Seismology: Seismic hazard assessment and prediction, KEYWORDS:
accelerating seismic release, intermittent criticality, stochastic stress release model
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tinental regions [Jaumé and Sykes, 1999, and references
therein]. A number of authors [e.g., Sornette and Sammis,
1995; Rundle et al., 1999] have viewed this behavior as
being analogous to changes in a physical system approach-
ing a phase transition. In these so-called “‘intermittent
criticality” models, a fault system alternately approaches
and retreats from a critical state. During the approach to the
critical state, there is progressive growth in long-range
correlations in the underlying stress field, allowing for
increasingly larger earthquake events to occur. Thus ASR
can be considered a symptom of a system ‘“‘accelerating to
criticality.”

[3] The acceleration in seismic release is most often
described by a power-law time to failure equation [Varnes,

1. Introduction

[2] There has been a growing trend in seismology to
utilize concepts from statistical physics to explain observa-
tions of the earthquake process. Observations such as the
Gutenberg-Richter Magnitude-Frequency relationship and
the small magnitude of dynamic stress drops relative to
predicted crustal stresses have suggested to some that the
seismogenic crust is constantly in a state of “self-organized
criticality”” (SOC), where the initiation of any small event
has the potential to grow into a large earthquake that spans
the full dimension of the tectonic fault system [Kagan,
1994; Geller et al., 1997]. In contrast, the Accelerating
Seismic Release (ASR) hypothesis, based on the postevent

study of seismic catalogs, is that the regional rate of seismic
moment or strain release accelerates prior to the occurrence
of many moderate to large earthquakes in deforming con-
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1989; Bufe and Varnes, 1993]:
Q) = A+ Bl —1)", (1)

where €(7) is the observed quantity of interest (cumulative
seismic moment, Benioff strain, or event count), # is the

1 of 12

85U80|7 SUOWLLIOD B8O 8|aedl|dde sy Aq peusenob ae SajoiLe O ‘8sn JO Sa|nJ 10} A%iq1T8ulUO 3|1 UO (SUOTIPUOD-PpUe-SW.BI W0 A 1M AReIq 1 pul|Uoy/:Sdny) SUONIPUCD pue SWe | Y1 88S *[2Z02/0T/yz] Uo Ariqiauliu 8|1 ‘Uoiieiepe Ueissny aueiyooD Aq 2982008re002/620T 0T/I0p/woo" As | Areiqputjuo'sgndnBe;/:sdny wouy papeojumod ‘2T ‘Y00z ‘020229STZ



B12301

Table 1. Definitions of Terms
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Variable Representation
Q(r) Cumulative seismic release (Benioff strain or seismic moment).
A A= Q) in (1).
B B < 0; parameter controlling increase in €2(7) in (1).
m 0 <m < 0.8; parameter controlling curvature in (1).
17 Time of mainshock event (time-of-failure).
X() Level of the underlying stochastic process.
p p > 0; tectonic input rate in (3).

Stress release of the ith earthquake.

1
S; = 10%40-TMi o 1(2-0+1-5M, Alternative relations between stress release and magnitude.
S(1) =>"<:S;i Accumulated stress release from earthquakes in (3).
W(x) Instantaneous rate of occurrence when X(7) = x.
W, v v > 0; parameters controlling relationship between X(7) and ¥ in (4).
) Point process intensity of the stochastic process.
Fy), F(M) Distribution of earthquake stress releases and magnitudes, respectively.
Yo, Mo Lower stress release and magnitude cutoffs.
« Parameter controlling decrease in event size frequency with magnitude in (5).
U, vy Upper turning stress release (U) and equivalent magnitude (y) in (5).

v =ug + e’ orug + uy (1 +X)"

Alternative relations between level X(7) and upper turning magnitude.

time of the mainshock event that ends the sequence, and 4, B,
and m are parameters that describe the acceleration
(a complete definition of terms used in this paper is given
in Table 1). Seismic moment is often considered the preferred
quantity to use on theoretical grounds [Main, 1999;
Vere-Jones et al., 2001] but Benioff strain is most often used
in empirical work because it appears to provide better “post-
dictions™ of ¢ [Bufe and Varnes, 1993]. We perform our
analyses in section 5 using both cumulative Benioff strain
and cumulative moment release, but for clarity of exposition,
will present our results using Benioff strain and simply
review the results using seismic moment in section 6. In terms
of earthquake quantities the cumulative Benioff strain release
is [Benioff, 1951; Gutenberg and Richter, 1956]

N()

N(1) N(1)
Q) = ZEI'I/Z _ Z 6 = Z 1024+075M; )
=1 i=1

i=1

where N(7) is the number of events in (0, ¢), and E,, €; and M;
are the energy release, Benioff strain release, and magnitude,
respectively, of the ith event.

[4] Proper quantification of earthquake occurrence fore-
casts from ASR requires some way of simulating sequences
of events from the model. For example, large synthetic
catalogs provide the means to examine inference properties
of parameter estimates, and thus obtain some idea of the
expected precision of forecasts. Vere-Jones et al. [2001]
consider simulating directly from the ASR formulation (1),
identifying a spectrum of methods for doing so. However, a
difficulty with the formulation of the ASR model in (1) is
that it only models a single sequence, terminating in a major
event. There is no indication of the mechanism between
sequences. Limited observational evidence from the San
Francisco Bay region is that there have been at least three
such sequences between 1850 and 1989 [Bufe and Varnes,
1993], and thus a model that provides for repeated ASR
sequences is desirable.

[s] The purpose of the present work is to propose a
stochastic model capable of displaying repeated instances
of acceleration to criticality, and to use this model to further
define the conditions under which ASR behavior occurs. To

date, most studies of this issue have been undertaken using
simulated earthquake catalogs generated by various physi-
cally based computational models ranging from simple
cellular automata [Steacy and McCloskey, 1998, 1999;
Sammis and Smith, 1999] to those with a more elaborate
physical basis [Mora et al., 2000; Ben-Zion et al., 2003].
While the model parameters that control the type of behav-
ior exhibited can be clearly examined in these simulations,
there is no method for estimating these from observed data.
We note that even results from simulation models that are
designed to produce ASR-type behavior do not always
clearly exhibit a classic ASR sequence prior to all large
earthquakes [e.g., Jaumé et al., 2000]. Since these models
generally contain a large number of interacting elements,
there is always some “randomness” in the occurrence of
individual earthquakes; i.e., even in a designed ASR sys-
tem, the exact timing and location of the large earthquake
that ends an ASR sequence need not be predictable. Since
we know that ASR is not an universal phenomena, this
uncertainty must be at least as prevalent in natural systems.
Thus stochastic models, allowing for the quantification of
this random element, are to be preferred. The additional
difficulty that we do not (and may never) exactly know the
state of stress in any part of the Earth’s crust, reinforces this
preference, as such models can embody our uncertainty
regarding the state of the system.

[6] The cumulative strain release €(¢) in (2) contains two
potential sources of variation: the number of events and
their average size. Jaumé and Sykes [1999] and Jaumé
[2000] examined variations in earthquake frequency-
magnitude distributions during known ASR sequences and
found that the acceleration arises most often from an
increase in the size of the events and less frequently from
an increase in numbers. This leaves open the question of
how the two elements interact. The hypothesis we will
advance here is that in order to have “acceleration to
criticality,” there should be an underlying state of the
system related to the ‘“closeness to criticality” and that
either or both of the rate of events and the mean magnitude
increases with this underlying state. Ben-Zion et al.
[2003] find similar behavior in a discrete simulation model
of a strike-slip fault with realistic dynamic weakening;
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frequency size statistics of small and moderate events
evolve in time between large earthquakes, showing an
increase in the event rate and the maximum event size, as
a large earthquake approaches.

[7] Since we desire a model with the potential to estimate
the parameters from observed data, and for the output
characteristics to evolve as in (1), we are naturally led to
the class of point process models with history-conditional
intensities [see, e.g., Daley and Vere-Jones, 2003]. The
simplest such model possibly suitable for our purposes is
the stress release model [Vere-Jones, 1978]. It is primarily
attractive because of the physical intuition behind the
model; the intensity is an increasing function of an under-
lying system variable, be it accumulated elastic strain
energy, accumulated seismic moment, etc. Thus cause and
effect are very clear, which is not necessarily the case with
more complex simulation models. If the stress-release
model can produce ASR behavior, it will provide a mech-
anism for the evolution of the seismic record between
ASR sequences, and thus assist investigation of parameter
estimation and hazard forecasting using ASR models.
Furthermore, as the stress-release model is a point process
with a history-conditional intensity, there exists a well-
defined statistical procedure for fitting the parameters to
data. This may provide a useful alternative to, and a check
on, the usual ASR methodology in some circumstances.

[8] This paper is an investigation of the conditions under
which an elaboration of the stress release model of Vere-
Jones [1978] produces synthetic earthquake catalogs con-
taining repeated ASR sequences. In doing this we hope to
both provide a means to simulate multiple occurrences of
ASR and to gain further insight into the nature of fault
systems that do and do not produce this type of behavior.
We shall next describe the stress release model and how, in
particular, the event rate is parameterized as a function of
the earthquake history. The following section describes the
distribution of the simulated event sizes, and how this can
produce ‘“‘acceleration to criticality.” Section 4 then sum-
marizes the experimental factors, including the dependence
of the size distribution on the history of the process, and the
simulation procedure. The results are presented in section 5
and discussed in the final section.

2. Stress Release Model

[9] We shall henceforth use the term “stress” to denote
the quantity which is accumulated to form the underlying
system variable, or level, of the stochastic process. The
stress release model is a stochastic version of the elastic
rebound model, where the probability of earthquake occur-
rence is controlled by the deterministic buildup of stress
within a region and its release, stochastically, through
earthquakes. Note especially that this “stress” is a scalar
quantity, and not a tensor as is the true stress. It is intended
to track the level of, for example, elastic strain energy or
seismic moment accumulated in a large tectonic region,
whereas the actual stress tensor in a region is highly
heterogeneous. Further, the region size for which the stress
release model is appropriate [Zheng and Vere-Jones, 1991,
1994] is comparable to those identified by Bowman et al.
[1998] as exhibiting ASR behavior. For the purposes of this
study we will simply assume that the region modeled by the
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stress release process corresponds to one exhibiting ASR
behavior. Thus we abstract the spatial dimension, leaving
only the temporal dimension, which can thus be modeled by
the stress release process.

[10] The level of the process, X(f), evolves as

X(2) = X(0) +pt = S(1), 3)

where X(0) is the initial value, p is a constant loading rate
from external tectonic forces, and S(7) is the accumulated
stress release from earthquakes within the region over the
period (0, #), that is, S(t) = >, -,S;, where #; and S; are the
origin time and the stress release associated with the ith
earthquake.

[11] Earthquakes above a fixed threshold size, my, are
assumed to occur stochastically, where the probability of an
event occurring in the time interval (¢, t + A) is W(X(7))A +
o(A) for small A. Thus the history controls the rate of events
through the current level. Obviously the function W(X(7))
must be nondecreasing. For example, U(X(f)) = constant
results in a random (Poisson process) model of occurrences,
while

07 X(t) < Xes
V(X (1) = Y
oo, t) > x.,

corresponds to a time-predictable model, supposing a failure
strength x.. An effective compromise [Zheng and Vere-
Jones, 1991, 1994] between these extremes of behavior is
U(X(#)) = exp[p + vX(®)]. This can also represent the
behavior that might be expected from a region with a locally
heterogeneous strength. We interpret p as representing the
background seismicity rate, although this cannot be
distinguished from the initial level X(0) using observed
data. Note that although X(#) can become negative in (3),
which is intuitively unattractive for a physical quantity, the
inclusion of | in the formulation means that X(¢) is in fact
merely a perturbation relative to some unknown level.
Meanwhile, the exponential form of W(X(#)) ensures that the
probability of an event remains positive. The “sensitivity”
parameter v is interpreted as an amalgam of the distribution
of fault strengths in the region.

[12] Statistical analysis is made possible by treating the
data in historical earthquake catalogs as a point process in
time-stress space with history-dependent conditional inten-
sity function

Nt) = W(X (1) = explp +v(X(0) +pt = S(1))].  (4)

Estimates of the parameters can then be found by
maximizing the log-likelihood function [see, e.g., Daley
and Vere-Jones, 2003, section 7.2].

3. [Earthquake Magnitude-Frequency
Distributions

[13] Simulating events from a stochastic model requires
some means of generating the size of the event, or equiv-
alently, a probability distribution for the magnitude. While
this may follow a Gutenberg-Richter power-law distribution
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for small to medium magnitudes, the power-law breaks down
for larger magnitudes such as those of the terminating ASR
events [Kagan, 1991]. Also, if we are to generate a change in
the rate of seismic release, we need to increase either the rate
of events or their average size. The evidence from observed
ASR sequences [Jaumé, 2000] suggests that both can occur.
Generating ASR through increasing average event size in
the case of the Gutenberg-Richter distribution requires
decreasing the b value, but this is not feasible in simulation
because of the finite possibility of generating an arbitrarily
large event. Moreover, observational evidence [Jaumé,
2000] is that the b value of the lower magnitude part of the
distribution does not change during ASR sequences. Hence
we need finer control over the large magnitude tail of the
distribution, in order to increase the average event size.

[14] Rather than the simple Gutenberg-Richter power law,
we will use the tapered Pareto (or Kagan) [Vere-Jones et
al., 2001; Daley and Vere-Jones, 2003, section 7.3] and
truncated Gutenberg-Richter distributions [Burroughs and
Tebbens, 2002]. Both of these distributions have the prop-
erty that the parameter controlling the large magnitude tail of
the distribution can be linked to the level X(#). We note here
that theoretical discussions of the “intermittent criticality”
model generally refer to changes in the magnitude distribu-
tion using the tapered Pareto model [Rundle et al., 1999,
2000]. Thus we will focus our discussion upon the tapered
Pareto distribution, stopping to note where the behavior of
the truncated Gutenberg-Richter distribution differs.

[15] The tapered Pareto form has the distribution function
(assuming that the lower curvature, corresponding to cata-
log incompleteness, is immaterial to our purposes and can
be ignored)

Fy)=1- (yl) Vel —y)/UL >3 (5)

For small and intermediate y, this is close to power-law
form, but for y large it is dominated by the exponential
taper. Increasing the turning point U increases the mean of
the distribution, and thus the average event size. Distribu-
tions of this type are commonly used when it is desirable for
the body of the distribution to approximate a power-law, but
where the moments must remain finite, as is the case with
earthquake sizes. For more on the distribution (5) and its
properties, see Kagan [1991, 1997, 2002], Vere-Jones et al.
[2001], and Kagan and Schoenberg [2001]. In the
geophysical literature the tapered Pareto distribution usually
appears as the modified Gutenberg-Richter distribution
[Sornette and Sornette, 1999; Bird et al., 2000]

F(M) =1 = (M,/M)" exp|(M; — M)/M,] (6)

for seismic moments, where M, is the observational
completeness threshold (typically presumed known), and
M,. the upper turning point.

[16] The truncated Gutenberg-Richter distribution
[Burroughs and Tebbens, 2002] for magnitude has
distribution

1 —exp[bIn10(my — M)]

F(M) = 1 —exp[bIn 10(my — Mumax)] )
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In this case the upper cutoff magnitude m,,.x sets a strict
limit on the size of the largest event, as opposed to the
“softer” upper magnitude limit of (5).

[17] In order to be compatible with the results of Vere-
Jones et al. [2001], we will let the random variable
following (5) be the Benioff strain release ¢;, which is then
converted to magnitude as [Benioff, 1951; Gutenberg and
Richter, 1956]

4
M = my + g lOg]o €. (8)

Thus the “b value” in the power-law range of the
distribution is equal to 0.75q, and we will specify U
through the equivalent magnitude v = (log,oU — 2.4)/0.75.
For convenience, we will also use vy as synonymous with
Mmax When referring to the truncated Gutenberg-Richter.

[18] For our purposes, the importance of (5) lies in the
fact that, when y = oo (i.e., there is no round-off of
the distribution), the mean of the distribution is infinite
for o > 1. In other words, o = 1 is the “critical value” of
the distribution. Conversely, we see that if o = 1, the mean
becomes infinite in the limit y — oo. Thus we can realize our
hypothesis of “proceeding to criticality’ (in the sense of the
event size distribution) by setting o = 1 and increasing -y as
t — t; This is in accordance with theoretical expectations
[Rundle et al., 2000, Figure 4].

[19] We note here that the minimum b value of the
magnitude distributions that we generate is 0.75. This lies
within the lower range of observed b values 0.7—1.3
[Frohlich and Davis, 1993]. In practice, because of the
upper magnitude truncations introduced by (6) or (7), the
actual b values of the simulated catalogs are usually larger
(see section 5). We also note that the particular implemen-
tation of the stress release model used here does not include
aftershocks, and that aftershock removal from natural cata-
logs leads to an apparent decrease in the observed b value
[Frohlich and Davis, 1993].

4. Experimental Design

[20] Within the formulation outlined above, there remain
several factors which may influence the occurrence of ASR.
Briefly, these are whether (and possibly how) the average
event size increases with the level X(¢) of the process;
whether the event rate increases with the level; and how
decreases in the level scale with event size.

[21] Firstly, let us consider the form of the dependence
(on the level X(#)) of the equivalent magnitude v, and thus
the average event size. Figure 3 of Weatherley et al. [2000]
shows that the maximum size of simulated events from a
cellular automaton model increases with the model stress. If
we bin model events according to stress level at their time of
occurrence, and fit the resulting frequency-size distribution
following (6) or (7), we obtain the estimated M, and m,,,,x as
a function of model energy (read “stress”) as shown in
Figure 1.

[22] In Figure 1 is it clear that M, and m,,, increase as a
function of the model system energy at failure. For the
tapered Pareto distribution the two nonlinear functions have
the smallest RMS error and capture the apparent curvature
in the distribution better. Thus we will model the change
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Figure 1. An illustration of how the large magnitude tail (M, or m,,x) of the distribution may depend
upon system energy. The cumulative frequency magnitude (defined as log;o event energy release)
distributions of 10,000 events (binned by system energy at failure) from the cellular automaton model
studied by Jaumé et al. [2000] and Weatherley et al. [2000] were fit to the tapered Pareto (left: (6)) and
truncated Gutenberg-Richter (right: (7)) distributions. Lines represent linear (solid), exponential (dashed),
and power-law (dotted; u, = 2.0 in (10)) fits to the relationship between M, or my,,x and the system
energy at failure. For (6) the exponential fit has the smallest RMS error, followed by the power-law fit,
and then the linear fit. For (7) the power-law fits best, followed by the linear and exponential fits.

in y with the level X(¢) using those two possibilities;
exponential,

v = up + ure”, 9)
and power-law dependence,
v =up+ur(1+X0)"%, (10)

where the subscript + denotes the positive part. As a check,
we can also consider the invariant case with y = 7.0. Taking
the magnitude range of interest for the accelerating events as
M > 5.0 = uy [Jaumé and Sykes, 1999], some experimenta-
tion established that the process was sufficiently stable to
produce lengthy output catalogs, which appear to satisfac-
torily mimic observed seismic records, with #; = 0.1 and
u, = 2.0 in (9) and (10). For the truncated Gutenberg-
Richter distribution, values of ug = 6.0, u; = 0.2, u, = 2.0
produced similarly satisfactory catalogs. When using the
truncated Gutenberg-Richter distribution, greater care had to
be exercised concerning the choice of the parameters u, and
u; than with the tapered Pareto distribution. Otherwise, the
abrupt truncation of the distribution resulted in output
catalogs noticeably different from observed catalogs. This
manifested in two ways: either the distribution had a “turn
up” following the “turn down,” or had a sharp truncation.
In neither case was ASR observed, although some sort of
“cycles” were clearly present in the former. We note that
other parameterizations of the relationship between X(7) and
v are possible (see section 06).

[23] Secondly, there is the question of whether the rate of
events should increase with the level X(¢) as in (4), which
might possibly naturally result in ASR without the necessity
of increasing the average event size. The alternative of
setting A\(f) = constant results in a Poisson process, which
would require that y remains level-dependent, and that the
level X(¢) continue to evolve following (3).

[24] Finally, there is the question of whether the quantity
accumulated in the level of the process should be Benioff
strain or seismic moment [see /moto, 2001; Bebbington and
Harte, 2003]. In the former case, the stress release is
calculated by [Benioff, 1951; Gutenberg and Richter, 1956]

S = ¢ = 1024H0.75M, (11)
and in the latter case by [Hanks and Kanamori, 1979]
Si _ Ei — 109,0+1A5M,-. (12)

[25] We are now in a position to perform a series of
simulation experiments to examine the effects of the factors
enumerated above. For each meaningful combination of
factors a sequence of approximately 10,000 events was
produced and examined for ASR sequences using the
methodology of Jaumé et al. [2000].

[26] The simulation procedure is relatively straightfor-
ward and proceeds as follows:

[27] 1. Using a variant of the Shedler-Lewis thinning
method [Lewis and Shedler, 1976; Ogata, 1981] we gener-
ate the time of the next event using the time-varying
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intensity \(¢) in (4). Note that X(7) increases between events,
and so this is simpler if \(?) is a constant.

[28] 2. We then generate a strain release from the distri-
bution (5) or (7), using in the former case the fact [Vere-
Jones et al., 2001] that the distribution is the minimum of an
exponential and a Pareto random variable. The thresholds y,
and my are set such that the resulting magnitude distribution
has M, = 4.0, i.e., a unit below the minimum turning
point. The parameter vy (71,5 for the truncated Gutenberg-
Richter) can depend on the level X(7) at the event time
through (9) or (10), or be constant.

[20] 3. This strain release is then converted into a mag-
nitude via (8).

[30] 4. The level X(¥) is then reduced by an amount (11)
or (12) depending on whether it corresponds to accumulated
Benioff strain or seismic moment, respectively.

[31] 5. After reducing X(¢) by the generated amount, we
find the next event time.

5. Simulation Results

[32] In the case when the intensity \(f) was constant, the
resulting magnitude distributions did not appear to be of
modified Gutenberg-Richter form (Figure 2, middle), due to
the mixing over vy [cf. Vere-Jones et al., 2001, section 3.2].
However, in all cases where (4) was used, the output
distributions were of modified Gutenberg-Richter form
(Figure 2, top, bottom). In allowing both \(f) and vy to be
dependent on the level, the fact that lower X(¢) values are
associated with fewer events through (4) further mixes the
observed distribution. The output catalogs had b values
ranging from 0.75 to 0.92, consistent with the choice of
« = 1 above.

[33] A total of 16 simulated catalogs were produced
(Table 2), eight using each of the tapered Pareto and
truncated Gutenberg-Richter distributions. For each catalog
two analyses were run on each model output: one where
M,,.in Was selected so as to have 10 or more events with
M > M,,,;, and a second with M,,,;, such that there were 25
or more events with M > M,,,;,. Examination of the time
intervals between these terminating events produced coef-
ficients of variation (standard deviation/mean) ranging from
0.59 to 0.90, apart from Models 6, 12 and 14, with
coefficients of variation 1.63, 1.62 and 2.25 respectively.
These latter signal the possibility of rare, very large, events
which reduce X(7) to a very low level. These are presumably
possible in all of the models simulated, although the effect
would not be as noticeable in the models with constant \, or
as frequent in the models with constant . Overall, our
simulated sequences appear to have a satisfactory degree of
irregularity.

Figure 2. Aggregated magnitude-frequency distributions
resulting from stress release model simulations using the
tapered Pareto magnitude-frequency distribution. (top)
Simulations where both X\ and -y are dependent on X.
(middle) Simulations where X\ is constant and only -y
depends on X. (bottom) Simulations where vy is constant
and only X\ depends on X. Solid circles, models using
S; = 10240.73M: (gtrain); open circles, models using S; =
10%9°1-5M (moment).
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Table 2. Model Parameters and Results of ASR Analysis

Model FM* () vy X° Moy %model Y%random®
1Af TP P 7.0 strain 7.2 43 47
1B® TP P 7.0 strain 7.0 51 63
2A TP Rraze 7.0 moment 7.0 60 57
2B TP ety 7.0 moment 6.7 75 48
3A TP const. 5+ ue’ strain 6.4 27 18
3B TP const. 5+ ue strain 6.0 33 34
4A TP const. 5+ ue moment 6.9 80 33
4B TP const. 5+ e’ moment 6.4 58 31
5A TP o 5+ ue’ strain 6.9 24 35
5B TP e 5+ ue’ strain 6.7 33 48
6A TP Y 5+ ue’ moment 6.8 69 40
6B TP MY 5+ ue’ moment 6.6 70 50
TA TP P 5+ u (1 + X,)" strain 7.0 43 58
7B TP o 54 uy (1 + X,)" strain 6.8 4] 52
8A TP My 5+ (1 + X" moment 6.8 83 33
8B TP i 5+ uy(1 + X)) moment 6.6 81 58
9A TGR o 7.5 strain 7.4 47 59
9B TGR ety 7.5 strain 7.3 52 41
10A TGR e 7.5 moment 7.4 60 20
10B TGR P 7.5 moment 7.2 70 48
11A TGR const. 6+ ue” strain 7.0 33 42
11B TGR const. 6+ ue’ strain 6.7 55 45
12A TGR const. 6+ u e’ moment 7.0 73 36
12B TGR const. 6+ ue’ moment 6.5 57 54
13A TGR X 6+ ue’ strain 7.4 36 57
13B TGR o 6 + ue’ strain 7.2 32 64
14A TGR P 6+ ue’ moment 7.4 77 31
14B TGR VX 6+ ue’ moment 7.1 70 33
15A TGR My 6 +uy(1 + X)) strain 7.5 15 77
15B TGR e 6+ uy(1 + X,)™ strain 7.3 35 54
16A TGR o 6+ up (1 + X,)" moment 7.4 82 27
16B TGR i 6 + uy (1 + X,)" moment 7.1 66 31

“Frequency-magnitude distribution used to create simulated catalogs; TP, tapered Pareto; TGR, truncated Gutenberg-Richter.
®Decrease in X from an event of magnitude M equals 10%7°**2# (strain); 10" (moment).

“Mainshock magnitude cutoff used in analysis.

9dPercent of mainshocks from the stress release model with C < 0.7.
°Percent of mainshocks from randomized catalog with C < 0.7.
tAnalysis using M,,;, with 10 or more events.

€Analysis using M,,,;, with 25 or more events.

[34] The seismic strain release €2(¢) in the time period
between earthquakes with M > M,,,;, was fitted to (1),
constrained by the ¢-and €)(¢) of the mainshock. Only those
events with magnitudes within 2.0 units of the mainshock
magnitude M were used to calculate €)(¢), consistent with
empirical practice [Jaumé and Sykes, 1999]. The fit to (1)
was determined, following Bowman et al. [1998], by
minimizing

_ power-law RMS
" linear RMS ’

where “power-law RMS” refers to the least squares fit to
(1) and “linear RMS” is that of the best-fitting least
squares straight line to €)(f), premainshock (t < #). The B,
m, and ¢ in (1) that produced the smallest value of C was
taken as the best fit; 4 in (1) is constrained to be €)(z).
However, ¢ was restricted to be between 0.1 and 10.0 of
the mean interevent time between events with M > M,, .,
and m was restricted to vary between 0.0 and 0.8, to insure
that the best fit would have at least a minimum amount
of curvature. Bowman et al. [1998] use a threshold of
C < 0.7 as being indicative of ASR behavior. Figure 3
shows an example of the fit to the simulated seismicity
before the second mainshock in Model 2A.

[35] In order to establish a benchmark for the presence or
absence of ASR in our simulated catalogs, we also random-
ized the event times in the simulated catalogs and rean-
alyzed them in the same fashion. The randomization was
accomplished by generating a set of random numbers (one
for each event in the simulated catalog) and mapping them
onto the same time window as the simulated catalog. The
events were then resorted into sequential time order. The
percentage of fits with C < 0.7 in these randomized catalogs
is also shown in Table 2.

[36] On the basis of the percentage of M > M,,,,;, events
with C < 0.7, the models analyzed fall into two major
groups. Those models where the level X(#) is accumulated
Benioff strain generally have few (24—51%) mainshock
events where the preceding seismicity follows (1). Con-
versely, those models where X(¢) is accumulated seismic
moment have a larger (58—83%) percentage of mainshock
sequences that follow (1). In the randomized catalogs, some
18—63% of the large event sequences exhibit ASR, over-
lapping the results where Benioff strain is used as X(7). In all
models using seismic moment as X(¢) the randomized
catalogs contain fewer apparent ASR sequences than the
original (unrandomized) catalogs; in all but one model using
Benioff strain as X(#) the randomized catalogs contain more
apparent ASR sequences than the unrandomized catalogs.
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Figure 3. The fit (solid line) to (1) for the cumulative
strain release (solid circles, earthquake events; large circle,
mainshock) prior to the second mainshock in Model 2A.
The least squares (dashed line) linear fit is also shown. m is
the exponent in (1), and C is the Bowman et al. [1998]
curvature parameter.

We must conclude that ASR is present in the former case,
and absent in the latter. Our results using the truncated
Gutenberg-Richter frequency-magnitude distribution paral-
lel those using tapered Pareto. ASR occurs most frequently
when X(7) is seismic moment (57—82%), least frequently
when it is Benioff strain (15-55%), with results from the
randomized catalogs falling in between (20—77%).

[37] We also analyzed the simulated catalogs using var-
iations on the constraints defined above, such as allowing
€)(t;) to be a variable to be fitted and using events of all
sizes to define €2(¢). As expected, this resulted in a different
set of percentages of good fits to (1). However, we find the
separation of results into two groups based upon whether
seismic moment or Benioff strain is used as X(¢) is a very
robust feature of the simulated catalogs. If anything, the
variations in fitting constraints outlined at the start of this
paragraph lead to an even more extreme separation of
results into two groups, compared to the conservative
constraints used to produce Table 2.

[38] Within the group of models with accumulated seis-
mic moment as the level X(¢), it is a model having both the
event rate \(¢) and the upper turning magnitude vy dependent
on the level (Model 8) which yields the largest percentage
of ASR sequences (81—-83%). In the other models approx-
imately two-thirds (57—82%) of the mainshocks are pre-
ceded by ASR sequences.

6. Discussion

[39] As signposted in section 1, we also performed the
search for ASR sequences in the simulated catalogs using
seismic moment as )(f), using the same constraints and
fitting procedure as for Benioff strain. We find that none
of the models produce more than 60% apparent ASR
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sequences. In general, using seismic moment as {2(f) reduces
the percentage of good fits to (1) in both the stimulated
catalogs and their randomized equivalents; i.e., in 43 of the
44 cases in Table 2 where the percentage is >40%, using
seismic moment reduces the number of good fits. It may be
that (1) is simply not an accurate description of the evolution
of cumulative seismic moment release, and may explain in
part why Benioff strain is the empirically preferred quantity.
[40] A major assumption underlying the work described
here is that there is some relationship between a state
variable of the earthquake system and the rate and/or size
distribution of the resulting events. This view has both
historical roots in earthquake seismology [e.g., Reid,
1910; Shimazaki and Nakata, 1980] and has been bolstered
by recent results from simulation models of earthquake
systems [e.g., Steacy and McCloskey, 1998; Ben-Zion et
al., 2003]. We expect that further analysis from a variety of
earthquake simulation models may suggest other possible
parameterizations for the dependence, on the level X(7), of
the upper turning magnitude y and perhaps the rate \(?).
[41] Our results suggest that, at least in the variants of the
stress release model studied here, it is how decreases in the
level of the process X(7) are apportioned between events of
different magnitude that determines whether or not ASR
behavior is observed. In our simulations the b value at lower
magnitudes is approximately 0.75, so if the level X(7)
corresponds to accumulated Benioff strain, most of the
“stress release” is concentrated in the smaller magnitudes
(Figure 4). Conversely, when accumulated seismic moment
is used as the level, most of the “‘stress release” is in the
larger magnitudes (Figure 4). This is also why the choice
of parameters is more sensitive when using the truncated
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Figure 4. Proportion of energy released as a function of
magnitude in two of the simulation models. The identity of
S; largely controls whether energy is primarily released in
smaller versus larger events. Solid circles, Model 5 (Benioff
strain); open circles, Model 6 (seismic moment).
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Figure 5. Evolution of state vector X(t) (dashed line) and earthquake occurrence (vertical lines) during
stress release model simulations. Note that the entire simulated catalogs are not shown. Top row: Models
using the tapered Pareto distribution. (left) Model 5 (Benioff strain). (right) Model 6 (seismic moment).
Bottom row: Models using the truncated Gutenberg-Richter distribution. (left) Model 13 (Benioff strain).

(right) Model 14 (seismic moment).

Gutenberg-Richter distribution. The effect of the system
level has to be sufficient to overcome the sharp truncation of
the magnitude distribution. This results in an output catalog
of tapered Pareto form.

[42] Figure 5 shows typical temporal behavior of the
stress release model. With accumulated Benioff strain as
X(#), we see that perturbations are small, and hence so are
the variations in rate and average size of events. This is a
characteristic of “‘self-organizing criticality” (SOC) behav-
ior, rather than the “intermittent criticality” implicit in
ASR. However, with accumulated seismic moment as X(7)
we see that the system can be “discharged” from time to
time, with consequent delays until the rate of events, and/or

their average size, can again noticeably accelerate. The
differing time axes between the left and right panels of
Figure 5 reflect this behavior; i.e., a magnitude 8+ event in
Model 6 at model time 617 “shuts down” the simulated
seismicity and events (of magnitude > m() do not begin
again until much later (not shown). Similar behavior occurs
at model time 845 in Model 14 (Figure 5). Because of the
different regimes controlling the underlying level X(¢) in
these models, the rate of events in model time is quite
different. However, as is obvious from (4), model time can
be scaled by multiplying the parameters to equalize this.
Hence we simply sought to produce simulated catalogs with
roughly equal numbers of events.
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Figure 6. Cumulative Benioff strain release during 200 time step segments of Models 5 and 6. Arrows
mark mainshock events (open, premainshock Benioff strain release fits (1); filled, premainshock Benioff
strain release does not fit (1)). (left) Model 5 (Benioff strain). (right) Model 6 (seismic moment).

[43] Figure 5 also illustrates the cause underlying the
difference in behaviors. If X(¢) is accumulated seismic
moment then the stress release of the small events are small
enough relative to their mean that, in spite of the small
drops, X(#) continues to trend upward. Hence the rate \(¢)
and/or the upper turning magnitude y continue to increase,
until a large enough event occurs to ‘‘terminate” the
sequence. Thus the pattern of cumulative seismic release
Q) (2) is quite “cyclic,” and many ASR sequences are
observed. On the other hand, if X(¢) is accumulated Benioff
strain, then the stress release of the small events are larger
relative to their mean, and a sequence can be “‘terminated”
by several small events as well as by a large one. Hence the
record appears more regular in terms of seismic release than
an ASR pattern, and few ASR sequences are observed
(Figure 6). In fact the latter case produces fewer ASR
sequences than random chance, indicating that the stress
release model using accumulated Benioff strain models
ASR poorly.

[44] Our results bear considerable similarity to those from
a variety of cellular automaton simulations [Sammis and
Smith, 1999; Jaumé et al., 2000; Weatherley et al., 2000].
ASR sequences do not occur in conservative automata with
uniform cell sizes, but are produced in nonconservative
cellular automata and those with fractal cell size distribu-
tions [Sammis and Smith, 1999]. Jaumé et al. [2000]
find ASR sequences in heterogeneous cellular automata
with a crack-like stress redistribution law that leaves the
previously ruptured cells stress free after an event [Steacy
and McCloskey, 1998] but not in an automaton which
redistributes significant stress to previously ruptured
cells [Steacy and McCloskey, 1999]. What unites these
observations and our results is that ASR sequences occur
in those models in which large events produce significant
energy level drops in the overall system.

[45] Tt is relevant here to remember that a prediction from
one of the “approach to criticality”” models of ASR is that it

arises from an increase in the upper turning magnitude .
This results in an increase in the number and size of events in
the large event tail of the observed distribution [Rundle et al.,
1999]. Jaumeé [2000] tested this prediction by examining the
difference in earthquake magnitude-frequency distributions
during the first and second halves of 17 known ASR
sequences, finding that the change in the magnitude-
frequency distributions for 15 of these sequences was
consistent with the model of Rundle et al. [1999]. We have
similarly analyzed the output magnitude-frequency distribu-
tions within the ASR sequences of Model 4. The comparison
with the results of Jaumeé [2000] is shown in Figure 7.

[46] We see that the stress release model produces
changes in the magnitude-frequency distribution similar to
natural cases; if anything the natural variation is less than
that seen in the simulation model. Of course, in a simulation
model, we have no missed observations.

[47] The results are not sensitive to the choice of my =
4.0. For computational purposes, we require only that this
cutoff be at least two magnitudes less than the magnitude of
the event being examined as a candidate for the end of an
ASR sequence. Since the lower part of the magnitude
distribution is pure Gutenberg-Richter, including still
smaller events in our catalogs, and hence in the level X(¢),
would tend only to accentuate our results. However, this is
tied to the exclusion of aftershocks from our model. The
stress release model is capable of producing realistic after-
shock sequences through augmentation by stress transfer to
a secondary process [Borovkov and Bebbington, 2003].
However, this requires a number of additional parameters.
Because of the magnitude cutoffs used here, which are
typical of ASR studies, the aftershocks would not materially
affect the results, and so the mainshock only model was
used in order to aid comprehension. The b values of the
simulated catalogs are consistent with this.

[4¢] Having demonstrated that our simple stochastic
model is capable of producing repeated instances of ASR
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Figure 7. Change in magnitude distributions during first versus second halves (based upon time) of
ASR sequences. Earthquakes are ranked by magnitude, and the difference in magnitude between the
distributions is plotted as a function of rank (inset on left shows construction for ASR sequence
associated with 1994 M = 6.7 Arthur’s Pass, New Zealand earthquake, modified from Figure 2 of Jaumé
[2000]). (left) Fifteen natural ASR cases (Figure 10a, Jaumé, 2000). (right) Fifteen simulated sequences
from Model 4 that have C < 0.7. The large AM at small rank indicates that the largest events occur during
the latter half of the ASR sequence. Figures 2 and 10a from Jaumé [2000].

(as well as SOC behavior), the next step will be to develop a
method for fitting the parameters in the conditional intensity
(4) and the size distribution (5). Taking the intensity and the
size distribution separately, the former can be fitted by
standard point process maximum likelihood methods [Daley
and Vere-Jones, 2003, section 7.2], while Kagan and
Schoenberg [2001] have examined a number of estimators
for the parameter(s) of the tapered Pareto distribution.
However, we need to fit them simultaneously, a far more
difficult problem. It appears that the only feasible way in
which the marked (by magnitude) point process as a whole
can be fitted to data will be through a Bayesian framework.
While Tsapanos et al. [2001] outline a Bayesian approach to
estimating parameters in the truncated Gutenberg-Richter
law, Rotondi and Varini [2004] indicate that simultaneously
fitting this law and the stress release process parameters
requires Monte Carlo methods to compute the required
Bayesian distributions.

7. Conclusions

[49] We have developed an extension of the stress release
model which can reproduce many aspects of ASR sequen-
ces observed in earthquake catalogs. In this model we find
that the presence or absence of ASR is largely dependent on
the scaling of the effect of the event magnitudes on the
internal level of the process. Variants where either or
both of the earthquake occurrence rate and the upper
“cutoff” of the earthquake size distribution are dependent
on the level of the process, produce a significant percentage
of simulated ASR sequences only when the level of the
process corresponds to accumulated seismic moment. We

have also verified that, in these simulations, the frequency-
magnitude distributions evolve in similar fashion to that in
observed cases of ASR (see Figure 7 and its discussion).
This suggests that self-correcting type models are an effec-
tive tool for developing methods of parameter estimation
and hazard forecasting using ASR, through the generation
of large synthetic catalogs, and by providing an alternative
fitting methodology for cross-checking of ASR forecasts.
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