УДК 552.2:553.4(470.32)

СУЛЬФИДНЫЕ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫЕ И НИКЕЛЬ-КОБАЛЬТОВЫЕ РУДЫ В ДАЙКОВО-ЖИЛЬНЫХ КОМПЛЕКСАХ И МЕТАСОМАТИТАХ ВОРОНЕЖСКОГО КРИСТАЛЛИЧЕСКОГО МАССИВА (ЦЕНТРАЛЬНАЯ РОССИЯ)

М.Н. Чернышова

Воронежский государственный университет г. Воронеж, Университетская пл., 1 E-mail: shurshilova@geol.vsu.ru Поступила в редакцию 30 мая 2006 г.

На основе комплекса геолого-геофизических, структурно-вещественных и других данных приводится характеристика разнотипных сульфидных платиноидно-медно-никелевых и никелевых руд ассоциирующих с дайковыми образованиями еланского никель-платиноносного комплекса и их метасоматитами. Определено их место в общей модели формирования рудномагматической системы. На примере Подколодновского рудного района предложена принципиальная схема транскоровой эволюции рудномагматической системы очагового типа в головных зонах локальных мантийных плюмов и промежуточных магматических очагов в пределах континентальной коры разных уровней через систему подводящих каналов – «даек». На основе эталонного объекта (Линн-Лейк, Канада) выполнен подсчет прогнозных ресурсов сульфидных медноникелевых руд.

Ключевые слова: Воронежский кристаллический массив, дайки, сульфидные платиноидно-медно-никелевые и никель-кобальтовые руды, рудномагматические системы, прогнозные ресурсы.

SULFIDE PLATINOID-COPPER-NICKEL AND NICKEL-COBALT ORES IN DYKE-VEIN COMPLEXES AND METASOMATITES OF THE VORONEZH CRYSTALLINE MASSIF (CENTRAL RUSSIA)

M.N. Chernyshova

Voronezh State University

On the basis of a complex of geologo-geophysical, structural-material and other data the description of polytypic sulfide platinoid-copper-nickel and nickel ores associating with dyke formations of the Elan nickel-platiniferous complex and their metasomatites is given. The position of ores in the general model of the formation of ore-magmatic systems is determined. The Podkolodnovka ore region served as an example for suggesting the fundamental chart of a transcrustal evolution of the ore-magmatic system of a focal type in head zones of local mantle plumes and intermediate magmatic focuses within the limits of the continental crust of different levels through the system of incurrent canals – «dykes». On the basis of a reference object (Lynn Lake, Canada) the calculation of the forecast resources of sulfide copper-nickel ores is carried out.

Keywords: the Voronezh Crystalline Massif, dykes, sulfide platinoid-copper-nickel and nickelcobalt ores, ore-magmatic system, forecast resources.

В соответствии с известной геодинамической моделью [Чернышов и др., 1997], базирующейся на комплексном анализе геолого-геофизических, петрофизических, геолого-структурных, петрологических и изотопно-геохимических данных, в докембрийской истории развития ВКМ выделено три цикла: а) раннеархейский; б) позднеархейский; в) раннепротерозойский, завершающиеся коллизионными процессами на рубеже около 3 млрд. лет, 2,6-2,5 млрд. лет и 2,1-2,0 млрд. лет соответственно.

Наибольшим разнообразием геодинамических обстановок характеризуется раннепротерозойский цикл (внутриконтинентальный рифтогенез и реактивизация позднеархейских рифтов, тыловой рассеянный спрединг, шарьяжирование), возникшие в результате сложного механизма субдукционных процессов в зоне взаимодействия континентов (более «легкого» КМА и Хоперского с «тяжелой» литосферой) и обусловивших высокую степень эндогенной активности, разноуровневый характер очагов магмогенерации, существенное возрастание роли ассимиляции мантийными расплавами корового материала. Предполагается [Чернышов и др., 1997], что на субдукционном этапе развития Лосевской зоны с миграцией восходящих мантийных потоков в сторону Хоперского мегаблока и заглублением очагов магмогенерации связано широкое развитие в его пределах в разной мере дифференцированных ультрамафит-мафитовых интрузий мамонского комплекса (2100-2080±10 млн. лет [Чернышов и др., 1998а]), внедрившихся по рассредоточенным зонам растяжения в результате механизма рассеянного спрединга, а также более поздних по времени формирования норитдиоритовых тел еланского комплекса (2065-2058±14 млн. лет [Чернышов и др., 1998б]). С последовавшим за ним коллизионным этапом в пределах Хоперского мегаблока сформировался бобровский комплекс субщелочных гранитов с возрастом 2022±3 млн. лет, обнаруживающих признаки параавтохтонности.

Одной из самых характерных особенностей Хоперского мегаблока является исключительно широкое развитие в его пределах ультрамафит-мафитовых, мафитовых и мезомафитовых интрузивно-дайковых тел никель-платиноносного мамонского комплекса. В его составе выделяется несколько групп интрузивнодайковых тел, сформировавшихся, вероятно, в условиях неодинаковых уровней магмагенерации или очаговых зон и различающихся по структурному положению и разному уровню эрродированности, составу породных ассоциаций и минеральных парагенезисов, полноте дифференцированности, масштабам и степени продуктивности на цветные и благородные металлы [Чернышов, 1993, 2004; Чернышова, 1996, 1999, 2002]: 1) ранние ультрамафитовые высоко- и умеренномагнезиальные в разной мере дифференцированные, бесполевошпатовые промышленно рудоносные (мамонский тип); 2) ультрамафит-мафитовые умеренно магнезиальные камернодифференцированные (расслоенные) с амфибол (титанистая роговая обманка)-плагиоклазсодержащими рудоносными ультрамафитами (ширяевский тип); 3) ультрамафит-мафитовые (фазные) камернодифференцированные рудоносные (елань-вязовский тип); 4) количественно преобладающие в составе комплекса слабодифференцированные с неустановленным оруденением и недифференцированные безрудные габбро-норитовые, габбровые и габбро-диоритовые интрузивы (каменский тип), завершающие становление всей рудоносной дунит-перидотит-пироксенит-габброноритовой формации.

Исключительно высокая степень насыщения (плотность; рис. 1А,Б) ультрамафит-мафитовыми и мафитовыми интрузивно-дайковыми породными ассоциациями является, вероятно, следствием существования в пределах крупного (375 × 475 км²) Хоперского мегаблока магматических систем, развивающихся над головными частями мантийного суперплюма с возникновением над его поднимающейся поверхностью локальных плюмов. В соответствии с ранее рассмотренной моделью формирования ВКМ в раннем протерозое последние концентрировались в трех достаточно протяженных (до 200-300 км) северо-западных (340-350°) зонах их рассеянного спрединга (см. рис. 1Б): а) Западной (Лосевско-Мамонской) с широким проявлением интрузивно-дайковых тел мамонского типа; б) Центральной (Озерковско-Ширяевской), в пределах которой развиты интрузивно-дайковые образования ширяевского типа и в) Восточной (Елань-Эртильской) с многообразными плутонами елань-вязовского типа мамонского комплекса и многочисленными интрузивно-дайковыми телами еланского комплекса. Каждая из них выделяется цепочкой выстроенных вдоль осевых структур в определенный ряд сближенных разномасштабных по размерам и интенсивности локальных гравитационных и магнитных аномалий, которые соответствуют интрузивно-дайковым системам различным по количественному соотношению ультраосновных и мафитовых составляющих.

Отдельные звенья такой системы представляют собой, по-существу, конвективные ячейки (магматические центры) в пределах ав-

СУЛЬФИДНЫЕ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫЕ

Рис. 1. Положение никель-платиноносных интрузивно-дайковых тел мамонского комплекса в структуре ВКМ.

А) Схема структурно-формационного районирования ВКМ: І – мегаблок КМА; ІІ – Хоперский мегаблок; ІІІ – Лосевская шовная зона; Б) Плотность распределения интрузивно-дайковых тел мамонского никель-платиноносного комплекса и направление осевых структур зон рассеянного спрединга: І – Западная (Лосевско-Мамонская); ІІ – Центральная (Озерковско-Ширяевская); ІІІ – Восточная (Елань-Эртильская); В) Схема размещения интрузивно-дайковых тел мамонского комплекса в пределах Мамонско-Подколодновского рудного района: 1 – песчаниково-сланцевые отложения воронцовской серии; 2 – вулканогенно-осадочные отложения лосевской серии (в пределах Лосевской шовной зоны); 3 – гранитоиды бобровского комплекса; 4 – ультрамафит-мафитовые интрузивно-дайковые тела мамонского никель-платиноносного комплекса; 5 – тектонические нарушения (а) и границы зон (б): І – Западная (Лосевско-Мамонская), ІІ – Центральная (Озерковско-Ширяевская); 6 – месторождения и рудопроявления: 1 – Ширяевское, 2 – Нижнемамонское, 3 – Артюховское, 4 – Подколодновское, 5 – Юбилейное, 6 – Северо-Бычковское, 7 – Мартовское, 8 – Коммунское, 9 – Бычковское. тономных структур зон рассеянного спрединга, встроенные в строгий ряд, в котором максимальное количество ультрамафит-мафитовых тел размещаются над восходящими потоками. При достаточно широком проявлении в Хоперском мегаблоке разновозрастного и разномасштабного сульфидного платиноидно-медно-никелевого оруденения, образующего с уль-

Рис. 2. Схематическая геологическая карта (с элементами прогноза) Подколодновского рудного района.

Лосевская серия (PR,:AR, ls): 1 – мигматиты по метабазитам и вулканогенным породам среднего и основного состава (a), реликтовые тела ортоамфиболитов (б); воронцовская серия ($PR_1^{1}vc$): 2 – песчаникосланцевые образования: метапесчаники, метаалевролиты,сланцы двуслюдяные, филлитовидные и углеродсодержащие (sIPR,¹vc); 3 – гнейсы биотитовые, силлиманит-биотитовые, гранат-биотитовые, двуслюдяные, кордиерит-гранато-графитсодержащие и графитовые, в различной мере мигматизированные (gnPR,¹vc); 4-8 – мамонский интрузивно-дайковый комплекс, ультрамафиты (συPR, ¹m,): 4 – дуниты, перидотиты, плагиоперидотиты, оливиновые пироксениты, пироксениты; мафиты ($v\delta PR_1^{-1}m_2$); 5 – габбро-нориты меланократовые; 6 - габбро мезократовые, амфиболизированные; 7 - габбро-нориты лейкократовые, кварцсодержащие габбро, габбро-диориты; породы среднего состава; 8 – диориты биотит-роговообманковые, роговообманковые, кварцевые диориты и биотит-плагиоклазовые породы жильно-дайковой серии; 9 - геологические границы – установленные (а), предполагаемые (б); 10 – зона глубинного Лосевско-Мамонского разлома; 11-12 – зоны разломов второго порядка (11) и более высоких порядков (12); 13 – зоны позднеколлизионного структурно-тектонического развития Подколодновского рудного района с элементами прогноза: I – Западная; II – Центральная; III – Восточная; 14 – расположение гравитационных аномалий в пределах рудного района с эпицентром над Донским массивом; 15 – локальные высокоинтенсивные аномалии низких (до 5-50 Ом м) электросопротивлений в осевой зоне расслоенного Донского интрузива мафит-ультрамафитов и на северном фланге зоны III; 16 – месторождения сульфидных платиносодержащих Си-Ni руд: 1 – Подколодновское, 2 – Юбилейное; 17 – сульфидные платиноидно-медно-никелевые рудопроявления: 3 – Донское, 4 – Бычковское, 5 – Северо-Бычковское, 6 – Мартовское, 7 – Артюховское, 8 – Коммунское; 18 – Сухоярское месторождение графита; 19-20 – на врезке: граница Коммунско-Артюховского участка подсчета прогнозных ресурсов металлов эпигенетических брекчиевых платиноидно-медно-никелевых руд коммунского типа в III зоне по категории P_3 (19), по категории P_1+P_2 (20).

трамафит-мафитовыми и мафитовыми комплексами разнотипные рудномагматические системы (РМС; [Чернышов, 2004]) наиболее важные в промышленном отношении месторождения принадлежат к двум формационно-генетическим типам: мамонскому и еланскому.

В пределах месторождений мамонского типа (Нижнемамонское, Подколодновское) выявлено несколько различных по мощности (1-2 м до 40-85 м) и протяженности (до 2200 м) зон платиноидно-медно-никелевых руд пентландит-халькопирит-пирротинового состава, целиком располагающихся в ультрамафитовых дифференциатах интрузивов. Руды вкрапленные и густовкрапленные (Ni = 0,30-3,14 мас. %, Cu = 0,15-4,01 %; Со до 0,05 %) с жилами массивных и брекчиевидных (Ni = 1,67-5,93 %; Cu = 0,25-4,01 %, реже до 10,1 %; Со = 0,08-0,13 %, иногда до 0,44 %; ЭПГ и Аи около 1 г/т, редко до 2,5 г/т).

Крупнообъемная по запасам и ресурсам еланская группа месторождений тесно ассоциирует с норитами и представлена рядом крутопадающих различной мощности (до 100 м) и протяженности (до 1000 м) залежей богатых вкрапленных и гнездово-вкрапленных (Ni = 1,31-5,48 мас. %, Co = 0,04-0,25 %, Cu = 0,19 %; ЭПГ = 0,3-0,5 г/т) и в меньшей мере брекчиевидных и массивных (Ni = 8,01 %; Cu = 0,10 %, Co = 0,19 %, ЭПГ 1,3 г/т) руд. Особенностью руд еланского типа является тесное пространственно-временное совмещение раннего халькопирит-пентландит-пирротинового и более позднего существенно обогащенного платиноидами кобальт-никелевого арсенид-сульфоарсенидного парагенезисов, сформировавшихся из единого рудоносного расплава.

Особенностью Хоперского мегаблока является широкое развитие в его пределах отдельных месторождений (Юбилейное) и многочисленных разномасштабных рудопроявлений цветных и благородных металлов, ассоциирующих не только с интрузивами, но и с разнообразными по составу дайково-жильными образованиями мамонского комплекса [Чернышова, 2005], инъецированных гранитоидами бобровского комплекса. Пространственно они иногда совмещены с известными месторождениями или образуют самостоятельные рудные залежи, состав которых характеризуется высокими содержаниями рудообразующих металлов и широким спектром минеральных парагенезисов.

Наиболее полно рудоносные дайковожильные образования и метасоматиты проявились в Подколодновском рудном районе (рис. 2), который представляет собой своеобразный полигон для установления условий и механизма формирования интрузивно-дайковой никельплатиноносной РМС, ее последующей эволюции. В качестве определяющих, граничных параметров этого рудного района выступают: а) приуроченность его к Западной (Лосевско-Мамонской) зоне, сопряженной с Лосевской шовной структурой (см. рис. 1А-В); б) установленная комплексом геофизических методов глубинная модель коры и верхов мантии Подколодновского блока в целом; в) латеральная неоднородность его коры и верхней мантии с включениями магматитов с высокоскоростными параметрами и участками глубинной трещиноватости и высокой проницаемости; г) зональное проявление тектонических дорудных деформаций в коре, определяющих вероятные пути миграции рудно-силикатных расплавов и флюидов ; д) достаточно высокий уровень геологической изученности разреза докембрийских образований и широкое развитие различных по масштабам, характеру дифференциации и степени рудоносности мафит-ультрамафитовых и ультрамафитовых массивов мамонского комплекса; е) высокая степень распространенности дайково-жильного комплекса пород и метасоматитов в пределах Центральной и Восточной зон рудного района с разномасштабным платиносодержащим сульфидным медно-никелевым оруденением (Юбилейное месторождение, Коммунское, Артюховское, Северо-Бычковское и другие рудопроявления; рис. 3, 4) и богатыми сульфоарсенидными никель-кобальтовыми рудами мартовского типа.

Модель очагового плавления в головных зонах локальных мантийных плюмов (рис. 5) предполагает развитие промежуточных магматических очагов в пределах континентальной коры разных уровней через систему подводящих каналов – «даек». Самые нижние из них формировались на границе охлажденной кровли плюмов, определяя появление новообразований расплавов в зоне нижней базитовой коры.

Разномасштабные (от 2-4 км² до 56 км²) расслоенные ультрамафит-мафитовые и существенно ультрамафитовые интрузивно-дайковые тела (типа Донского рудоносного, Подколодновского и Юбилейного промышленно-ру-

Рис. 3. Схематическая геологическая карта и разрезы Юбилейного сульфидного платиноидно-медно-никелевого месторождения [Чернышова, 2005].

1 – роговообманково-слюдистые гарцбургиты; 2 – оливин-роговообманковые пироксениты; 3 – крупнозернистые такситовые горблендиты; 4 – габбронориты; 5 – роговообманковые габбро; 6 – диориты и габбро-диориты; 7 – гранодиориты, микроклин-плагиоклазовые граниты; 8 – гнейсы кварц-биотит-плагиоклазовые; 9 – бедная сульфидная медно-никелевая минерализация; 10 – зоны массивных богатых руд.

доносных) в раме гнейсовой толщи Западной и Центральной зон (см. рис. 2), с развитием позднеколлизионной крупноблоковой трещиноватости, образовывались из однотипных расплавов, но различаются своей кумулятивной стратификацией и незначительной пространственной разобщенностью. Механизм формирования расслоенных массивов на средних и верхних уровнях коры предполагает эшелонизированные многократные поступления порций остаточного расплава из промежуточных очагов нижних частей магматической системы в затвердевающих интрузивных камерах с постепенным ростом их объемов [Шарков, 2004; Щерба, 1973]. Процессы зонной плавки гранитных расплавов на верхних уровнях коры («гранит-2») при интенсивном массообмене по (по К и Na) в двухслойных камерах между

СУЛЬФИДНЫЕ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫЕ

горизонтами базитового и кислого расплава с самостоятельной системой конвекции перекрыли действия нижних корово-мантийных очагов.

В Восточной зоне рудного района с преобладанием мелкообломочного линейного меланжа и брекчирования гнейсов, развиты мелкие безкорневые ультрамафитовые тела (в том числе рудоносные) и разнообразный по составу пород дайково-жильный комплекс с выявленными рудопроявлениями (Мартовское, Коммунское, Северо-Бычковское).

Важно особо подчеркнуть, что приуроченность интрузивно-дайковых тел к различным зонам отчетливо прослеживается в характере и масштабах оруденения, в соотношении сингенетических и эпигенетических руд при возрастающей роли последних в Восточной (III) зоне. К этой зоне, осложняющей купольно-сводовую структуру гнейсового блока, приурочена субмеридиональная сеть разломов с постколлизионной активизацией их с проявлениями высокоинтенсивных процессов деформаций с объемным течением пород, их дроблением, диспергацией и частичным локальным переплавлением с образованием узлов псевдотахиллитов. Вовлечение в такие зоны наряду с породами гнейсовой рамы мелких рудоносных интрузий ультрамафитов и их дайково-жильных образований определило увеличение проницаемости всей совокупности пород, повышение химической активности, условий миграции и концентрации рудоносных растворов и

Краткое описание рудной зоны	Колонка	ала глубин	щность, м	Результаты химических анализов		
		IIK	Mo	Ni	Cu	Co
Оруденелые брекчированные биотит-плагиоклазовые	난 난 난	- 577	0,5	0,130	0,050	0,011
породы (диориты, гнейсо-диориты) с ксенолитами	LtDL		0,5	0,587	0,057	0,042
и оудинами оливиновых и оезоливиновых пироксе- нитов дайково-жильной фации		- 578	0,5	0,272	0,090	0,014
Пироксениты жильные	н н н	L 570	0,4	0,052	0,050	0,008
Оруденелые брекчированные биотит-плагиоклазовые		- 379	0,7	0,360	0,237	0,028
породы (диориты, гнейсо-диориты) с ксенолитами и будинами оливиновых и безоливиновых пироксе- нитов дайково-жильной фации		-580 -581	1,8	0,242	0,082	0,017
Жильные пироксениты с сульфидами	нн		0,2 0,5	0,497 0,095	$0,075 \\ 0.032$	0,034 0.009
Оруденелые брекчированные биотит-плагиоклазовые породы (диориты, гнейсо-диориты)			0,5	0,260	0,117	0,020
Пироксениты с сульфидами	H H	-588	0,5	0,662	0,237	0,050
	せたせ	-589 -590	1,0	0,355	0,125	0,027
породы (диориты, гнейсо-диориты) с вкраплен ностью и шлирами сульфидов и графитом			1,0	0,317	0,087	0,024
			0,6	0,200	0,125	0,019
	しいせい	-591	0,3	0,447	0,145	0,038
	L+ L+ L+		0,5	0,130	0,075	0,014
	нлагиоклазовые с вкраплен итом $\frac{1}{1+}$				0,130	0,042
	H H	502	0,3	0,485	0,147	0,039
0	н. н	- 393	0,7	0,472	0,205	0,037
оруденелые орекчированные пироксениты с сульфидными медно-никелевыми рудами		-594	0,9	0,740	0,387	0,053
	н н н	505	0,8	0,080	0,052	0,009
		646	0,3	0,767	0,132	0,061
	Н Н Н	596				

Рис. 4. Разрез одного из участков Коммунского рудопроявления (скв. 7161) с брекчиевидными сульфидными медно-никелевыми рудами.

М.Н. Чернышова

Головная часть плюма

Рис. 5. Принципиальная схема транскоровой эволюции магматической системы над локальным плюмом при формировании рудоносного (Подколодновский рудный район) мафит-ультрамафитового интрузивно-дайкового мамонского комплекса (с элементами прогноза).

Разрез глубинной геоплотностной модели коры и верхов мантии Подколодновского блока: 1 – слой «гранит 1» (стратифицированная часть – петрографически разнородный комплекс); 2 – слой «гранит 2» – амфиболсодержащие гранитогнейсы; 3 – «диоритовый слой» (переходный): амфибол-гиперстеновые плагиогнейсы, гранулиты высокожелезистые; 4 – метабазитовый слой: габбро-амфиболиты, основные гранулиты, гиперстеновые плагиогнейсы, эндербито-гнейсы; 5 – верхи мантии по сейсмоплотностным свойствам: а) – переходная зона кора-мантия: габбро-амфиболитовые гранулиты, пироксениты, перидотиты, б) – верхнемантийные образования (бесполевошпатовый амфибол-шпинель-гранатсодержащий парагенезис); головная часть плюма: 6 – охлажденная краевая часть плюма; 7 – область мантийного магмаобразования; 8 – внутренняя часть плюма; 9 – промежуточные магматические очаги, дифференцированные от ультрамафитового (а) до мафитового (б) расплава; 10 – расслоенный мафит-ультрамафитовый Донской массив; 11 – условные магмаводы: а) из верхней зоны плюма (Подколодновское месторождение), б) из промежуточных очагов с формированием интрузий и дайковой серии в процессе механизма рассеянного спрединга; 12 – зоны позднеколлизионной структурно-тектонической трещиноватости Подколодновского рудного района с элементами прогноза: (I) – Западная зона; (II) – Центральная зона; (III) – Восточная зона.

флюидов на поздних этапах рудогенеза, что отчетливо прослеживается в составе рудовмещающих дайково-жильных образований и метасоматитов, структурно-текстурных и минеральных типах руд и содержании в них рудообразующих элементов (табл. 1).

Таким образом, приведенные данные, базирующиеся на обобщенной модели эволюции магматической системы и анализе структурнопетрологических критериев размещения сульфидного платиноидно-медно-никелевого оруденения, позволяют выделить три разнотипных по степени перспективности зоны в пределах Подколодновского рудного района: І – Западная зона – преимущественно крупноблокового строения рамы гнейсового блока и расслоеного Донского массива мафит-ультрамафитов является перспективной на установление сульТаблица 1

Типы платиносодержащих медно-никелевых и никель-кобальтовых руд в дайково-жильных образованиях мамонского комплекса и их метасоматитах

Состав рудовменцающих дайково- жильных образований и метасоматитов	Текстурные типы руд	Содержание рудообразующих элементов	Минеральные типы руд	Примеры месторождений и рудопроявлений
плекс дайковых пород (рого- оманковые перидотиты, пла-	Рассеянно- и густовкрапленный		Халькопирит-пентландит-пирротиновый (± хромшпинелиды, магнетит, макинавит, вал-	201
горнолендиты, роговоооманко- габбро, диориты, гранитоиды) огократного внедрения	Массивные	Ni=1,3-3,0 %; Си до 10-12% Со=0,13-0,20 %; ЭШГ=0,48 г/т	лериит, куоанит, оравоит, сульфиды го, zл, Мо, арсениды, сульфоарсениды Ni, Co; само- родное золото, минералы платиновой группы)	ооилеиное
Тайки ортопироксенитов,	Вкрапленные, гнез- дово-вкрапленные	Ni = 0,37-2,84 %; Cu =0,21-0,39 % Co = 0,03-0,16 %	Халькопирит-пентландит-пирротиновый и пентландит-пирротиновый при ограниченной	Восточно-
оро-диоритов, диоритов, нитоидов	Массивные	Ni = 2,38-3,4 %; Cu = 0,14-0,30 % Co = 0,11-0,21 %; $\Im III = 0,46 \text{ r/r}$	роли арсенид-сульфоарсенидного никель-ко- бальтового (± хромшпинелиды, макинавит, иль- менит, магнетит, сфалерит, молибденит и др.)	Садовское
Тайки пироксеновых горнблен - ов среди рудоносных рогово - анковых перидотитов	Вкрапленные и прожилково - вкрапленные	$\begin{split} Ni &= 0,60 ~\%; ~Cu = 0,30 ~\% \\ Co &= 0,02 ~\%; ~\exists \Pi \Gamma = 0,24 ~r/\tau \end{split}$	Халькопирит-пентландит-пирротиновый (± магнетит, хромшпинелиды, кобальтин, гередорфит, пирит, виоларит)	Северо- Бычковское
Тайки титанистороговообман - ых пироксенитов среди рудо - еных роговообманковых пери - итов	Вкрапленные и прожилково- вкрапленные	Ni = 0,20 %; Cu = 0,19 % Co = 0,04 %; Pt+Pd = 0,20 r/r	Существенно пирротиновый и пирит- пирротиновый малоникелистый (± магнетит, ильменит, хромшпинелиды, макинавит)	Рудопроявления в пределах Нижне- мамонского и Подколодновск о- го месторождений
рлогопит-биотит-вермикулит- ритовые (±серпентин, тальк) гасоматиты зон контакта ульт - афитов с дайками гранитоидов	Массивные	$ \begin{split} Ni &= 2,83 \ \%; \ Cu &= 10,0 \ \% \\ Co &= 0,13 \ \%; \ Au &= 0,88 \ {\rm r/T} \\ Pt+Pd &= 0,6 \ {\rm r/T} \end{split} $	Пентландит-халькопирит-пирротиновый (± хромшпинелиды, магнетит, макинавит, молиб- денит, валлериит, кобальтин, никелин, сфале - рит, пирит, золото самородное)	Артюховское
Карбонат-хлорит-амфиболовые гасоматиты и кварц-сульфидно-	Вкрапленные	Ni = 1,25 %; Cu = 0,41 % Co = 0,03 %	Халькопирит-пентландитовый и сульфоарсе- нид-арсенидный никель-кобальтовый (герс -	
снидные жилы на контакте льных пироксенитов, диоритов ранитоидов	Массивные	$\begin{split} Ni &= 14,5 \%; \ Cu &= 0,44 \% \\ Co &= 2,2 \%; \ Au &= 0,5 \ r/r \\ \Im III &= 1,7 \ r/r \end{split}$	дорфит, кобальтинистый герсдорфит, никели - стый кобальтин, кобальтин, никелин, гаухекор - нит, миллерит, хизлевудит, графит и др.)	Мартовское
она катаклаза и брекчирования к рудных пироксенитов, квар - ых диоритов, биотит - гиоклазовых метасоматитов	Вкрапленные и прожилково - вкрапленные, редко массивные	Ni = 0,30-0,80 %; Cu = 0,20-0,67 % Со до 0,06 %	Халькопирит-пентландит-пирротиновый с ог- раниченной ролью арсенид-сульфоарсенидный никель-кобальтового (±хромшпинелиды, магнетит, микинавит, пирит, молибденит, галенит, кубанит, арс енопирит и лр.)	Коммунское

СУЛЬФИДНЫЕ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫЕ

фидных платиносодержащих медно-никелевых донных рудных залежей в ультрамафитах; II -Центральная зона - крупно-среднеблокового строения с развитием линейных северо-западного простирания разломно-блоковых структур (Юбилейного типа) и узлов интенсивного катаклаза и трещиноватости (Подколодновского типа), перспективная на установление в мелких массивах ультрамафитов и породах дайковой серии месторождений сингенетичных и эпигенетических платиносодержащих медно-никелевых руд; III – Восточная зона повышенной трещиноватости, катаклаза гнейсов с будинированными безкорневыми малыми и дайковыми телами гипербазитов (Бычковское, Артюховское, Северобычковское рудопроявления), с дайковожильным комплексом и метасоматитами по Рис. 6. Месторождение Линн-Лейк [Кусочкин, 1970; Щерба, 1973]. Геологический план района шахты А (горизонт 328 м).

1 – рудные тела; 2 – полевошпатовые порфиры; 3 – кварцево-роговообманковые диориты; 4 – диориты; 5 – амфиболиты; 6 – зоны нарушения или дробления; 7 – граница участка расчета площадного коэффициента рудоносности по месторождению Линн-Лейк.

ультрамафитовым породам (Мартовское рудопроявление) в ассоциации с породами среднего состава – диоритами, биотит-плагиоклазовыми жилами, в том числе сульфидизированными (Коммунское рудопроявление). Особое значение эта зона представляет на обнаружение объектов сульфидных платиносодержащих никель-кобальтовых руд мартовского типа. В совокупности выделенные перспективные зоны позволяют значительно (в 2-3 раза) увеличить ресурсы этого рудного района.

Высокая степень перспективности в известной мере подтверждается также наличием мировых аналогов некоторых типов платиноидно-медно-никелевых руд, развитых в рудном районе. В частности, вероятным аналогом коммунского, мартовского, артюховского типов рудопроявлений может рассматриваться известное месторождение Линн-Лейк (Канада), которое расположено в 1600 км на север от Садбери и представлено шестью рудными телами, приуроченными к двум штокам диоритов, габбро и амфиболитов (горнблендитов). На месторождении выделяются: массивные, вкрапленные, прожилковые и брекчиевидные типы руд. Представлены они ассоциацией пирит – халькопирит – пентландит – пирротин.

Вмещающими породами пояса Линн-Лейк являются метаморфические образования гнейсового ряда (AR-PR ?) провинции Черчилл [Щерба, 1973]. В их составе преобладают парагнейсы, мигматиты, гнейсодиориты. Брекчиевые руды месторождения Линн-Лейк представлены обломками даек пироксенитов (амфиболитов), метаперидотитов, реже вмещающих гранито-гнейсов, парагнейсов, мигматитов и редко жильного кварца, сцементированных сульфидами.

В северном рудоносном штоке зафиксировано шесть небольших рудных тел: А, В, С, Е, F, G (рис. 6). Параметры оруденения месторождения Линн-Лейк, принятого в качестве

СУЛЬФИДНЫЕ ПЛАТИНОИДНО-МЕДНО-НИКЕЛЕВЫЕ

Таблица 2

Расчет параметров площадной продуктивности (на 1 км²) запасов [Кусочкин, 1970] эпигенетических медно-никель-кобальтовых руд эталонного месторождения Линн-Лейк (провинция Манитоба, Канада)

Рудное поле эталонного месторождения Линн-Лейк											
Рудные тела	Запасы	(Средне	e	Запасы		Площадь	ПJ	Площадная		
месторождения	руды	co	держан	ие	металлов		рудного поля	продуктивность		юсть	
Линн-Лейк	(млн. т)	Ν	иеталлс	B	(тыс. т)		эталонного	запасов металлов		аллов	
			(B %)				месторождения	на 1 км ² площади			
							(км ²)	эталонного			
								месторождения			
								((тыс. т)		
		Ni	Cu	Со	Ni	Cu	Со		Ni	Cu	Со
А	5,000	1,22	0,64	—	61,0	32,0	-		47,0	24,6	—
В	4,275	0,74	0,50	—	31,6	21,4	-		24,3	16,5	—
С	0,760	0,77	0,50	-	5,8	3,8	-		4,5	2,9	-
E											
F	1,600	0,79	0,43	-	12,6	6,9	-	1,3	9,7	5,3	-
G											
EL* (до гл. 300 м)	2,500	2,50	0,93	0,20	62,5	23,3	5,0		48,0	17,9	3,8
Итого:	14,100				173,5	87,4	5,0		133,5	67,2	3,8

Примечание. * на участке EL выделяется 2 типа руд: 1) сплошные руды (около 18 %) с содержанием Ni – 4,5 %; Cu – 1,5 %; Co – 0,2 %; 2) вкрапленные руды в амфиболитах и диоритах с содержанием Ni – 0,75 %; Cu – 0,4 %.

Таблица 3

Подсчет потенциально перспективных ресурсов эпигенетических сульфидных медно-никелькобальтовых руд в дайково-жильном комплексе пород мамонского комплекса в Восточной зоне (III) Коммунско-Артюховского участка Подколодновского рудного района с использованием параметров площадной продуктивности эталонного месторождения Линн-Лейк

Подколодновский рудный район (зона III – Коммунско-Артюховский участок)								
Площадь потенциально		Суммарные потенциально перспективные ресурсы металлов зоны III Подколодновского рудного района (тыс. т)						
рудоносной зонь	а пп (км)	Ni	Со					
Общая площадь	26,5	3538	1781	100				
		с понижающим коэффициентом k=0,6 на низкую изученность и						
		неравномерность распространения вкрапленных и богатых руд						
		2123	1068	60				
По категории P ₁ +P ₂	13,0	1041	524	30				
По категории Р ₃	13,5	1082	544	30				

Примечание. В отдельных маломощных (0,1-0,4 м) жилах Подколодновского рудного района содержание Ni достигает 1,1 %, Cu – 0,5 %, Co – 0,093%; на Мартовском рудопроявлении содержание Ni возрастает до 14,5 %, Co до 2,2 %.

эталонного объекта для подсчета прогнозных ресурсов (по категории $P_1+P_2+P_3$) эпигенетических сульфидных медно-никелевых руд Коммунско-Артюховского участка (зона III) Подколодновского рудного района, приведены в табл. 2, 3.

Выполненный расчет свидетельствует о выявлении лишь в пределах Восточной зоны

Подколодновского рудного района суммарных ресурсов ($P_1+P_2+P_3$) Ni – 2123 тыс. т; Cu – 1068 тыс. т; Co – 60 тыс. т.

Предложенная модель эволюции интрузивно-дайковой РМС мамонского типа, в которой дайковые образования являются не только структурно-вещественными, но и рудонесущими компонентами, выступают как поисковооценочные критерии и могут служить методологической основой для прогнозно-металлогенических построений с целью наращивания потенциальных ресурсов платиноидно-медноникелевых руд.

Список литературы

Кусочкин В.И. Сравнительная геолого-экономическая характеристика промышленных месторождений полезных ископаемых. Никель. М.: ВИЭМС, 1970. С. 3-50.

Чернышов Н.М. Платиноносные формаци Курско-Воронежского региона (Центральная Россия). Воронеж: Изд-во Воронеж. гос. ун-та, 2004. 448 с.

Чернышов Н.М. Промышленно-генетические типы сульфидных платиноидно-медно-никелевых месторождений новой никеленосной провинции России и проблема их освоения // Вестник Воронежского гос. университета. Естеств. науки. 1993. Сер. 2. Вып. 1. С. 188-215.

Чернышов Н.М., Баянова Т.Б., Чернышова М.Н. и др. Уран-свинцовый возраст норит-диоритовых интрузий Еланского никеленосного комплекса и их временные соотношения с габброноритами дифференцированных ультрамафит-мафитовых плутонов мамонского комплекса ВКМ // Геология и геофизика. 1998а. Т. 39. № 8. С. 1064-1071.

Чернышов Н.М., Баянова Т.Б., Чернышова М.Н., Левкович Н.В. Уран-свинцовый возраст норит-диоритовых интрузий Еланского никеленосного комплекса Воронежского кристаллического массива // Докл. РАН. 1998б. Т. 359, № 1. С. 98-101.

Чернышов Н.М., Ненахов В.М., Лебедев И.П., Стрик Ю.Н. Модель геодинамического развития Воронежского кристаллического массива в раннем докембрии // Геотектоника. 1997. № 3. С. 21-30.

Чернышова М.Н. Дайки мамонского никеленосного комплекса и их соотношение с оруденением. Воронеж: Изд-во Воронеж. гос. ун-та, 1999. 121 с.

Чернышова М.Н. Дайки никеленосных комплексов Воронежского кристаллического массива (формационно-генетические типы и пространственно-временные соотношения // Вестник Воронежского гос. университета. Сер. геол. 1996. № 1. С. 50-60.

Чернышова М.Н. Дайки сульфидных платиноидно-медно-никелевых месторождений еланского типа и их соотношение с оруденением (Воронежский кристаллический массив). Воронеж: Изд-во Воронеж. гос. ун-та, 2002. 184 с.

Чернышова М.Н. Дайки сульфидных платиноидно-медно-никелевых месторождений Воронежского кристаллического массива (Центральная Россия). Воронеж: Изд-во Воронеж. гос. ун-та, 2005. 368 с.

Шарков Е.В. Строение магматических систем крупных изверженных провинций континентов по геолого-петрологическим данным // Вестник Воронежского гос. университета. Сер. геол. 2004. № 2. С. 7-22.

Щерба Г.Н. Никелевые пояса Томсон и Линн Лейк // Геология рудных месторождений. 1973. № 2. С. 42-55.

Рецензент член-корр. РАНК.К. Золоев