Вестник Уральского отделения

2004

УДК 553.673 (470.5)

МИНЕРАЛОГИЯ ТАЛЬКОВО-КАРБОНАТНЫХ ПОРОД БАЖЕНОВСКОГО ОФИОЛИТОВОГО КОМПЛЕКСА

Ю.В. Ерохин¹, В.А. Перевощиков, Ю.А. Соколов ¹Институт геологии и геохимии УрО РАН

Баженовский офиолитовый комплекс расположен непосредственно в черте г. Асбест (Свердловская область), а также в его окрестностях. На восточной окраине города располагаются карьеры одного из крупнейших в мире Баженовского месторождения хризотил-асбеста, вскрывающие ультраосновные породы комплекса. На современном эрозионном срезе Баженовский офиолитовый комплекс представляет собой полосу шириной 3,5-4 км, вытянутую в северо-северо-восточном направлении на 28 км. Имея, в общем, равномерную мощность, в комплексе местами наблюдаются пережимы и раздувы в интервале по обнаженной поверхности от 2 до 3 км. С запада и на крайнем юге к Баженовскому ультраосновному массиву примыкает габбровая интрузия, которая в северной части района прорывает толщу вулканогенных пород, а на юго-западе контактирует со сланцево-амфиболитовым комплексом, отделяющим ее от Адуйского гранитного массива. В строении габбровой интрузии принимают участие набольшие тела габбро-диабазов, а также шлиры пироксенитов и серпентинитов, расположенные вблизи контакта с ультраосновным массивом. Ширина интрузивной полосы габбро на большом протяжении колеблется в пределах 1,0-1,5 км. Баженовский дунит-гарцбургитовый массив достигает в длину 28 км при ширине от 1 км в средней, наиболее узкой части, до 3,5 км и более в северной части [1, 8]. Баженовский офиолитовый комплекс почти со всех окружен гранитоидов. С массивами востока он непосредственно граничит с позднеостроводужными габбро-диорит-плагиогранитным Рефтинским (S2-D1) и габбродиорит-гранитным Некрасовским (D₂) комплексами [8]. С юга и юго-запада офиолитовое тело ограничено Каменским гранодиорит-адамеллитовым комплексом (C₁₋₂). С запада на небольшом удалении (около 2-3 км) выходят орогенные гранитоиды Мурзинско-Адуйского комплекса (С₃-Р₁) в том числе Малышевский лейкогранитный массив (Р₂) [1, 8].

Тальково-карбонатные породы широко распространены в пределах Баженовского офиолитового комплекса. Наиболее интенсивно оталькование гипербазитов проявилось на южном участке Баженовского месторождения хризотил-асбеста, где наблюдается контакт

Минералогическое общество

2004

Вестник Уральского отделения

с гранитоидами Каменского тоналит-гранодиоритового массива, а также в зонах тектонических нарушений. Развитие тальково-карбонатных пород отмечается как вдоль западного, так и восточного контактов гарцбургитового тела [1]. Незначительная часть метасоматитов встречается в самом гипербазитовом теле, обычно вокруг дайковых тел гранитоидов и диоритов. В целом можно сказать, что тальково-карбонатные породы контролируют тектонические зоны разломов (рис. 1), а также залежи ломкого хризотил-асбеста [9].

Рис. 1. Обнажение тальково-карбонатных пород в тектонической зоне. Восточный борт Центрального карьера Баженовского месторождения хризотил-асбеста.

Образование тальково-карбонатных пород напрямую связано со становлением гранитных них интрузий, точнее с флюидным потоком (интенсивным притоком OT высокотемпературных углекислых растворов). На Баженовском офиолитовом комплексе реализуются несколько типов метасоматических колонок с участием тальковокарбонатных пород: 1. воздействие гидротермальных жил – кварц-карбонатная жила – тальково-карбонатная порода → талькит (стеатит) → оталькованный серпентинит → серпентинит → серпентинизированный гарцбургит (по [10]) 2. внедрение дайкового комплекса – диорит — хлоритизированный диорит — кварц-тальково-хлоритовая порода → кварц-тальково-карбонатная порода → тальково-карбонатная порода → антигоритовый серпентинит (рис. 2) 3. по зонам тектонических разломов – габбро-норит \rightarrow хлоритит \rightarrow тальково-хлоритовая порода → тальково-карбонатная порода → антигоритовый серпентинит (рис. 3). Иногда вокруг плагиогранитных будин в рассланцованных серпентинитах наблюдаются метасоматиты практически полностью карбонатного (доломитового) состава с небольшой примесью талька (рис. 4).

<u>No</u> 3

Рис. 2. Метасоматическая колонка, развитая на контакте с дайкой диорита. Мощность зоны не более 1 м. Восточный борт Центрального карьера Баженовского месторождения хризотил-асбеста. Условные обозначения: 1 – диорит, 2 – хлоритизированный и карбонатизированный диорит, 3 – тальково-хлоритовая порода с идиоморфными кристаллами доломита и кварца, 4 – тальково-хлоритовая порода с выщелоченным доломитом, 5 – тальково-хлоритовая порода, 6 – окварцованная тальково-карбонатная порода, 7 – тальково-карбонатная порода.

Рис. 3. Тектонический контакт габброидов с серпентинитами, по которому развиваются тальковокарбонатные и тальково-хлоритовые породы. Западный борт Центрального карьера Баженовского месторождения хризотил-асбеста. Стрелка указывает на север.

Рис. 4. Будина плагиогранитов с тальково-карбонатными породами в серпентинитах. Восточный борт Южного карьера Баженовского месторождения хризотил-асбеста. Стрелка указывает на север, треугольниками показана осыпь.

Вестник Уральского отделения

2004

Минералогический состав тальково-карбонатных пород довольно однообразен, кроме таких главных минералов как тальк и карбонаты, часто наблюдаются амфибол, серпентин, кварц, хлорит, гранат, гематит, пирит и турмалин. В зависимости от преобладания того или иного минерала название тальково-карбонатных пород может усложняться.

<u>Тальк</u>. Является главным породообразующим минералом для тальково-карбонатных пород. Обычно выглядит как плотный скрытокристаллический агрегат, реже наблюдается в виде листоватой массы. В проходящем свете тальк бесцветен, оптически отрицателен, удлинение положительное, угасание прямое относительно спайности. Оптические свойства талька - по Ng – 1,580, по Np – 1,540, Δ – 0,400 [10]. По этим данным получается, что тальк содержит 4-5% минала миннесотаита.

Карбонаты. В тальково-карбонатных породах описывались – магнезит (брейнерит), доломит, кальцит и арагонит [2, 3, 9, 10].

Рис. 5. Кристаллы карбонатов из тальково-карбонатных пород: а – магнезит, б – изометричный доломит, в – остроромбоэдрический доломит.

Магнезит является главным минералом в тальково-карбонатных породах и обычно образует метакристаллы. Ромбоэдрические кристаллы (рис. 5а) светло-желтого и белого цветов достигают 1 см. Огранка представлена основным ромбоэдром г{1011}. Грани ромбоэдра обычно неровные со следами растворения [2, 3]. Состав магнезита в тальково-карбонатных породах Баженовского комплекса достаточно однороден, содержание FeO варьирует в пределах 4-6 мас.%, только в тектонизированных тальково-карбонатных породах оно достигает 9 мас.% (табл. 1). В тальк-карбонат-хлоритовых породах расположенных на контакте с тальково-карбонатными породами магнезит уже содержит FeO до 11,5 мас.% (табл. 1).

Доломит достаточно часто встречается в тальково-карбонатных породах, хотя обычно образует прожилки не более 4-5 см мощностью. В этих прожилках среди пустот

Вестник Уральского отделения

2004

Таблица 1

	N⁰	FeO	MnO	MgO	CaO	NiO	CoO	Сумма
4A	1-1	6.51	0.07	40.96	0.85	0.10	_	48.49
	1-2	5.26	0.06	43.08	0.27	0.06	-	48.73
	1-3-пр	1.34	0.10	21.44	29.16	-	-	52.04
	1-4-пр	1.57	-	21.24	28.98	-	-	51.79
	2-1	4.21	-	45.00	0.04	0.15	-	49.40
5 ^	2-2	100.58	-	0.38	-	-	0.11	101.07
JA	2-3	5.48	0.19	44.76	0.41	0.05	-	50.89
	2-4-пр	2.94	0.14	21.12	29.05	-	-	53.25
61	3-1	5.06	0.06	44.50	0.09	0.09	-	49.80
0A	3-2	5.00	0.07	43.69	0.04	0.12	-	48.92
7A	4-1	11.05	0.34	40.11	0.09	-	-	51.59
	4-2	11.37	0.69	39.42	0.09	-	-	51.57
	4-3	10.70	0.43	39.91	0.11	-	-	51.15
	4-4	11.13	0.36	38.37	0.10	-	-	49.96
3A	5-1	5.93	0.06	43.99	0.66	-	-	50.64
	5-2	8.84	-	42.74	0.08	0.11	-	51.77
8Бж	6-1	7.16	0.26	16.67	29.26	-	-	53.35
	6-2	6.34	0.35	16.94	28.26	-	-	51.89
	6-3-пр	5.65	0.32	17.57	30.11	-	-	53.65
	6-4-пр	5.38	0.33	16.97	31.22	-	-	53.90

Химический состав карбонатов и гематита из тальково-карбонатных пород

Примечание: микроанализатор JXA-733, аналитик Е.И. Чурин; анализы даны в мас.%, полужирным текстом выделено трехвалентное железо, пр – прожилок; 1 – гематит-тальково-карбонатная порода (обр. 4A), 2 – тальково-карбонатная порода (обр. 5A), 3 – кварц-тальково-карбонатная порода (обр. 6A), 4 – тальк-карбонат-хлоритовая порода (обр. 7A), 5 – тектонизированная тальково-карбонатная порода (обр. 3A), 6 – тальково-карбонатная порода с турмалином (обр. 8Бж).

наблюдается изометричный доломит (рис. 5б). Морфология кристаллов представлена пинакоидом с $\{0001\}$ и ромбоэдрами г $\{1011\}$, $f\{0221\}$. Грани пинакоида содержат пирамидальные холмики роста (вицинали) имеющие одинаковый отблеск с гранями $f{0221}$. За исключением ромбоздра $f{0221}$ все грани матовые. Кристаллы прозрачны, желтовато-коричневого цвета. Доломит обрастает псевдогексагональным бипирамидальным кварцем [2, 3]. Доломит больше характерен для других пород из метасоматической колонки с участием тальково-карбонатных метасоматитов. Так в кварцкарбонат-хлоритовых породах (рис. 2) доломит является главным породообразующим минералом. B кварцевых жилах секущих ЭТУ породу нами обнаружен остроромбоэдрический доломит (рис. 5в). В жилах мощностью до 5 см карбонат достигает 3 см по удлинению и находится в срастании с короткопризматическим кварцем. Кристалломорфологически карбонат выражен пинакоидом с{0001}, двумя ромбоэдрами

Вестник Уральского отделения

r{1011}, M{4041} и узкими полосками гексагональной призмы a{1120}. Грани r{1011} и a{1120} блестящие, без признаков растворения. Грани острейшего ромбоэдра носят следы регенерации. Цвет доломита коричневый, на плоскостях спайности - слабо-желтоватый [2, 3]. Химический состав доломита сильно варьирует по содержанию FeO от 1 до 7 мас.% (табл. 1). Наиболее железистые разности слагают матрицу тальково-карбонатных пород, а менее железистые представлены прожилками.

Чисто кальциевые карбонаты как кальцит и арагонит являются редкостью для тальково-карбонатных пород. Кальцит образует тонкие прожилки в матрице породы, а чаще всего определяется только рентгеноструктурными исследованиями как примесь в доломите. Видимо на момент образования тальково-карбонатных пород избыток кальция в системе (если он был) связывался в матрице доломита и при снижении температуры сбрасывался в виде самостоятельной фазы. Арагонит описывался только в одном случае как прожилок в тальково-карбонатной породе в ассоциации с шорломитом [9].

<u>Гематит</u>. Является типичным акцессорным минералом тальково-карбонатных пород, хотя местами его содержание достигает 5 об.%. Образует пластинчатые кристаллы по [0001] размером до 1-2 см, какой-либо кристаллографической огранки не наблюдается. По данным химического анализа гематит (табл. 1) содержит примесь магния (до 0,4 мас.%) и кобальта (до 0,11 мас.%).

Магнезиорибекит. Амфибол встречен и описан как арфведсонит в 1962 году А.А. Спасским [11] среди тальково-карбонатной, слабо рассланцованной породы, которая образовалась вокруг даек кислого состава. Он установлен в южной части месторождения, в районе каръера 8д (ныне Южный карьер). Амфибол слагает до 25-40% породы за счет уменьшения содержания талька в интервале свыше 50 м (по скважине). Минерал представлен призматическими кристаллами размером до 0,8-1 мм в поперечнике при длине несколько сантиметров. Образует одиночные кристаллы и скопления в виде звездчатых или шестоватых агрегатов. Кристаллографически выделяются грани призмы т {110} и пинакоид с {001}. Цвет - черный, в отдельных случаях с чуть заметным синеватым оттенком. Хорошо развита совершенная спайность по призме {110} и менее заметна спайность по пинакоиду {010}. В шлифе наблюдается интенсивный плеохроизм: по Ng - желтовато-зеленый, по Nm - густо-фиолетовый, по Np - голубой. Схема абсорбции: Nm>Np>Ng, cNp=8°. Показатели преломления: Np 1,664; Nm 1,776; Ng 1,684; ∆ 0,020. Химический состав: SiO₂ 53,89%; TiO₂ 0,11%; Al₂O₃ 1,45%; Fe₂O₃ 15,54%; FeO 2,39%; CaO 0,13%; MgO 15,05%; Na₂O 6,51%; K₂O 0,09%; Cr₂O₃ 0,65%; V₂O₅ 0,08%; NiO 0,11%; п.п.п. 4,19%; Сумма 100,19%. При этом, реальная формула амфибола выглядит так:

Российская Академия наук	Минералогическое общество	

Вестник Уральского отделения

(Na_{1,81}K_{0,02})_{1,83}(Mg_{3,22}Fe_{0,28}Ca_{0,02}Ni_{0,02})_{3,54}(Fe_{1,67}Cr_{0,07}Al_{0,12})_{1,86}[Si_{3,87}O₁₁]₂(OH)₂. По данным химического состава и на основании новой классификации амфиболов [12], мы определили минерал как магнезиорибекит [4].

Шорломит. Обнаружен в керне скважины западного участка Северной залежи в 1966 году Н.Д. Соболевым и В.Я. Волочаевым [9]. Встречен в тальково-карбонатной породе мощностью 15 см в прожилке крупнозернистого карбоната. Рентгенографически карбонаты определяются как доломит (матрица тальково-карбонатной породы) и кальцит (прожилок). Гранат залегает внутри крупных кристаллов кальцита, где имеются вростки радиально-лучистого халцедона. Образует кристаллы 1,5-2 мм молочно-белого цвета с хорошо выраженными гранями. Химический состав граната: SiO₂ - 34,44%, Al₂O₃ - 0,47%, CaO - 39,20%, MnO - 0,06%, Fe₂O₃ - 2,47%, TiO₂ - 23,76%, сумма - 100,40%. Отсюда, граната: $(Ca_{3,26}Mn_{0.01})_{3,27}(Ti_{1,98}Al_{0.04})_{2,02}[(Si_{2,87}Fe_{0,20})_{3,07}O_{12}].$ По реальная формула недостатку катионов Si⁴⁺ можно предположить, что катионы Fe³⁺ замещают структурную позицию кремния. Спектральным анализом в незначительном количестве в гранате отмечаются медь и скандий. К гранатам с высоким содержанием титана относится шорломит, но он обычно содержит много Fe₂O₃ (входящего в позицию кремния и титана) и характеризуется черным цветом. Видимо, небольшое содержание железа, а также его вхождение только в позицию кремния обусловило белую окраску шорломита. Для большей достоверности находку минерала необходимо повторить.

Рис. 6. Кристаллы кварца (а), турмалина (б) и пирита (в) из тальково-карбонатных пород.

<u>Квари</u>. В тальково-карбонатных породах достаточно редок и обычно образует прожилки совместно с карбонатами и турмалином. Мощность жил варьирует от 1 мм до первых десятков см. В отдельных полостях крупных жил нами наблюдались бипирамидальные «высокотемпературные» кристаллы кварца (рис. 6а), нарастающие на изометричный доломит. В некоторых случаях слагает обильную вкрапленность в матрице <u>No</u> 3

Вестник Уральского отделения

породы в виде округлых изометричных зерен. Количество кварца в метасоматите может варьировать от ничтожных количеств до 10-20%, соответственно при этом породы называются кварц-тальково-карбонатными.

<u>Турмалины</u>. В 1995 году были обнаружены на каменном материале из коллекции Ю.А. Соколова и годом позже непосредственно в коренных выходах тальковокарбонатных пород [6, 7]. Наиболее представительные скопления турмалина наблюдались нами в пределах контакта габбро с серпентинитами, где ультрамафиты интенсивно оталькованы (рис. 3). Тальково-карбонатные породы обычно тектонизированы вдоль контакта. Отмечаются небольшие выделения турмалина в виде отдельных иголок в дайках гранитоидов.

Таблица 2

No	cep	ый	голу	/бой	зеленый			
• -	1	2	3	4	5	6		
SiO ₂	35.33	37.92	38.13	35.46	37.01	37.16		
Al ₂ O ₃	35.14	36.04	34.37	34.54	32.74	32.49		
Cr ₂ O ₃	0.10	0.03	0.01	-	0.98	1.02		
FeO	2.49	2.51	2.86	3.13	2.34	2.11		
NiO	0.19	0.02	0.09	0.12	0.40	0.37		
MgO	7.17	7.16	8.20	8.36	9.49	9.48		
CaO	0.09	0.07	0.03	0.02	0.02	0.02		
Na ₂ O	2.43	2.61	1.09	1.21	1.62	1.48		
F	1.36	-	0.25	-	0.29	0.14		
Сумма	84.29	86.38	85.01	82.84	84.89	81.25		
Миналы								
дравит	38	40	5	8	26	24		
магнезиофойтит	18	17	61	60	47	51		
шерлит	10	11	13	15	11	9		
оленит	32	31	20	16	12	12		
увит	2	1	1	-	-	-		
хромдравит	_	_	_	_	3	3		

Химический состав турмалинов из тальково-карбонатных пород

Примечание: ИМин, JXA-733, аналитик Е.И. Чурин, в мас.%; 1-4 - с контакта габбро с серпентинитами, 5-6 - из тальк-карбонатной породы вблизи гранитной дайки; 1-2 – дравит, 3-6 – магнезиофойтит.

 $1 - (\Box_{0.18} Na_{0.80} Ca_{0.02})_{1.00} (Mg_{1.82} Fe_{0.36} Al_{1.04})_{3.22} Al_{5.99} [Si_{6.00} O_{18}] (BO_3)_3 OH_{3.44} F_{0.56}$

2 - $(\Box_{0.17}Na_{0.82}Ca_{0.01})_{1.00}(Mg_{1.76}Al_{0.94}Fe_{0.34})_{3.04}Al_{6.00}[Si_{6.19}O_{18}](BO_3)_{3}OH_{4.00}$

 $3 - (\square_{0.61}Na_{0.38}Ca_{0.01})_{1.00}(Mg_{1.97}Al_{0.57}Fe_{0.39}Ni_{0.01})_{2.94}Al_{6.00}[Si_{6.17}O_{18}](BO_3)_3OH_{3.87}F_{0.13}$

 $4 - (\Box_{0.60}Na_{0.40})_{1.00}(Mg_{2.11}Al_{0.50}Fe_{0.45}Ni_{0.02})_{3.02}Al_{6.42}[Si_{6.02}O_{18}](BO_3)_3OH_{4.00}$

 $5 - (\square_{0.47}Na_{0.53})_{1.00}(Mg_{2.27}Al_{0.36}Fe_{0.32}Ni_{0.05})_{3.00}(Al_{5.87}Cr_{0.13})_{6.0}[Si_{5.98}O_{18}](BO_3)_3OH_{3.86}F_{0.14})_{1.00}(Mg_{2.27}Al_{0.36}Fe_{0.32}Ni_{0.05})_{3.00}(Al_{5.87}Cr_{0.13})_{6.0}[Si_{5.98}O_{18}](BO_3)_3OH_{3.86}F_{0.14})_{1.00}(Mg_{2.27}Al_{0.36}Fe_{0.32}Ni_{0.05})_{3.00}(Al_{5.87}Cr_{0.13})_{6.0}[Si_{5.98}O_{18}](BO_3)_3OH_{3.86}F_{0.14})_{1.00}(Mg_{2.27}Al_{0.36}Fe_{0.32}Ni_{0.05})_{3.00}(Al_{5.87}Cr_{0.13})_{1.00}(BO_3)$

 $6 - (\square_{0.51}Na_{0.49})_{1.00}(Mg_{2.35}Al_{0.37}Fe_{0.29}Ni_{0.05})_{3.06}Al_{6.00}Cr_{0.13}[Si_{6.18}O_{18}](BO_3)_3OH_{3.92}F_{0.08}.$

В тальково-карбонатных породах турмалин образует мономинеральные (иногда совместно с кварцем) прожилки мощностью до 2 см. Часто наблюдается в самой матрице

Вестник Уральского отделения

2004

метасоматитов в виде отдельных индивидов, размером меньше 4-5 мм. Сами прожилки окаймлены доломитовой оторочкой светло-коричневого цвета, в которой наблюдаются небольшие щелевидные полости (шириной до 2-3 MM) инкрустированные ромбоэдрическим доломитом и турмалином. Кристаллы боросиликата достигают в длину 5 мм и огранены тригональными пирамидами – r{1011}, o{0221}, тригональными призмами – a{1120}, m{0110} и моноэдром – c{0001} (рис. 6б). Состав турмалина и его кристаллохимические формулы приведены в таблице 2 (ан. 1, 2). Из нее видно, что он относится к дравитам с высоким содержанием оленитового минала (здесь вполне применим термин «дравит-олениты»). Количество минала магнезиофойтита достигает 20%, а шерлита – 11%. Дифрактограмма минерала полностью соответствует эталону дравита из ASTM (card 14-76). ИК-спектр дравита показал следующие полосы поглощения: 405, 480, 680, 760, 960, 1020, 1250, 1400, 3490, 3780 см⁻¹ (рис. 7), что характерно для его эталонной кривой.

Рис. 7. ИК-спектр турмалина из тальково-карбонатных пород (SPECORD 75-IR, Институт металлургии УрО РАН, аналитик О.Б. Яковлев).

Магнезиофойтиты от дравитов визуально отличаются голубой и зеленой окраской. Голубой магнезиофойтит встречается в крупных кварцевых жилах (мощностью до 10 см) среди тальково-карбонатных пород, где образует длиннопризматические и игольчатые индивиды. Толщина турмалина в гексагональном сечении не превышает 2-3 мм. В ассоциации с ним отмечался карбонат (определялся по отпечаткам в кварцевой матрице). Для кристаллов турмалина был определен показатель преломления на столике Фекличева (ППМ): N₀ = 1.648, N_e = 1.603, Δ = 0.045. По данным пересчета химического состава турмалин на 60% состоит из магнезиофойтита, благодаря крайне низкому содержанию

Вестник Уральского отделения

2004

Таблица 3

No	1	2	3	4	5	6	7	8
JNG	8Бж	3A	4A	5A	6A	9A	7A	13Бж
SiO ₂	37.12	28.09	38.82	46.86	50.90	45.81	31.83	37.41
TiO ₂	0.14	0.01	-	0.05	0.01	0.35	0.29	0.12
Al_2O_3	11.80	1.22	0.87	1.04	1.11	11.91	15.02	5.05
Fe ₂ O ₃	2.14	0.75	2.99	0.66	0.18	2.78	3.05	1.44
FeO	2.87	5.39	2.15	3.95	2.51	5.74	4.06	3.64
MnO	0.17	0.12	0.08	-	-	0.15	0.04	0.12
MgO	9.12	30.31	30.53	25.86	25.64	8.46	29.44	14.40
CaO	15.46	1.51	3.56	0.59	0.20	6.65	0.89	25.80
Na ₂ O	1.12	-	-	-	-	5.23	0.34	-
K ₂ O	0.29	0.01	-	0.03	0.03	3.29	0.01	-
P_2O_5	0.07	-	0.01	-	-	0.04	0.07	0.04
П.П.П.	20.23	32.85	21.07	21.03	19.64	9.57	15.31	22.12
Сумма	100.60	100.52	100.25	100.23	100.35	100.02	100.37	100.03

Химический состав (в вес.%) тальк-карбонатных пород

Примечание: анализы выполнялись в хим. лаборатории ИГГ УрО РАН; 1 – тальково-карбонатная порода с турмалином, зап. борт Центрального карьера, 2 – тектонизированная тальково-карбонатная порода, зап. борт Центрального карьера, 3-4 – тальково-карбонатные породы, вост. борт Центрального карьера, 5 – кварц-тальк-карбонатная порода, вост. борт Центрального карьера, 6 – тальково-карбонатная порода, вост. борт Южного карьера, 7 – тальк-карбонат-хлоритовая порода, вост. борт Центрального карьера, 8 – тальково-карбонатная порода, вост. борт Центрального карьера, 1000 карьера, 8 – тальково-карбонатная порода, вост. борт Центрального карьера, 8 – тальково-карбонатная порода, вост. борт Центрального карьера.

натрия и кальция, не более 1,2 мас.% (табл. 2, ан. 3, 4). Зеленый магнезиофойтит встречается в кварцевых прожилках среди тальково-карбонатных породах развитых вокруг гранитоидных даек. Нами он обнаружен в восточной части Центрального карьера, где наблюдается большое количество таких даек. Турмалин слагает небольшие иголки, достигающие в длину не более 2-3 мм. Зеленый цвет минерала обусловлен высоким содержанием окиси хрома (до 1 мас.%), что выразилось появлением хромдравитового минала до 3%. По данным пересчета химического состава (табл. 2, ан. 5, 6) турмалин можно относить к магнезиофойтит-дравитам, содержание дравитового минала не превышает 26%, а магнезиофойтита достигает 51%.

Вообще магнезиофойтит можно охарактеризовать как глиноземистый безщелочной дравит. Его недавнее утверждение комиссией ММА (в 1998 году) вынуждает пересматривать уже существующие опубликованные данные по турмалинам. Многие дравиты из ультраосновных и основных пород в этой связи попадают в поле магнезиофойтита. Вполне возможно магнезиофойтит будет являться типоморфным турмалином для ультрамафитов, так как в них крайне низкие содержания щелочных элементов.

41

<u>№</u> 3

Вестник Уральского отделения

2004

<u>Пирит</u>. Отмечался нами в талькитах и тальково-карбонатных породах Баженовского офиолитового комплекса. Наиболее крупные скопления пирита наблюдались в талькитах на восточном борту Центрального карьера, где он образует вкрапленность до 10 об.%. Сульфид представлен метакристаллами с комбинацией гексаэдра – a{100} и октаэдра – o{111}. Последний находится в сильно подчиненном положении, вплоть до полного исчезновения (рис. 6в). На гранях куба отмечается комбинационная штриховка, вызванная совместным ростом гексаэдра с пентагондодекаэдром. Размер индивидов достигает 1-2 см. Значительная часть пирита уже преобразована в лимонитовые псевдоморфозы.

Как реликтовые минералы в тальково-карбонатных породах отмечаются антигорит и клинохлор. Они интенсивно замещаются тальком. Описание этих минералов как породообразующих для серпентинитов и некоторых метасоматитов дано во многих работах [1, 9, 10], поэтому мы на них останавливаться не будем.

Для петрохимической характеристики Баженовских тальково-карбонатных пород нами изучались как собственные образцы (табл. 3), так и литературные данные [5, 9, 10]. Любые изменения в петрохимии тальково-карбонатных пород хорошо коррелируются с их минеральным составом. Так, например, чем выше в породе SiO₂ (читай талька), тем меньше потерь при прокаливании (т.е. карбоната). Интервал вариаций кремнезема на Баженовском комплексе составляет от 20% до 55%. Классические тальково-магнезитовые породы лежат в интервале 30-40%, а тальково-доломитовые находятся в интервалах 20-30% и 40-55%. Содержание глинозема обычно не превышает 2-3 вес.% и находится в прямой зависимости от кремнезема (т.е. при увеличении SiO₂ повышается Al₂O₃). Это значит, что весь глинозем связан в силикатах. Количество Fe₂O₃ не зависит от каких-либо других компонентов и достигает 7-8 вес.%, значит все окисное железо представлено гематитом. Содержание MgO колеблется от 22 до 35% и имеет обратную зависимость по отношению к СаО. Количество последнего иногда достигает 24 вес.%, а обычно не более 10-11%. Для наглядного разделения тальково-магнезитовых и тальково-доломитовых пород можно использовать график распределения CaO относительно SiO₂. На графике две породы дают различные тренды по мере увеличения кремнезема примерно от 30 вес.% (рис. 8). Четко видно, что при повышении SiO₂ в тальково-магнезитовых породах растет содержание CaO до 2,5 вес.%. Интересно, что с понижением SiO₂ от 30% в тальковокарбонатных породах растет содержание доломита (т.е. метасоматиты с преобладающим карбонатом будут исключительно доломитовые).

Вестник Уральского отделения

Рис. 8. Отношение между содержаниями SiO₂ и CaO в тальково-карбонатных породах Баженовского офиолитового комплекса. Стрелками показаны тренды зависимостей.

Рис. 9. Отношение между содержаниями SiO₂ и карбоната в тальково-карбонатных породах.

В результате петрохимических исследований для Баженовских тальковокарбонатных пород появилась возможность графического определения содержания карбоната. При петрохимических пересчетах мы наблюдали обратную зависимость потерь при прокаливании по отношению к кремнезему. В принципе потери при прокаливании в подавляющем своем объеме представлены углекислым газом из карбонатов. Небольшим количеством воды из талька в данном случае можно пренебречь. Таким образом, график будет представлять обратную зависимость между карбонатом и кремнеземом. Если такой график привести с конечными содержаниями талька и карбоната, то зависимость будет прямолинейной, но при вынесении реальных данных она соответствует логнормальному

	Российская Академия наук	Минералогическое общество	
<u>№</u> 3	Вест	ник Уральского отделения	2004

закону (рис. 9). При сравнении графика с реальными данными получилось расхождение не более 5-10% карбоната. Видимо, сказывается примесь других минералов в тальковокарбонатной породе. Построенный график позволяет экспрессно определять содержание карбоната в тальково-карбонатных породах на основании химического анализа.

Рис. 10. Спайдер-диаграмма, нормированная по составу примитивной мантии, для тальково-карбонатных пород. Условные обозначения: ЗА – тектонизированная тальково-карбонатная порода, западный борт Центрального карьера, 6А – кварц-тальково-карбонатная порода, восточный борт Центрального карьера, Ш-530 – тальково-карбонатная порода, Шабровское месторождение тальково-магнезитового камня, карьер «Старая линза».

Геохимические характеристики тальково-карбонатных пород Баженовского офиолитового комплекса (по данным ICP-MS) достаточно устойчивы, правда, исследование проводилось только в метасоматитах с преобладающим магнезитом. Вполне возможно тальково-доломитовые породы будут характеризоваться другими геохимическими чертами. В целом, спайдер-диаграмма тальково-магнезитовых пород содержит ряд отрицательных аномалий по титану, цирконию, гафнию, ниобию, рубидию и положительных – по урану и барию (рис. 10). Интересно, что меланжированные метасоматиты резко выделяются высокими содержаниями стронция, в то время как нормальные тальково-магнезитовые породы имеют отрицательную аномалию по распределение стронцию. Аналогичное имеют тальково-магнезитовые породы Шабровского рудного поля (рис. 10).

Работа проведена при финансовой поддержке РФФИ (грант № НШ-85.2003.5).

Вестник Уральского отделения

Литература

- 1. Баженовское месторождение хризотил-асбеста / Под ред. К.К. Золоева и др. М.: Недра, 1985. 271 с.
- Ерохин Ю.В. Кристалломорфология карбонатов Баженовского месторождения хризотил-асбеста // Материалы Уральской летней минералогической школы - 1997, УГГГА, Екатеринбург, 1997. С. 181-183.
- 3. *Ерохин Ю.В.* Кристалломорфология минералов Баженовского месторождения хризотил-асбеста // Уральский геологический журнал. 1998. № 2. С. 23-33.
- 4. *Ерохин Ю.В.* Амфиболы Баженовского месторождения хризотил-асбеста // Уральский геологический журнал. 1998. № 3. С. 52-59.
- Ерохин Ю.В., Перевощиков В.А. Петрохимия тальк-карбонатных пород Баженовского месторождения // Тезисы докладов Международной научной конференции (VI чтения А.Н. Заварицкого). Екатеринбург: УрО РАН, 2000. С. 42-43.
- Ерохин Ю.В., Шагалов Е.С. Дравит из Баженовского месторождения хризотиласбеста // Металлогения древних и современных океанов. Информационные материалы. Миасс: ИМин УрО РАН, 1997. С. 242-244.
- Ерохин Ю.В., Шагалов Е.С. Борсодержащие минералы Баженовского месторождения хризотил-асбеста // Известия Уральской государственной горно-геологической академии. Серия: геология и геофизика, 1998. Вып. 8. С. 56-58.
- Минералогия родингитов Баженовского месторождения хризотил-асбеста. Екатеринбург, УГГГА, 1996. 96 с.
- 9. Соболев Н.Д., Волочаев В.Я. Петрография и генезис ломкого хризотил-асбеста. М.: Недра, 1966. 80 с.
- Соколова Л.А. Петрография пород района Баженовского месторождения хризотиласбеста и некоторые вопросы метаморфизма этих пород // Тр. ИГЕМ АН СССР, 1960. Вып. 47. С. 2-43.
- 11. Спасский А.А. О находке арфведсонита в породах Баженовского габброперидотитового массива // Зап. ВМО, 1962. Ч. 91. Вып. 1. С. 112-116.
- Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names // Canad. Mineral. 1997. Vol. 35. P. 219-246.