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[1] We examine the canonical source/Green’s function separation problem in the context
of teleseismic P wave scattering from receiver-side crust and upper mantle structure.
Conventional “receiver function™ analysis affords a leading order approximation to the S
component of the Green’s function but provides no information on P-to-P scattering. We
demonstrate that an improved estimate of the three-dimensional Earth’s Green’s function,
including scattered P contributions, can be achieved through consideration of its theoretical
spectral properties. Under conditions typical of the real Earth the P component of the Green’s
function is shown to be minimum phase. This behavior is responsible for the success of
receiver functions in mantle studies. The minimum-phase property is used here to normalize
the source signature on P wave seismograms, thereby facilitating implementation of
multichannel, multicomponent deconvolution of both Green’s function and source signature
within the log spectral domain. Examples using both synthetic simulations and seismograms
recorded on the Canadian National Seismograph Network illustrate the recovery of
accurate and reproducible estimates of the P wave Green’s function. Our approach can be
adapted to a range of source-receiver configurations. In particular, it may prove useful in the
recovery of compressional properties beneath portable, field arrays where calibration is
provided by nearby, permanent installations.  INDEX TERMS: 7203 Seismology: Body wave
propagation; 7215 Seismology: Earthquake parameters; 7218 Seismology: Lithosphere and upper mantle; 7260

Seismology: Theory and modeling; 7294 Seismology: Instruments and techniques; KEYWORDS. Green’s

functions, deconvolution, teleseismic body waves
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1. Introduction

[2] The separation of Earth’s impulse response or
“Green’s function” from source signature is a canonical
problem in seismology. In recent years, accurate extraction
of the Green’s function has become increasingly important
in global seismology as researchers rely upon the subtle
expression of secondary scattered phases (versus, e.g.,
travel times of direct waves) to unveil fine-scale structure
of the Earth’s interior. P-to-S conversions following in the
coda of teleseismic P have played a central role in this quest
and form the basis of the so-called “receiver-function™
approach as pioneered by Langston [1979] and Vinnik
[1977]. In contrast, the use of scattered waves in exploration
(or, more generally, active source) seismology has depended
in major part on what will be referred to hereafter as
“intramodal” scattering wherein incident and scattered
waves represent the same mode, that is, predominantly
P-to-P reflection. The basis for this difference in approach
arises in the nature of the source. In active-source seis-
mology, the source signature is either known to good
approximation (e.g., Vibroseis) or highly localized in time
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(e.g., dynamite explosive) such that, through processing or
by default, the scattered wave field closely resembles the
desired Earth’s Green’s function. As a consequence, the
incident P wave field in active-source studies can be
temporally isolated with relative ease from reflections
originating at depth, and deconvolution, although impor-
tant for target characterization, is directed toward relatively
minor modification of wavelet phase.

[3] In contrast, structural studies in global (or passive-
source) seismology generally involve the analysis of large
earthquakes (magnitudes >5.6) so as to achieve the signal-
to-noise ratios required for characterization of weak contrast
lithospheric and mantle discontinuities. Large earthquakes
typically exhibit greater rupture areas and evolved time
histories over a given frequency band than smaller earth-
quakes. The length of the source time function for large,
shallow events, in particular, may fully overlap with or
exceed the time interval over which the Green’s function is
desired (e.g., first 80 s after direct arrival for most litho-
spheric/upper mantle studies). For intramodal scattering
interactions where both scattered and incident wave types
are the same, this temporal overlap exacerbates their sepa-
ration, especially since the incident wave field generally
dominates the scattered waves in amplitude by an order of
magnitude or more. Conversions are more easily separated

B03303 1 of 15

85U8017 SUOWILLOD SAIIEa.1D) 3edlidde au Aq peusenob a e sspiie YO ‘8sn Jo sa|ni o} Ariqi]8UIUO 48|\ UO (SUOIPUOD-pUR-SWBI W0 A 1M ARl 1 Ul [UO//:Sd1y) SUONIPUOD pue SWid | 8y} 89S *[220z/0T/92] Uo Aiqiauljuo 48| ‘UoeIeps- Uessny aueIyo0D Aq £8/20090E002/620T 0T/I0p/L0o A8 imAreiq i puljuosqndnbey/:sdny wolj pspeojumoqd ‘eg 002 ‘d20229STe



B03303

GREEN'S FUNCTION

0 20 40
Time [seconds]

BOSTOCK: TELESEISMIC GREEN’S FUNCTIONS

B03303

RECEIVER FUNCTION

Time [seconds]

Figure 1. Green’s function versus receiver function. (left) P and SV (x2) response (“Green’s function”)
of an isotropic, two-layer Earth model to an impulsive P wave at precritical slowness. (right) “Receiver
function” recovered by deconvolving P and SV components by P component. The receiver function is a
leading order approximation to the Green’s function correct to zeroth order (O(1)) for P and first-order
(O(¢)) for SV, where e denotes the amplitude of first-order scattering relative to that of the direct wave.
Note that O(e) contributions to the S receiver function are very similar to those of the Green’s function,

whereas O(€®) terms are not.

because the two wave types are orthogonal; that is, P and S
waves are curl- and divergence-free, respectively. Stated
more simply, any S wave energy observed at the surface due
to an incident teleseismic P wave field is by definition
scattered, since the arrival of incident S virtually always lies
outside of the time interval of interest. Upon isolation of the
P and S wave components (and provided that the scattering
is weak), a leading order estimate of the Green’s function
(see Figure 1) can be derived through deconvolution with
the P wave signal which comprises dominantly incident
wave energy [Vinnik, 1977]. The conventional “receiver
function” thus represents a crude approximation to this
quantity where the P and S wave components are only
partly isolated through their approximate association with
the vertical and horizontal components of motion, respec-
tively [Langston, 1979]. In either case, information on
intramodal P scattering is irretrievably lost [see also Pavlis,
2003].

[4] Although, mode conversions have served the interests
of the research community well as a means for character-
izing lithospheric and mantle stratigraphy, there are reasons
to consider the use of intramodal P scattering in a global

seismological context. Foremost among these is the com-
plementary sensitivity of different scattering interactions to
material property contrasts. Whereas conversions (and intra-
modal S wave interactions) are sensitive primarily to shear-
related quantities (e.g., shear velocity, shear impedance),
intramodal P wave scattering is controlled by the
corresponding compressional properties. Thus characteriza-
tion of scattered P waves should enable tighter constraints
to be placed upon lithological interpretations in global
studies. It is also interesting to note that the intramodal P
impulse response should be more easily interpretable due to
the presence of a single, dominant scattering (free-surface
backscattered) mode versus three (one forward scattered,
two free-surface backscattered) for the corresponding P-to-S
conversion. Ultimately, all scattering interactions (intra-
mode P, S interactions and conversions) are of use in
solution of the formal inverse scattering problem wherein
(vector) elastic wave data are to be transformed into models
of subsurface elastic parameters [Weglein et al., 2003].

[5] In this paper, we will examine the problem of esti-
mating the intramodal scattering signal resulting from
interaction of teleseismic P wave fields with near-receiver
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Figure 2. Analogue ray paths. Schematic diagram shows
two ray paths that scatter off different structures yet make
similar intramodal P contributions to the scattered wave
field recorded at the receiver.

structure. We are specifically interested in isolating energy
reflected from the Earth’s free surface and subsequently
back scattered from subsurface structure as this is likely to
be most useful for imaging purposes. The challenge faced in
this task is illustrated in Figure 2, where two schematic ray
paths are shown that involve intramodal scattering contri-
butions to a P wave seismogram recorded at a surface
receiver because of a surface source. The ray path of interest
(solid line) scatters P-to-P from structure on the receiver
side, whereas the second path (dashed line) represents near-
source P-to-P scattering. Both scattered waves will arrive
within the same time interval at the receiver, and origins of
signals on seismogram will be ambiguous, even in the case
of an impulsive source signature. Additional information is
clearly required if we are to isolate receiver-side scattering
from the source-side imprint. This information may be
supplied by multichannel measurements. If the scattering
structure is localized to the vicinity of an array of receivers
and exhibits pronounced lateral variation over the extent of
a surface receiver array, then the recorded scattered wave
field will exhibit temporal moveout relative to the incident
wave field. The wave field scattered from similar structure
at the source side displays little moveout relative to the
incident wave field and will be considered as part of
the source signature. Various forms of time domain
stacking [e.g., Shearer, 1991; Revenaugh, 1995; Bostock
and Rondenay, 1999a, 1999b] can be used to approximately
separate incident and scattered signals when receiver-array
measurements are available. If, however, the near-receiver
structure presents a dominantly vertical variation in material
properties (as is frequently the case) such that scattered
waves exhibit little moveout, then array stacking is of
little use. Moreover, we note that source estimation via
conventional stacking approaches does not honor the con-
volutional model and will generally result in a loss of
higher frequency information.

[6] We shall exploit additional constraints afforded by
causality, energy conservation and the convolutional model
to improve on these previous efforts to isolate intramodal
scattering waves from source signature. The following
sections are motivated by the work of Sherwood and Trorey
[1965], Claerbout [1968], and Ulrych [1971]. In particular,
we demonstrate that, under conditions typical of teleseismic
wave propagation in the real Earth, the P wave impulse
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response of receiver-side stratification to an incident P wave
will be minimum phase. This property is important as it
provides a means of normalizing teleseismic recordings that
is amenable to multichannel deconvolution of the Green’s
function and source signatures within the log spectral
domain. These concepts are illustrated through applications
to both synthetic simulations and data recorded from the
Canadian National Seismograph Network (CNSN).

2. Minimum Phase and Teleseismic Wave Fields

[7] Our focus in this section is to examine the spectral
properties of the transfer operator that describes the re-
sponse of a one-dimensional (1-D) stratified, isotropic,
elastic half-space to an incident plane P wave. In particular
we wish to assess to what degree the operator can be
characterized as minimum phase. As depicted in Figure 3,
the stratification comprises k layers overlying a homoge-
neous half-space at z; and bounded above by the free
surface at z = 0. An impulsive plane P wave, incident from
below, is characterized by horizontal slowness p and radial
frequency w. Since the stratification is laterally homoge-
neous, p and w are the same for all scattering interactions
within the stratification. We will further assume that all
wave fields are propagating; that is, there are no evanescent
waves. Following a notation convention adapted from that
of Kennett [1983], the time- and amplitude-normalized
upgoing wave vector wy recorded at the free surface is
related to the incident wave field below the stratification

through a transfer matrix TU = TU( p,w) as

R FI R

where the two elements of the wave vectors are ordered as P
and SV waves. An analogous scalar relation could be written
for SH waves, and a third dimension would be required for
media exhibiting elastic anisotropy. The transfer operator
can be written as

Ty = [1- RpR]'NyTy, 2)

where I is the identity matrix, Ry, is the reflection matrix for
downward incidence upon the stratification (without the free

VAV V. VIEET

Figure 3. Stratified half-space. One-dimensional Earth
model and quantities used to characterize spectral properties
of transfer operator T/(p,w) that describes impulse response
for incident plane P wave.
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surface), Ty, is the transmission matrix for the stratification
(without the free surface), R is the free surface reflection
matrix and Ny is a matrix defined as

e( AIAZ (\"—p)

H TPP L (3)

NU = NU(O7Zk)

In equation (3), o is the P velocity within the ith layer, 77"
is the upward P wave transmission coefficient across the
base of the ith layer, and Az; is the thickness of the ith layer.
Thus Ny, reduces the first (P) arrival to unit amplitude and
repositions it to zero time. The quantity [I — Rp,R] ™" is the
reverberation operator that accounts for the infinite
sequence of multiple reflections set up between the free
surface and underlying structure. At this point we note that
the wave vector w;; can be readily computed from surface
observations of particle displacement or velocity assuming
knowledge of slowness and wave velocities at the surface,
for both the impulsive source implied in (1) and more
general source signatures [Kennett, 1991].

[8] In this and the following sections, we shall exploit the
constraints that reciprocity and energy conservation place
upon the nature of the upgoing P wave field recorded at the
surface. Without loss of generality, it will be convenient to
normalize the reflection/transmission matrices by vertical
energy flux [Kennett, 1983] and note, then, that

Rp =R}, Ry=R}, Ty=T), (4)
by reciprocity and, recalling our stipulation that all wave
fields are propagating,

I=RLR) + ThT) = RLRy + T) Ty, (5)

by energy conservation, where superscript T and superscript
dagger denote transpose and complex-conjugate transpose,
respectively.

[v] We turn our attention now to the spectral character-
istics of Ty and, specifically, the first element on the
diagonal, TZP , that describes intramodal P-P scattering. In
recognition that the wave field wy will be discretely
sampled at time intervals Az and without loss of generality,
we shall elect to consider all quantities in (2) in the Z
transform domain. The individual elements in each matrix
thus become polynomials in Z and we are able to simulta-
neously examine their properties in the time and frequency
domains. The time series is identified in the coefficients of
powers of Z, whereas summation of the polynomial with Z =

¢ yields the frequency domain form. To proceed, we
erte the reverberation operator as a product of the adjoint
and determinant of its inverse:

adj(X)

— R 71: -1 —
I-RpR| =X detX| (6)

For P-SV propagation in isotropic media the quotient can be
written explicitly as

ad] (X) 1 XVV _XVP
det|X| T XPPXVV _ xPVXVP | _xPV  xPP | (7)
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where the individual elements of X are defined as

XPP =1—- RgPRPP _ RgVRVP
XPV — _RZPRPV _RgVRVV
XVP — —REPRPP —RgVRVP

XVV =1 —RgPRPV —RgVRVV.

All elements of X, Rp, and R are causal, that is, they
represent polynomials with powers of Z greater than or
equal to zero. In particular, the elements of Ry comprise
powers of Z greater than or equal to 2 assuming that the P
transit time through the shallowest layer in the stratification
is equal to or greater than the sample interval. From
equation (5), the magnitudes of elements of R are less
than unity at all frequenc1es Moreover the free-surface
reflection matrix R is unitary, i.e, R'/R = I, and its
elements involve only coefficients of Z0 = 1 since there is
no time delay involved in its action. To proceed, we recall
the following properties of Z-transformed time series
[Claerbout, 1976]: (1) a unit impulse at zero delay (i.e.,
unit coefficient of Z°) is minimum phase; (2) the
convolution of two minimum-phase time series is a
minimum-phase time series; (3) the inverse of a mini-
mum-phase time series is minimum phase; and (4) the sum
of a minimum-phase time series with a second time series
that is nonminimum phase is itself minimum phase if the
power spectrum of the second series is less than that of
the first at all frequencies. Upon consideration of properties
1-4 and the aforementioned properties of the reflection
matrices Rp, R, we see that all of X*7, X " det |X|, and
the diagonal elements of [I — RpR]™' must represent
minimum-phase time series. Moreover, we recall that the
diagonal elements of the free-surface reverberation operator
are those that contribute to intramodal (both P-to-P and
SV-to-SV) scattering interactions.

[10] Having established the minimum-phase character-
istics of the free-surface reverberation operator, it remains
to analyze the properties of the second factor on the right-
hand side of equation (2) Ny Ty. This quantity represents
the normalized transmission matrix for upward incidence
upon the stratification in the absence of a free surface. It has
long been known [Sherwood and Trorey, 1965] that Ny Ty,
is minimum phase for scalar acoustic waves at vertical
incidence. Let us demonstrate this property by considering
the form that N/ T, takes in 1-D isotropic media for p = 0.
In this case P and SV waves are decoupled and all necessary
quantities can be represented by scalars (identified here by
italic font). We begin by considering the transmission
response for a single layer embedded within a whole-space
between depths z; and z,,

_ BT
TP = TIP [1 . EPPRngPPRgﬂ EPPTEP, (8)
where E" = e7@A22/% represents the phase income for a

single tran51t through the layer, and, for example, the
quantity RU represents the upward P-to-P reflection
coefficient for the interface at z; (evaluated at vertical
incidence in this instance). Multiplying by the scalar
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normalization factor Ny(z;, zo) = e wA=/%2/T 5{37" {ZJ (see
equation (3)) for the layer yields

_ _ -1
NyTH? = [1 —EPPRngPPR’;f] : 9)

and using arguments analogous to those employed above
for the free-surface reverberation operater, we see that the
quantity Ny7¢" must be minimum-phase. By invoking the
addition rule for transmission matrices [Kennett, 1983],
generally stated as

= Ty e.5) [~ Ro(5.20Ru (21,3)] ' Tu5.2)

(10)

Ty(z1,2k)

where z; < z; < z;, we may then extend this argument by
recursion to show that the impulse response NyT¢’

minimum phase for P waves at normal incidence in
arbitrary 1-D isotropic stratification. Since the convolution
of two minimum-phase time series is minimum phase

(property 2), the total transfer operator T = [z +
REPT'NyTE? (where we have used the fact that the free-
surface reflection coefficient is —1 for P waves at normal
incidence) is also minimum phase. This result carries over
to SV waves at vertical incidence and SH waves at
precritical values of slowness p.

[11] The argument presented above for vertical incidence
will not, however, hold generally at nonzero horizontal
slowness in 1-D media. This is most readily evident in the
case of a single layer for which equation (8) generalizes to

Ty = Ty, [ — ERp, ERy, | 'ETy,, (11)

where RD, RU, TU are interfacial reflection and transmis-
sion matrices for boundary at depth Zi» and the elements of
the diagonal matrix E are the phase incomes of P and SV
waves through the layer. Noting that the reverberation term
can be expanded as an infinite series, we find that the
complication arises as a result of contributions to the PP
element of T, from the lowest-order term 7' UVEVVT
which represents entirely forward propagating energy that
has converted from P to SV at the lower interface and back
to P across the upper interface. In 1-D media exhibiting
extreme material property contrasts and at larger (but
nonetheless precrltlcal) slownesses, the conversion coeffi-
cients 74", T/F u, can exceed the intramodal transmission
coefficients 747 resulting in delayed, doubly converted
arrivals that are greater than the direct wave in amplitude
and, more specifically, violate the condition of minimum
phase expressed in property 4 above. Consequently, the P
impulse response Wy at nonzero slowness is no longer
guaranteed to be minimum phase.

[12] A development analogous to that just presented for P
waves can also be made for SV waves. We have already
shown that the diagonal element of the free-surface rever-
beration operator corresponding to intramodal SV interac-
tion is minimum phase. To address the transmission
operator N Ty, the normalization matrix Ny in equa-
tion (3) must be redefined in terms of the corresponding
shear velocity and SV transmission coefficients. For p # 0,
this operator is never minimum phase in any vertically
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heterogeneous model due to the acausal (relative to the arrival
of the direct wave) contributions to the SV component
waveform arising through SV-to- P-to-SV scattering interac-
tions. For realistic Earth models these second-order scattering
interactions will, however, be small and, in the context of
linearized inverse scattering, negligible. The situation dete-
riorates for shear waves in anisotropic media where strong qS
coupling [Coates and Chapman, 1990] represented by large
off-diagonal elements in T, will result in surface recordings
with a decidedly mixed-phase character.

3. Generalization and Normalization

[13] Despite the fact the P impulse response w¢, for
precritical incidence in arbitrary 1-D stratification is not
guaranteed to be minimum phase, numerical experiments
confirm that it is so for an overwhelming majority of
plausible 1-D lithospheric and upper mantle Earth models
at slownesses corresponding to teleseismic distances (p <
0.08 s k m™"). Physically, this property is due to the fact
that the direct arrival at zero time is significantly more
energetic than the reverberations that follow in its wake (see
property 4) of the previous section). Accordingly, we expect
the same behavior to persist for teleseismic P wave prop-
agation in most realistic, laterally heterogeneous Earth
models. In substantive support of this latter contention,
we note that traditional “receiver function analysis” would
produce uninterpretable results were it not for the minimum-
phase character typical of real Earth transmission responses
because a nonminimum phase P component would no
longer afford a useful approximation to the source signature
S(w). The success of receiver functions in studies of deep
Earth structure is therefore testament to the minimum-phase
character of teleseismic P wave fields. Stated in a more
quantitative fashion, the P contribution to the 3-D Earth’s
Green’s function at teleseismic distances is generally min-
imum phase because the energy in the incident wave (i.e.,
the impulsive first arrival) is generally greater than that of
the scattered wave field that follows, at all frequencies.

[14] Violations to the minimum-phase assumption may
occur in certain circumstances. For example the generation
of multiply scattered P-to- S-to-P forward conversions at
near critical slownesses, as described in the previous sec-
tion, might occur in areas where stations are located over
thick sedimentary sequences. The development of caustics,
such as those that occur at greater regional distances (and p >
0.08 s k m ") due to the transition zone (410 and 660 km)
discontinuities may also produce nonminimum phase
responses. Provided that all scattering interactions are
precritical, a plane-wave decomposition can, in principle,
be used to separate the interfering components which should
individually possess the minimum-phase property. Caustics
generated by complex laterally heterogeneous structures
will be more difficult to address but should occur infre-
quently and, again, only at higher frequencies (>1 Hz) and
larger slownesses.

[15] The minimum-phase character of the teleseismic
response is important for the purpose of analyzing intra-
modal scattering. If the transmission impulse response is
assumed to be minimum-phase, then, from property 2 of the
previous section, the nonminimum phase component of an
observed P component seismogram must originate exclu-
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Figure 4. Normalization by minimum phase. (a) P and (b) S wave sections for 461 seismograms
recorded at station YKW3 normalized to minimum phase. Note the definition of Moho converted phase
in Figure 4b at 5 s. P section is dominated by incident wave at zero time.

sively within the source signature S(w). We recognize then
that by transforming an observed seismogram to minimum
phase, we construct, in effect, the seismogram that would
have been recorded for a minimum-phase source with the
same power spectrum as the original source. Since a
minimum-phase waveform has more energy concentrated
at early times than any other waveform sharing its spectrum
[Robinson and Treitel, 1980], transformation of a P com-
ponent seismogram to minimum phase can be viewed as the
application of an all-pass “shaping filter” that “normal-
izes” the seismogram (or, more precisely the source signa-
ture) and thus serves to emphasize discrete arrivals.

[16] The shaping filter derived through minimum-phase
transformation of a P component seismogram may also be
applied to nonminimum-phase data sharing the same source
spectrum. The most obvious candidates are the SV and SH
components (or ¢gS1 and ¢S2) components of the same
three- -component seismogram The all-pass shaping filter
A(w) is simply defined using the observed frequency-
domain P component seismogram S(w)wi,(w) (the lack of
caret on w{, signifies that the data need not be normalized in
amplitude nor time) as

A(w) =

RS _ KIS _KISEE
SWE@) | SEmfl) | SW)

where transformation to minimum phase is denoted by /C{}
and is most efficiently performed using the Kolmogorov
algorithm [Kolmogorov, 1939; Claerbout, 1976]. Fre-

quency-domain multiplication of the remaining (mixed
phase) wave vector components by this filter produces
waveforms that correspond to the same minimum-phase
source. To demonstrate application we plot the minimum-
phase normalized P and SV components for a data set of
461 seismograms recorded at the Yellowknife Seismic
Array (YKW3) in Canada’s Northwest Territories in
Figure 4. Seismograms are plotted in gray scale and ordered
in slowness (or decreasing epicentral distance). Coherent
energy can be traced across the SV plot at times of ~5 s and
(to a lesser degree) 15 and 20 s corresponding to direct and
free-surface reflected conversions generated at the con-
tinental Moho. These features are not as well defined as
they would be had a proper (e.g., receiver-function)
deconvolution been performed because only the phase
spectrum (and not the amplitude spectrum) is affected. As a
result, pulse widths of individual arrivals are more variable
trace to trace. A second consequence of the variable
amplitude spectra is the presence of subsidiary lobes
following the main peak of an arrival. Their effect is most
obvious on the P section due to the dominance of the direct
P wave at zero time. This arrival is larger by an order of
magnitude or more than the scattered signals we wish to
isolate (e.g., the topside P-to-P reflection from the
continental Moho) and the secondary lobes obscure energy
arriving in at least the following 10-20 s. To achieve better
isolation of the scattered signals, we could stack seismo-
grams along expected moveout curves for 1-D velocity
models [e.g., Vinnik, 1977]. Large numbers of seismograms
are, however, required for this purpose, and the stacking
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Figure 5. Definition of quantities used to define the
transformation of a plane wave reflection experiment to a
plane wave transmission experiment.

process invariably distorts the Green’s function through
attenuation of high frequencies, thereby destroying valuable
information concerning 3-D structure. In a later section, we
examine a means of more effectively isolating the source
and Green’s function contributions that exploits both the
convolutional model and the transformation of a P
seismogram to minimum phase. We will use the term
minimum-phase ‘‘normalization” hereafter to refer to this
transformation because it renders the inherent source
signature strongly peaked and positive near time ¢ = 0.

4. Normalization by Autocorrelation

[17] In this section we examine a correlation-based nor-
malization of the wave field, due to Claerbout [1968] [see
also Frasier, 1970; Wapenaar et al., 2004], that is closely
related to the minimum-phase normalization discussed in
section 3. In this approach we consider first the response of
our stratified half-space to incident impulsive, plane P and S
wave fields (at constant w, p) excited at the free surface
(Figure 5) through the prescription of a source wave vector
matrix I. This source will give rise to upgoing and down-
going wave fields at the surface represented by wave vector
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matrices Vi and Vp and a downgoing wave field in the
homogeneous half-space below the stratification given by
another wave vector matrix Up. These quantities can be
written in terms of the reflection/transmission matrices for
the stratified region as

Vy = [I-RyR] 'Ry (13)
Vb =1+R[I-RpR] 'Ry =1+RVy (14)
Up =Tp [I +R[I- RDﬁ]’lRD] —TpVp. (15)

Assuming, as before, precritical slowness and elastic media,
vertical energy flux is conserved in depth. Thus we may set
the flux at the surface and lower boundary of the
stratification to be equal, such that

ViVp — Vi,V =1+ RV, + VIR = U, Up. (16)

Now consider the reciprocal experiment where the im-
pulsive incident wave field is incident upon the stratification
from below and we represent the wave field at the surface
by a wave vector matrix Wy, comprising the two upgoing
column wave vectors that represent the impulse response to
the incident P wave and S wave sources. By reciprocity and
in analogy with the third equation in equation (4), we have
W, = U} so that

WiW! =1+ RV, + VR, (17)

where the asterisk signifies complex conjugate. The
quadratic form comprising complex conjugate waveforms
on the left-hand side of equation (17) implies sums of
autocorrelations and cross correlations of seismograms in
the time domain and, further, indicates that by measuring
the appropriate responses (i.e., due to both P and S sources
at constant p) for the earthquake geometry (i.e., plane wave
from below), one may recover the result of a reflection
experiment, namely, V,, for which the source wave field is
incident from above. For normal incidence in isotropic
media P and SV interactions are decoupled and so only
autocorrelations of single component wave fields are
required.

[18] The same derivation could have been carried out with
a more general source S(w)I, in which case both sides of
equation (17) would be multiplied by the power spectrum of
the source, S*(w)S(w) implying convolution with a new
source time signature in the time domain. This source time
signature is the zero-phase, autocorrelation of the original
source and can therefore be viewed as a normalization of the
wave field in much the same way as transformation to
minimum phase. That is, the autocorrelation of the source
will, in general, be more strongly peaked than that of the
original source (a property exploited in global seismology
by, for example, Shearer [1991]), and hence secondary
scattered arrivals more easily identified and isolated. The
relevant Green’s function is no longer that corresponding to
a transmission response but rather that for a plane-wave
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reflection response. From a practical point of view, nor-
malization by autocorrelation, as presented above, is rather
less attractive than transformation to minimum phase for a
number of reasons. Strictly speaking, the procedure
requires measurements from two separate experiments,
involving individual P and S wave sources at the same
value of horizontal slowness p with the same source
signature. This requirement cannot be easily met in prac-
tice, although, for small slownesses corresponding to more
distant teleseismic sources the wave-coupling contributions
(i.e., cross correlations) in equation (17) are small and may
be ignored. More serious perhaps is the extension to
multiple dimensions. Wapenaar et al. [2004] have demon-
strated how Claerbout’s [1968] result generalizes to three
dimensions. The generalization involves integrals of cross-
correlated transmission responses due to point sources
distributed below the deepest interface of interest, a
scenario that may be difficult to accommodate for tele-
seismic observations.

[19] Within the context of vertical incidence in 1-D
isotropic, elastic media where both normalization by min-
imum phase and autocorrelation retain full validity, it is
interesting to note that autocorrelation of the transmission
response due to incidence from below the stratification
yields the reflectivity due to incidence from above, yet
transformation to minimum phase only alters the effective
source signature of the transmission response. Indeed, the
two responses are qualitatively very similar (at least for the
modest contrasts displayed by normal lithospheric/upper
mantle models) as might perhaps have been surmised from
a comparison of equation (2) with equations (13)—(17). The
primary difference would appear to be the reorganization of
reverberations internal to the stratification (i.e., independent
of the free surface) induced in transmission to those created
by reflection, which, in general, have very different kine-
matic behaviors. This reorganization is somehow accom-
plished by the action of correlation.

5. Multichannel Deconvolution

[20] As we have argued in section 3, transformation of
teleseismic P seismograms to minimum phase normalizes
the source signature such that the intramodal scattering
component of an underlying 3-D Green’s function is more
readily identifiable. The effect of the source (including
source-side scattering) is still significant, however, and, as
noted in Figure 4, sufficient, in general, to obscure the
weaker (receiver-side) intramodal-scattered arrivals that are
likely to be of most interest in structural studies. In this
section we present a methodology for producing accurate
estimates of both source signatures and 3-D Green’s func-
tions that exploits multichannel recordings within the con-
volutional model, and the properties of minimum-phase
time series.

[21] We consider a collection of M x N minimum-phase
normalized P component recordings representing M sources
measured by N receivers. In constructing the P component
from a three-component displacement/velocity seismogram,
our main requirement is that it contain as much of the
incident P wave field energy as possible. This may be
accomplished using the wave field decomposition schemes
of Kennett [1991], Vinnik [1977], or, less desirably, simply
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through selection of the vertical component seismogram.
The m x nth seismogram is then written in the frequency
domain as

Pon(w) = Sy (w)Gy(w), (18)

where S, (w) is mth source signature and G,(w) is the
impulse response or Green’s function at the nth receiver. By
taking logarithms we can turn this multiplicative relation
into an additive one,

log{Pum(w)} = log{Su(w)} + log{Gy(w)}, (19)

and thereby cast the multichannel convolution as a system
of linear equations involving the same matrix relation for
each frequency. Consider, for example, M = 3, N = 2 for
which we can write

1001 0 log{Py; (w
100 o 1f]lstSi(w} lgiﬂzgwﬁ
01 0 1 of]ogtsa(w)} log{P21(w)}
01 0 0 1]]|lelS} )= log{ P (w)} (20)
00 1 1 of]letGi@)} log{P31(w)}
00 1 o 1]Llel@(w)} log{Ps(w)}

Although we have M x N equations in M + N unknowns, it
is easily verified that the system has rank M + N — 1, and
thus we require an additional constraint if it is to be solved
by standard least squares minimization. This constraint
could be supplied in a variety of forms. For example, if an
estimate of a single source signature or receiver response is
available, its incorporation renders the system full rank;
however, the accuracies of all other recovered S,,(w), G,(w)
then hinge directly on this estimate. We can more
conservative by exploiting our normalization of the data
P, (w). In the limits of an infinite number of independent
sources and of full-band data, one would expect the
cumulative product of minimum-phase normalized source
spectra to tend toward a real constant in frequency,

M ﬁ M
. |
Jim {1;[&”0»)] = lim Mgnjlog{sm(w)} =C, (2
that is, a delta function in the time domain. We recall that a
delta function is minimum phase as befits the normalization.
The burden of fulfilling this last constraint, written for the
system in equation (20) as

log{S: (w)
log{$:(w)
[1/M 1/M 1/M 0 0] log{S;(w)
log{G (w)
log{Gs(w)

is now shared among all source spectra and there is thus
greater prospect for recovering a reliable solution. In
practice, we will have both finite bandwidth and, as above,
a finite number of sources. The qualitative effect of these
limitations can be gauged by considering, for example, an
experiment with equal numbers of sources and receivers
where each receiver records each source, and for which the
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Figure 6. Synthetic P impulse response. The impulse
response for 10 crustal models normalized to the arrival
time of the direct wave are shown. An unphysical arrival at
t = 8.0 s relative to the direct wave is added to the response
at all stations. See text for details.

constant C in equation (21) is set to 0 (the constant simply
trades off the relative magnitude of sources with respect to
impulse responses). In this case, we implicitly set the sum of
the log spectral impulse responses to equal the sum of the
log spectra of the data, that is

ZIOg{Gn(W)} = Z Z log{Pun(w)}. (23)

n

Thus we expect the recovered impulse responses to possess
amplitude spectra similar to those of the data. Moreover,
any signal within the source log spectra that is common to
all events will be incorrectly assigned to the recovered
Green’s functions.
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[22] A second possible constraint equation involves set-
ting the sum of the Green’s function log spectra to a
constant, e.g.,

N
> " log{Gy(w)} = 0. (24)

In this case we force full bandwidth upon the Green’s
function solution (a reasonable expectation) but also assume
that Earth structure at all stations is independent. Thus any
signal within the log spectra of G,(w) that is common to all
stations will be falsely mapped to the source estimates. The
application, that is either source signature estimation or
Green’s function recovery, will dictate the appropriate
choice of constraint. In general, we expect that source
signatures will be more independent than receiver impulse
responses. That is, although earthquake moment tensors for
a given source region will tend to be highly correlated, their
associated time functions will depend on the intricate details
of the local stress regime and source position relative to
major local structures (e.g., free surface), both of which will
change from event to event. In contrast, we can expect a
common spectral component to exist across many receivers
in structural studies. For example, most continental receiver
responses will exhibit a crust-mantle boundary between 30
and 40 km depth whose identification and characterization
will be important in geologic/geodynamic interpretations.
We therefore advocate the use of equation (21) for structural
studies, though we must recognize the potential for residual
source contamination. For source studies the constraint in
equation (24) may be more appropriate. The original source
signatures can be retrieved through deconvolution of the
normalized forms S,,,(w) with the shaping filters 4,,,,(w) used
to transform P, (see equation (12)) or through some form
of multichannel averaging involving deconvolution of the
Appp(w) from P,,,(w) with care taken to account for relative
time delays among the raw P seismograms.

[23] Before proceeding, it should be emphasized that
normalization by minimum phase also obviates a major
complication that has plagued earlier attempts to exploit
the construction in equation (19) [Ulrych, 1971; Clayton
and Wiggins, 1976; Crosson and Dewberry, 1994; Bostock
and Sacchi, 1997], namely, the unwrapping of phase.
The imaginary component of complex quantities in the
log spectral domain corresponds to the phase of their
frequency spectra. The phase spectrum of an arbitrary
signal exhibits a monotonic trend with frequency that must
be reconstructed (or “unwrapped”) from the phase modulo
2w [ (I = £0, 1, 2, 3..) which is delivered within a
numerical implementation. This task is fraught with uncer-
tainty not least because phase is undefined where spectral
amplitudes are zero [see e.g., Jin and Eisner, 1984]. Since
the seismograms P,,,(w) have been normalized to mini-
mum phase, their phase possesses zero trend; that is, it is
periodic in frequency and constant across the Nyquist
frequency. As a consequence, phase does not vary signif-
icantly and is easily unwrapped. Moreover, since P,,,(w)
represents a minimum-phase time series, property 2 in
section 2 requires that both of §,,(w), G,(w) correspond
to minimum-phase functions.

[24] As an alternative to the procedure outlined above, we
could have chosen to deal with the power spectra of the
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Figure 7. Papua New Guinea-western Canada seismograms. Vertical component seismograms recorded
at 10 stations of the CNSN representing two suites (a) 91 P seismograms and (b) 85 P seismograms of
earthquakes used in examples. Suite illustrated in Figure 7a is also used to simulate source functions for
synthetic seismograms. The full complement of seismograms for both suites of events is used to
demonstrate reproducibility of Green’s function estimates from real data.

seismograms P,,,(w)*P,,,(w), the sources S,,(w)*S,,(w), and
the Green’s functions G,(w)*G,(w), rather than the
corresponding minimum phase seismograms. These spectra
obey equations analogous to equations (18)—(20). Treat-
ment of phase is rendered trivial because the phase of all
quantities is identically zero, so that no unwrapping is
required. The same constraint equations (21) and (23) and
associated caveats apply because a delta function is at once
both zero phase and minimum phase. Upon solution of the
linear system, the 3-D minimum-phase, P component,
transmission Green’s function can be recovered from its
spectrum using the Kolmogorov algorithm. Note that,
unlike in section 4, we make no association here between
the power spectrum (or in the time domain, autocorrelation)
of the transmission Green’s function and the corresponding
reflection quantity.

[25] Our reason for preferring the minimum-phase decon-
volution over that employing spectra is that augmentation of
the linear system in equation (20) with additional mixed-
phase components of the wave field appears to be simpler.
For a given source S,,(w), we may provide an additional two
equations corresponding, e.g., to SV and SH components of
the teleseismic P seismogram, that is,

respectively. The data V,,,(w) and H,,,(w) are defined by

V(W) = K{dmn (@) S (w) g (w) }

S (0} ()}

= K{Su(@)}Rale) (1)
Hmn( :K{Amn ( ) ( )}

= IC{IC{Sm )i Z(w)}

= IC{Sm( )}Tn( ) (28)

where (W)W (w) and S, (W)l (w) are the raw SV and SH
spectra (in this case at the nth receiver) and 4,,,(w)

m(w)wU (w) and A,,,(w)S,(w)W{f (w) are the corresponding
seismograms with normalized source signatures (i.e.,
KA{S,(w)), per equation (12). A second transformation to
minimum phase is applied to normalize the mixed-phase
impulse responses Wwi(w), wir(w) to avoid complications in
phase unwrapping as described above. The solutions R, (w)
and 7,,(w) are thus unphysical minimum-phase time series that
possess the same autocorrelations and power spectra as the
corresponding SV and SH components of the Green’s
function. These latter components can, in turn, be retrieved
through multiplication by an all-pass filter, B;l(w), defined,
e.g., for SV waves and a single seismogram, as

log{Sn(w)} + log{Ra(w)} = log{Vm(@)}.  (25)
K{ASm (W)}l (w) }
log{Su(@)} + log{T(w)} = log{Hm(w)},  (26) Bl ==, @ @)
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Figure 8. Synthetic multichannel deconvolution. Estimates of intramodal Green’s functions derived
from 100 synthetic P waveforms constructed from convolution of impulse responses in Figure 6 with
time functions in Figure 7a and using constraints in (a) equation (21) and (b) equation (24).

The filter B,(w) depends only on the P-to-SV impulse
response at site #n and should thus be independent of event
m. To mitigate the effects of noise, it is tempting to define
B, (w) from multiple measurements m through a geometric
average as

(30)

B,(w) computed in this way is, however, mixed phase and
hence we run into difficulty with phase unwrapping as
described above. Itis therefore simpler to form the SV (and SH)
Green’s function estimate through some other average, for
example, the mean of the time domain waveforms constructed
using the estimates of B,,(w) acquired from each source.

6. Synthetic and Data Examples

[26] We proceed now to examine the application of
multichannel source-Green’s function deconvolution via
minimum-phase waveform normalization through synthetic
simulations and a selection of data from stations of the
CNSN. In our first set of examples we prepare a synthetic
data set of P impulse responses for 10, two-layer, 1-D,
isotropic models using a reflectivity code. For each model
the horizontal slowness p is randomly generated between
0.041 and 0.079 s km™" thus representing values typical of
teleseismic P. For simplicity we assume Poisson solids, and
constant densities in the layers and underlying half-space of
2500, 2800, and 3300 kg m >, respectively. The P veloc-

ities and thicknesses in the first two layers are again
randomly generated. The P velocities vary between 4.0—
5.0kms ' and 5.0-6.0 km s~ in the two top layers, and
the P velocity is held fixed at 8.2 km s~ in the half-space.
In addition to these structural signals we insert a signal
common to all of the impulse responses, that is, a constant
amplitude spike at 8.0 s after the arrival of direct P on the
vertical component on all seismograms. The final data set
(Figure 6) comprises the P component waveforms estimated
using the method of Kennett [1991], free-surface P and S
velocities of 4.5 and 2.60 km s™', respectively, and the
appropriate horizontal slownesses. Note that the direct
arrival at ¢+ = 0 has an amplitude that is an order of
magnitude larger than the later arrivals. It is omitted in
Figure 6 to emphasize the scattered arrivals.

[27] Synthetic source time signatures are taken from
10 arbitrarily chosen, real seismograms recorded at 10
different Canadian National Seismograph Network stations
from 10 different earthquakes in Papua New Guinea. As
displayed in Figure 7a, these signatures are relatively
complex and represent a range of different frequency
spectra. The source signatures are then convolved with
each of the 10 impulse responses to simulate a multi-
channel data set of 100 seismograms that are subsequently
deconvolved within a system analogous to equation (20)
and supplemented with constraints (21) and (23) in
Figures 8a and 8b, respectively.

[28] At first glance Figures 8a and 8b look quite different,
and Figure 8b appears to be a better representation of the
true Green’s function response as a sparse spike train. We
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Figure 9. Locations of earthquakes and stations. (top)
Location of source region and great circle trajectories from
one source to each of 10 CNSN stations (inverted triangles).
(bottom) Earthquake locations with two independent data
sets denoted by plusses and circles.

note, however, that the positive arrival at 8.0 s is not
represented in the recovery, confirming our earlier predic-
tion that structure common to all G,(w) is lost using
constraint (23). The Green’s function response in Figure 8a
is band-limited and, in particular, possesses the amplitude
spectrum of the product of the individual seismogram
spectra; however, it does recover the pulse at 8.0 s along
with the other first-order interactions. Some residual source
contamination is evident as signal with zero moveout across
the section, but it is significantly smaller than the main first-
order arrivals. Simple band-pass filtering of the response in
Figure 8a could be applied to better balance the amplitude
spectra.

[20] For observational studies, we are likely to have a less
complete sampling of sources and receivers, i.e., not all
receivers will record all sources. Recordings from portable
field (e.g., IRIS-PASSCAL) campaigns provide a useful
case in point. Limited availability and high demand for
portable instrumentation generally require that such endeav-
ors are of short duration (<1-2 years). Thus a field array is
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unlikely to record more than a single high-quality earth-
quake from any given source region on the globe. However,
one or a few permanent stations with long recording
histories and in close proximity to the field array should
possess a considerable inventory of earthquakes represent-
ing similar source-receiver combinations (proximity of
permanent station with field array is desirable to minimize
directivity and other departures from the point source/
convolutional model). To examine the efficacy of the
multichannel deconvolution, we have employed a subset
of the aforementioned data set comprising 10 events
recorded by a single station (P impulse response 1 in
Figure 6) of which one event (event 10 of Figure 7) is also
recorded by the remaining nine stations. This grouping
represents a total of 19 observations (versus 100 in the
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Figure 10. Multichannel deconvolution of CNSN data.
Estimates of P component Green’s functions determined
using only P wave seismograms from two independent data
sets representing Papua New Guinea earthquakes recorded
at 10 CNSN stations are shown. The responses for the two
data sets are slightly displaced from one another to facilitate
comparison. Seismograms have been band-pass filtered
between 0.1 and 8 Hz.
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Figure 11. Multicomponent, single-station deconvolution. Estimates of P, SV, and SH impulse
responses derived from single-station data for two suites of earthquakes in Figure 6 at stations WALA,
WHY, and PNT are shown. Responses are slightly displaced from one another to facilitate comparison.
Responses have been band-pass filtered between 0.1 and 8 Hz, and all show prominent negative polarity
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peaks near 10—11 s that are likely P-P reflections from the crust-mantle boundary.

original grouping) plus 1 constraint (equation (23)) to
estimate 20 unknowns (10 sources and 10 impulse
responses). The results of this simulation (not shown) are
virtually identical to those in Figure 8a, and suggest that
recordings from permanent stations are likely to provide
useful calibration for portable experiments.

[30] The examples discussed to this point represent per-
fect data with no errors. Rather than construct synthetic
noise examples that are likely to be unrepresentative of
contamination present in actual data, we choose to examine
the robustness of multichannel deconvolution by minimum-
phase normalization through the analysis of two indepen-
dent data sets representing the same set of impulse
responses. These two data sets are formed from 20 earth-
quakes in Papua New Guinea, recorded at 10 CNSN
stations (BBB, DAWY, DLBC, EDM, INK, PGC, PNT,
WALA, WHY, and YKW3). The events are closely spaced
relative to the propagation paths (see Figure 9) and therefore
all seismograms recorded at a single station represent the
same 3-D Green’s function. Examples of seismograms
from these 20 events are shown in Figures 7a and 7b. We
divide the data set into two suites of 10 earthquakes, one
comprising 91 P seismograms, the other 85 P seismograms.
Figure 10 shows the P impulse response determined
by multichannel, simultaneous deconvolution for the 10 sta-
tions using the two data sets. In general the phase match is

good, although there are differences in amplitudes at some
stations. Given the geographic range represented by these
stations, namely, western Canada, it is possible that some
inconsistency is introduced through source directivity which
results in slightly different effective source signatures
beneath each station.

[31] In a second example (Figure 11), we show the result
of deconvolving the three components of the Green’s
function for stations WALA, WHY, and PNT by employ-
ing only those three-component data recorded at the
respective stations within the approach embodied in equa-
tions (25)—(30). As a consequence, finite fault dimension
should not have any detrimental effect on the solution. The
impulse responses for all three components are very
consistent between the two independent data sets and so
we believe an accurate estimate of the Green’s function is
being recovered. Corroboration is provided through a
comparison with the SV and SH receiver functions using
simultaneous, frequency domain deconvolution [Gurrola et
al., 1995] which produces broadly similar but more vari-
able time series (see Figure 12). In both approaches,
precisely the same data sets are being used; however, the
underlying philosophies are different. In receiver function
analysis, the P and S component waveforms play asym-
metric roles as source estimates and raw data, respectively.
In contrast, all components of the wave field contribute
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Figure 12. SV and SH components of Green’s functions
and receiver functions (GF and RF, respectively) at station
WALA showing superposed results from the two indepen-
dent Papua New Guinea data sets. Larger arrivals on both
Green’s functions and receiver functions correspond well,
but significant differences do exist.

equally to the estimation of both Green’s function and
source signature in the approach described here. The
consistency among all three components for the two data
sets and the better accounting for source suggests that the
Green’s function seismograms in Figure 11 may contain
meaningful information on higher- (i.e., second) order
scattering (see Figure 1). In our experience to date, we
see little sign of the instability that can occur, for example,
in simple deconvolution via spectral division. This behav-
ior stems from the constraint in equation (21) which, in
effect, imposes a “whitening” of the source spectra akin to
dampening in standard least squares deconvolution [e.g.,
Oldenburg, 1981], and from the redundancy inherent in
equation (20) with multiple sources and receivers.

7. Concluding Remarks

[32] We have shown how normalization through trans-
formation to minimum phase can be exploited to estimate
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the Green’s function for teleseismic P wave fields. Our
primary motivation has been the extraction of the intra-
modal P-to-P scattering contribution which, to our knowl-
edge, has not hitherto been adequately characterized. We
have emphasized transformation to minimum phase be-
cause it should produce accurate “transmission” Green’s
functions for a wide variety of laterally heterogeneous
Earth models. In future work, it may prove feasible to use
these Green’s functions within the Claerbout [1968] cor-
relation approach (or, rather, multidimensional extensions
thereof, e.g., Wapenaar et al. [2004]) to transform trans-
mission Green’s functions into reflection impulse responses
that are better suited to formal (i.e., nonlinear) inversion [e.g.,
Weglein et al., 2003]. In the context of linearized inverse
scattering the transmission response should, however, be
sufficient [Bostock et al., 2001]. It is encouraging to note
from synthetic simulations that multichannel deconvolution
based on minimum-phase normalization has potential in
circumstances where many stations record few events and
few stations record many events as, for example, where a
permanent station is sited in close proximity to a tempo-
rary field deployment. The long history of recording at
the permanent installation will afford source calibration
and the generation of accurate Green’s functions to be
used in inversion for subarray structure and material
properties.
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